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CHAPTER I

INTRODUCTION

1.1 Numerical Solution of the Boltzmann Transport Equa-
tion

The Boltzmann transport equation describes neutral and charged particle trans-
port phenomena. Numerical solution of the Boltzmann transport equation finds
application in different fields such as nuclear reactor design, radiation shielding cal-
culations, radiative transfer in stellar atmospheres, semiconductor device design,
radiation oncology, and high energy physics, to name a few. There are two classes of
computational techniques that are used to solve the transport equation. In the first
class, deterministic methods, the transport equation is discretized using a variety of
methods and then solved directly or iteratively. Different types of discretization give
rise to different deterministic methods [Lew93, Dud79], such as discrete ordinates
(Sw), spherical harmonics (Py), collision probabilities, nodal methods, and others.
The second class of techniques, Monte Carlo methods, constructs a stochastic model
in which the expected value of a certain random variable is equivalent to the value
of a physical quantity to be determined [Car75, Ham64, Lux91, Rub81, Spa69]. The
expected value is estimated by the average of many independent samples representing

the random variable. Random numbers, following the distributions of the variable



to be estimated, are used to construct these independent samples. There are two
different ways to construct a stochastic model for Monte Carlo calculations. In the
first case the physical process is stochastic and the Monte Carlo calculation involves a
computational simulation of the real physical process. In the other case, a stochastic
model is constructed artificially, such as the solution of deterministic equations by
Monte Carlo.

Both deterministic and Monte Carlo methods have errors, but the source of er-
rors is different for each method. In the treatment of deterministic computational
methods the computing errors are systematic. They arise from the discretization of
the time-space-angle-energy phase space and the approximate geometry. The present
state of the art does not allow full representation of complicated three-dimensional
geometries for deterministic transport methods. Monte Carlo methods, on the other
hand, can treat continuous energy, space, and angle, and hence avoid discretization
errors. The errors in Monte Carlo methods take the form of stochastic uncertainties.
Estimation of the statistical uncertainty of Monte Carlo results requires understand-
ing of properties of random variables such as expectation values, variance, and the
central limit theorem. Deterministic methods are computationally fast but may sacri-
fice accuracy; whereas Monte Carlo methods are computationally slow yet arbitrarily
accurate.

We conclude these introductory remarks on the numerical solution of the Boltz-
mann transport equation, by noting that the rest of this chapter is divided into
following sections: in section 1.2 we explain the motivation and objective for this
research work. In section 1.3 we introduce the ideas of Monte Carlo eigenvalue cal-
culation, which are vital to Monte Carlo eigenvalue perturbation calculations. In

section 1.4 different Monte Carlo perturbation methods for the calculation of re-



action rates and eigenvalues are introduced. Section 1.5 introduces parallel Monte
Carlo algorithms. Section 1.6, the last section of this chapter, gives an outline of the

remainder of this dissertation.

1.2 Objective and Motivation for this Work

The main objective of this research work is to develop a multiple perturbation
Monte Carlo technique for nuclear reactor criticality problems. Even though the
eigenvalue (or the multiplication factor) of the neutron transport equation can be
estimated very efficiently by Monte Carlo methods, the calculation of small reactivity
effects due to realistic cross section perturbations is much more difficult. For small
perturbations, a direct correlated simulation is necessary instead of taking the differ-
ence between the results of two independent Monte Carlo simulations. The ability to
calculate multiple eigenvalue perturbations from a single Monte Carlo simulation is
extremely useful. Since Monte Carlo methods are computationally slow, this capa-
bility gives rise to an efficient Monte Carlo perturbation technique. There are quite
a few cases in computational reactor physics for which it is desired to know the per-
turbations in eigenvalue due to cross section changes. These include calculations of
perturbed eigenvalues due to different soluble boron concentrations, different number
of absorber control rods in assemblies, and different assembly loading patterns for a

global core, for example.

1.3 Introduction to Monte Carlo Eigenvalue Calculation

The multiplication factor (K) is defined as the dominant eigenvalue of the neutron
transport equation. The eigenvalue K can also be expressed as the ratio of the

number of neutrons in one generation to the number in the previous generation in



a system containing fissionable material and in the absence of any external source.
Monte Carlo eigenvalue simulation starts with hundreds or thousands of neutrons
and follows these neutrons through many generations [Goa’9, Lie68, Mih67, Whi66].
These neutron generations are referred to as batches, cycles, or stages. Within each
batch, a random walk simulation, from birth to death, of all the neutrons is done.
The simulation of a neutron lifetime from birth by fission, to death by capture or
leakage, is called a “history”. Appropriate probability density functions, representing
physical processes such as fission, scattering, transmission, leakage etc., are sampled
to determine the different states of a random walk simulation. If fission occurs, the
site of the fission and the number of neutrons produced at that site are stored for
the next batch. After the simulation of all the histories for a particular batch is
completed, the fission production is normalized to maintain the original number of
starting fission neutrons. Most codes require that the starting number of fission
neutrons be approximately the same for all generations. This prevents population
extinction if K < 1 and memory overflow if K > 1, and it makes the coding simpler.

One problem associated with Monte Carlo eigenvalue calculations is that the
spatial source distribution for the first batch is not known a priori [Men68]. The
usual procedure for handling this situation is to start with some arbitrary source
distribution for the first batch, and then for each subsequent batch, select source
sites based on the fission neutron production distribution obtained from the previous
batch. This iterative procedure requires that a number of initial batches be discarded
to eliminate the effect of the arbitrary starting distribution. It is important that
enough initial batches be discarded so that the fundamental mode source distribution
is reached before batch eigenvalue estimates are accumulated [WhiT1].

In a Monte Carlo eigenvalue calculation there is a tradeoff between the number



of batches versus the number of neutrons per batch. It is difficult to determine what
combinations of batches and histories per batch will provide the most accurate result
for a fixed number of neutrons (i.e., neutrons per batch times the number of batches).
If a very large number of neutrons per batch is used for an eigenvalue calculation,
then the variance in the eigenvalue estimator for each batch will be small. However,
the fundamental mode distribution of fission neutrons may not be reached due to the
relatively fewer number of batches used. The other alternative is to follow a small
number of neutron histories for many batches. This will allow the neutron source
distribution to reach the fundamental mode, but a large variance will arise in the
fission production estimator for each batch.

Bias is another important issue involved with Monte Carlo eigenvalue calcula-
tions [Bow83, Eno90, Gel74, Gel91, Zol83]. It is known that the calculation of K
using Monte Carlo batches produces biased results. This is due to the need to gener-
ate and maintain the fundamental mode eigenfunction, which is usually achieved by
a batch-to-batch settling process involving some kind of normalization of the neu-
tron population at the end of each batch. With some experience in Monte Carlo
eigenvalue computation and using the relationship [Bri86, Gel94] between bias and
standard deviation as guidance, the effect of bias can be made insignificant for most
cases. The estimators for the variance of the eigenvalue over the batches can also
be biased [Gel81, Gel90a, Mac73, Moo76, GasT5], especially for systems with high
dominance ratios, due to the correlations between the neutron histories from one

batch to another.



1.4 Introduction to Monte Carlo Perturbation Calculation

Small changes in a system are called perturbations. In a straightforward pertur-
bation computation, two independent simulations are performed and the difference
of the two results are calculated. This type of approach, using Monte Carlo methods,
can be inefficient and even impossible to solve in some cases. For small perturbations,
the relative error of the difference of two independent simulations can be much larger
than the relative error of the unperturbed or perturbed quantity [Spa69]. Hence, it
is necessary to employ special Monte Carlo techniques that calculate the difference
of two responses, independent of their statistical uncertainties. These Monte Carlo
perturbation techniques include correlated tracking, derivative operator sampling,
the importance function approach [Rie86, Lux91] and the linear perturbation theory
[Bel70] approach. The linear perturbation theory requires information about the
angular neutron flux and hence has not been studied in this work. These other three
methods employ different estimators and their uncertainties may differ considerably,
depending on the problem tested. The first two methods may be applied to reaction
rate perturbation calculations as well as eigenvalue perturbation calculations. The
importance function approach is mainly used for eigenvalue perturbation calcula-
tions. The usual source iteration method for Monte Carlo eigenvalue calculations
encounters difficulty, due to the propagation of perturbed weights from one genera-
tion to the next [Rie84, Spa69]. To avoid this difficulty, an adjoint function must be
used, and this gives rise to the importance function approach for eigenvalue pertur-
bation calculations. For eigenvalue perturbation calculations, using correlated and
derivative operator sampling, these two methods are applied to the Green’s func-

tion or fission matrix approach for eigenvalue calculations. In the fission matrix



approach, the homogeneous neutron transport equation is first discretized by subdi-
viding the fissionable region into a mesh of volume elements. Next, a random walk
simulation is done to estimate the elements of the fission matrix that contains the
mutual fission probabilities for these volume elements. The dominant eigenvalue of
this fission matrix gives the multiplication factor of the system. In this thesis work
we have combined the correlated sampling technique and the fission matrix method
to calculate multiple eigenvalue perturbations from a single Monte Carlo simulation.
Below, we briefly explain the correlated tracking, derivative operator sampling, and

the importance function approach.

1.4.1 Correlated Sampling

In a straightforward Monte Carlo approach, where a perturbation is evaluated
by taking difference of two independent simulations, the relative variance of the dif-
ference tends to infinity as the perturbation tends to zero. To address this, the
correlated sampling technique [Rie84, Blo83] forces both the perturbed and unper-
turbed histories to follow the same transition points in phase space. Using the known
transition and collision kernels, the actual simulation can be done in either the un-
perturbed or the perturbed system. A correlated simulation is done by modifying
the appropriate weight factors of the other system. This can be understood as if
the unperturbed and perturbed particles are migrating in parallel along the same
trajectories. This technique forces the responses of the perturbed and unperturbed
histories to be strongly correlated. As a result, their difference is expected to have a
smaller uncertainty than the corresponding difference in the uncorrelated game. It
can be shown that for sufficiently small perturbations, this method leads to finite

relative variance of the differential effect.



For the calculation of eigenvalue perturbations, along with the unperturbed (or
perturbed) fission matrix, another fission matrix for the perturbed (or unperturbed)
system is generated from the correlated histories reacting with the perturbed (or
unperturbed) system. The difference of the dominant eigenvalues of these two fission
matrices gives the required AK.

The source of error in this approach is due to the modifications of the appropriate
weight factors. These modifications force particles in one system to simulate the
physics that is consistent with the other system. Modification of weight factors are

needed to account for the distance to collision, scattering event, fission reaction etc.

1.4.2 Derivative Operator Sampling

In nuclear design it is important to know the effect of uncertainties in key parame-
ters on reaction rates. This gives the sensitivity of reaction rates to small changes (or
perturbations) to these key parameters. For complex systems like nuclear reactors,
it 1s often necessary to resort to Monte Carlo methods for this kind of sensitivity
study. The uncertainty in a reaction rate, due to small changes in a system parame-
ter, can be defined as the derivative of the reaction rate w.r.t. the system parameter.
Correlated simulation estimates the change due to a given variation of parameter(s),
whereas a differential Monte Carlo simulation estimates the change due to arbitrary
(but small) variations in the system parameters. Hence, the derivatives are char-
acteristic of the sensitivity of the reaction rate to variations in the parameters. In
the case of several parameters, multivariate Taylor series applies and the partial
derivatives of the reaction rate w.r.t. the various parameters are estimated.

For eigenvalue perturbation calculations, the scores of first and second order

derivatives of the unperturbed system are stored in separate matrices. After the



fission matrix of the unperturbed system is completed, the fission matrix of the
perturbed system is calculated by a Taylor series approximation for the perturbation
of the system.

An unbiased procedure of estimating the first derivative, for reactivity changes
due to small variations in system parameters, was first proposed by Mikhailov [Mik67]
and independently by Miller [Mil67] and Takahashi [Tak70]. A constructive deriva-
tion of a multiparameter second-order derivative estimation procedure was shown by
Hall [Hal80, Hal82].

Both the correlated sampling and derivative operator sampling have the advan-
tage that they require little additional computing effort to calculate the perturbation
effects. No calculation for importance parameters are required, as is the case for the

importance function approach, which is described next.

1.4.3 Importance Function Approach

This method is utilized to calculate perturbations in the reactivity of a multi-
plying system due to changes in cross sections. This formulation makes full use of
the properties of the importance (adjoint) function [Mat72, Hof72a, Hof78]. De-
velopment of this perturbation theory is started from two equations, proposed by
Ussachofl [Ussh5], representing the homogeneous transport equation for the unper-
turbed system and the corresponding adjoint equation for the perturbed system.
From these two equations an expression for AK is derived in terms of the impor-
tance function of a fission neutron, the fundamental mode fission neutron production
function, and the fission kernel. These three kernels are then expressed in terms of
the Green’s functions for the nonmultiplying systems. Application of the difference

flux concept [Bra70, Hof72b], to the Boltzmann transport equations satisfied by these
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Green’s function, allows the expression of AK in terms of the unperturbed and per-
turbed fission cross sections, the angular flux generated in the unperturbed system
by the fission source, and the angular flux generated in the perturbed system by the
perturbation source [Mat72].

A Monte Carlo simulation starts by guessing the initial fission source distribution
in the unperturbed system and the importance function in the perturbed system.
Simulations of the fission neutrons in the unperturbed system gives the angular
flux in the unperturbed system, the perturbation source, an uncorrected importance
function, and the fission source distribution for the next generation. Simulation
of the perturbed source particles gives the angular flux in the perturbed system.
After several of these iterations, the fundamental mode eigenfunction is achieved,

and estimations for AK can be accumulated.

1.5 Monte Carlo Particle Transport on Parallel Computers

Monte Carlo particle transport methods are extensively used, due to the general-
ity and accuracy of these methods. In Monte Carlo methods hundreds of thousands
or millions of particle histories are simulated using random numbers, highly accurate
representations of particle reaction probabilities and exact models for 3-D geome-
tries. The principal limitations for Monte Carlo methods are the requirement to
simulate many particles to achieve an acceptable statistical uncertainty. This re-
quirement provides ample incentive to utilize the computational power of modern
vector and parallel supercomputers. Monte Carlo particle transport algorithms are
inherently parallel because each particle history can be simulated independently and
concurrently on separate processors. Monte Carlo particle transport codes have been

successfully implemented on a number of different computational platforms [Mar91].
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For adaptation to vector computers, the computational algorithm should be changed
from a history-based scheme to an event-based scheme [Bro81, Bro85, Bro86, Cha85,
Mar86, Mar87a]. Even though this requires restructuring of all data and extensive
recoding, successful vectorized codes have provided gains of 10 - 100X or greater in
computational speed. Moreover, once vectorized, it is relatively easy to parallelize a
Monte Carlo code across multiple vector processors [Bob84]. Many research organi-
zations have resisted the vectorization of production Monte Carlo codes, due to the
considerable investments in time and manpower involved. On the other hand, the
relative ease of parallelization and continuing decrease in costs of parallel comput-
ers, both massively parallel processors (MPPs) and distributed workstations, makes
it attractive to adapt Monte Carlo codes to parallel computers [Mar87b, Mar93].
Monte Carlo algorithms are ideally suited for distributed and shared memory MIMD
(Multiple Instruction, Multiple Data) parallel processors, because of the inherent
parallelism involved in the fundamental algorithm. If enough memory is available
to each processor, the Monte Carlo code and data can be replicated, and each pro-
cessor can independently follow a portion of the total particles. This is possible due
to the statistical independence of the particle histories. Monte Carlo particle trans-
port codes have been demonstrated to be efficient and effective on both MPPs and
distributed workstations. Two important issues involving parallel random number
generators and reproducibility of results on parallel computers will be discussed in
a later chapter of this thesis. We will also discuss our effort to implement various
Monte Carlo algorithms on the two parallel computers (KSR-1 and IBM-SP2) oper-
ated by the Center for Parallel Computing at the University of Michigan and on the

BBN TC2000 at the Lawrence Livermore National Laboratory.



12
1.6 Outline of Remaining Chapters

This section summarizes the contents of the remainder chapters of this disserta-
tion, which includes an additional five chapters, two appendices, and a bibliography.

In chapter II we derive equations for Monte Carlo eigenvalue calculation methods.
It is important to understand the basic Monte Carlo eigenvalue algorithms before
one studies Monte Carlo eigenvalue perturbation methods. Both the source iteration
technique and the fission matrix approach are described in this chapter. All the
statistical quantities associated with Monte Carlo eigenvalue calculation are also
presented. Numerical results are shown for both the source iteration and the fission
matrix methods. We also investigate two variations of the fission matrix algorithm,
the cyele fission matriz algorithm and the cumulative fission matriz algorithm.

Chapter III explains in detail the correlated sampling technique. We show that
subtracting two independent Monte Carlo simulations to evaluate perturbation ef-
fects is problematical for realistic problems. Next, the mathematical basis behind the
correlated sampling technique is established. We also introduce the idea of perform-
ing the Monte Carlo simulation in an artificial reference system which is different
from both the unperturbed and perturbed systems. We show that combining the
correlated sampling and source iteration techniques to calculate perturbation effects
fails, whereas combining the correlated sampling and fission matrix techniques can
successfully evaluate perturbation effects in eigenvalue. Numerical results are shown
to support all the theories developed in this chapter.

Chapter IV explains how the ideas of the fission matrix method, correlated sam-
pling, and the artificial reference system generated in the last two chapters can be

combined to develop a multiple perturbation Monte Carlo method. This method al-
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lows the calculation of multiple perturbations of the eigenvalue of the Boltzmann
transport equation from a single Monte Carlo simulation, and results in significant
savings in overall computational effort. The extension of this method to the multi-
group case is also explained. Numerical examples are provided to show the accuracy
and efficiency of this multiple perturbation method.

Chapter V deals with the implementation of particle transport Monte Carlo al-
gorithms on parallel computers. We explain the basic concepts behind Monte Carlo
parallel algorithms used to simulate particle transport. Quantities such as speedup,
efficiency, parallel and serial fractions, and communication times are defined specifi-
cally for Monte Carlo parallel algorithms. Results of implementing a photon trans-
port algorithm on the KSR-1 and BBN Butterfly computers, and three Monte Carlo
eigenvalue algorithms (source iteration, fission matrix and correlated sampling) on
the IBM-SP2 are shown.

Chapter VI contains the conclusions of this research and recommendations for
future work. We explain what has been achieved in this dissertation research. We
summarize the different theories that lead to the development of the numerical tech-
nique for multiple eigenvalue perturbation calculations. Areas that need more study
and could lead to further research topics are also addressed.

In appendix A we perform a computational parametric study on the choice of
the artificial reference system different from both the unperturbed and perturbed
systems. In this dissertation work, the cross sections of the artificial reference sys-
tem were chosen as the average of the cross sections for the unperturbed and of all
perturbed systems. This parametric study of appendix A is based only on computa-
tional experiments. We believe that this study requires more theoretical investiga-

tion, which we leave as one of the future extensions of this research.
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In appendix B we perform accuracy test for the TWODANT code. We vary the
mesh size and the quadrature sets for a given problem to determine the accuracy of
TWODANT eigenvalue results. These results are used in determining the number of

significant figures necessary in TWODANT calculated AKs against which the Monte

Carlo results are compared.



CHAPTER I1

MONTE CARLO EIGENVALUE
CALCULATION

2.1 Introduction

This chapter explains how Monte Carlo techniques can be used to calculate the
multiplication factor K. The theories and the resulting algorithms, described in this
chapter, are the basic building blocks of the later chapters, in which we investigate
Monte Carlo eigenvalue perturbation methods. The multiplication factor can be
defined in various ways, such as: the dominant eigenvalue of the neutron transport
equation, the quantity by which v (the average number of neutrons per fission) must
be divided to keep a non-critical system exactly critical, and the ratio between the
number of neutrons in successive generations. A generation can be defined as the life
of a neutron from birth by fission to death by leakage or absorption (both capture
and fission). For critical systems K = 1, for subcritical systems K < 1, and for
supercritical systems K > 1.

This chapter consists of four more sections. In the second section we give a
mathematical basis for eigenvalue calculations. The third section describes how
this mathematical basis can be transformed into Monte Carlo algorithms for the

eigenvalue calculation. In the fourth section, we describe various numerical results.

15
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We conclude in the fifth section with some numerical experiments to investigate the

effect of two variations of the fission matrix algorithm.

2.2 Eigenvalue Calculations - Mathematical Basis

The time-independent Boltzmann transport equation for neutrons is an equa-
tion for the neutron angular density. This equation is derived by applying neutron
conservation to an infinitesimal element of volume, direction and energy [Bell70,
Lew93]. The integro-differential form of the time-independent transport equation in
a medium with volume V surrounded by a surface S, as shown in figure 2.1, can be

written as,

— = —

Q- Vo(7,Q, B) + 547, E)o (7, G, E) = Q(7, O, B),

FeV, 0<E<oo, Q=1 (2.1)

Bl

Figure 2.1: Spatial Domain V for the Transport Equation with Surface S.

The boundary condition, if 7 is an outward normal to S, is given as,

—

b7, E) =70, E), Q-i<0, FES. (2.2)

In the transport equation, r denotes spatial variables, F. denotes energy, O denotes
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—

angular variables, ¢ (7, Q, F) is the angular flux, ¥;(7, ) is the macroscopic total
cross section, and Q(7, ﬁ, E) is the source emission density.

—

In general, the source emission density Q(7, ﬁ, E) consists of three contributors:

Q:Qez‘l’Qs‘l’Qf- (23)

The above three contributors are due to the external source, scattered particles, and
fission neutrons, respectively.

For nonmultiplying systems )y = 0, and the two contributions to the source
emission density are due to the external source and the scattered particles. Hence

the transport equation in a nonmultiplying medium is given by,
Q- V(7 Q, E) + 57, E)p(7, 0, E) =
Q. (70, E) + / dE / dVS, (7 B — B, Qu(7, B, G, (2.4)

where ¥,(r, K" — F, Q- ﬁ) is the macroscopic scattering cross section.

For mulliplying media, the contribution )y due to the neutrons emitted from
fission reactions must be included. We will assume that all neutrons are produced
instantaneously at the time of fission and neglect the effect of delayed neutrons.
This i1s a valid assumption, except for time dependent problems of neutron kinetics.
This assumption is appropriate for steady state problems with fixed sources and for
criticality calculations, where only the critical state and the flux distribution are of
interest. The transport equation in a multiplying medium without delayed neutrons

takes the following form:
Q- V(7,0 E) + 547, E)p (7, Q, E) = Qeu(7,Q, E)+

/dE’/dQ’ES(F, B — B0 0)(7, E’,ﬁ’)+X(E)/dE’z/Ef(F, E’)/dﬂ’w(ﬁ B,
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Here, v(F) is the mean number of fission neutrons produced in a fission caused by
a neutron with energy E. The effect of delayed neutrons is included in the total
v. Also X4(7, F) is the macroscopic fission cross section and yx(F) denotes the
fission spectrum. The transport equation is a hyperbolic equation in both the time
dependent and steady state forms. In a nonmultiplying medium with a steady state
source, there exists a steady state flux distribution that satisfies this equation [Cas67].
In multiplying systems, the transport equation is studied by introducing the concept
of criticality. Physically, a system containing fissionable material is critical if a self-
sustaining time independent chain reaction in the absence of external neutron sources
can be maintained. Mathematically, a system is critical if it has a time-independent,

nonnegative solution to the transport equation without external source, i.e.

Q- V(7 0, E) + S4(7, B)(7,Q, E) =

—

/dE’/dQ’ES(F, B — B0 0)(7, E’,ﬁ’)+X(E)/dE’z/Ef(F, E’)/dﬂ’;b(?, B,
(2.6)
In general, it is difficult to find that combination of cross sections and geometry
that will allow equation (2.6) to be satisfied. Therefore, for criticality calculations,
the above equation is cast into the form of an eigenvalue problem. The eigenvalue
provides a measure of the criticality of the system. Two formulations for criticality
are the time-absorption or a-eigenvalue formulation and the multiplication factor
formulation with the K eigenvalue [Bell70]. The K eigenvalue approach is discussed
in this thesis.
We have stated before that K can be defined as the quantity by which v must be
divided to keep a system critical, i.e., v can be adjusted to obtain a time independent

solution to equation (2.6). Hence for the K eigenvalue problem v is replaced by v/K
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and the transport equation becomes,

/dE’/dQ’ES(F, B = B, 00 (7, E',ﬁ')ﬂg) /dE’szf(F, E’)/dﬂ’;b(?, £ ).
(2.7)

In an eigenvalue problem it is always possible to find the largest value of K that will
give a nonnegative fundamental mode solution to equation 2.7. The system is critical
if this largest value of K is equal to unity. If K < 1, then v, the actual number of
neutrons per fission available, is less than v/K, the number of neutrons per fission
necessary to maintain criticality, and the system is subcritical. Similarly
for K > 1, the actual number of neutrons per fission, v, is more than v/K, the
number of neutrons per fission required to maintain the system critical, and hence
the system is supercritical.

Equation (2.7) is the integro-differential form of the transport equation. This
equation can also be expressed in integral form using the Green’s function. The
Green’s function G(7, Q", E =7, ﬁ, F) is the neutron angular flux at 7, Q, E due to

a unit point source at 7 emitting 1 neutron/sec in the direction Q0 with energy F'.

Using the Green’s function we can write down the K eigenvalue equation as follows:

(7,0, B) =

///df"dﬁ’dE’G(f",ﬁ’,E'—>F,Q,E) i,X(E’)//dE”dﬁ”z/Ef(W,E”);b(W,ﬁ”,E”).

A
(2.8)
Both equation (2.7) and (2.8) can be expressed in terms of the fission source density,

[ [ vEs(r, EN(T, ﬁ’,E’)dQ’dE’, which gives the spatial distribution of fission neu-

trons. From that form, both equations lead to the same matrix eigenvalue problem,
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to which the power iteration method can be applied to calculate K, as explained
below.

For the time-independent, nonmultiplying transport equation given in equation

(2.4), the transport operator is defined as [Lew93]:

- / dE / dVS,(7 B — B0 Q)7 B, (). (2.9)

Expressing the fission source density as,
Fop = / / VS (7, EYV(F, O, B dE!, (2.10)

the multiplication eigenvalue problem, equation (2.7), can be written in operator

notation as

Hip = %XF;/}. (2.11)

Inverting H and operating on both sides by F, we obtain the following form of the
eigenvalue problem:

Fop = %[FH*X]F;/}. (2.12)

Using the following definition for the transport operator
A= FH™ 'y, (2.13)
the eigenvalue equation becomes,
KS = AS, (2.14)

where S ( = F1) is the source eigenvector and A is the fission matriz. The element

A(l,m) of the fission matrix represents the probability that a neutron starting in cell
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m will generate a fission neutron appearing in cell 1. In integral form, the above

equation can be expressed as,
KS(7) = / S(F)A(F, 7)dr, (2.15)

where A(7, ) is the operator that describes the probability that a neutron originating
at 7" produces a fission neutron at 7 and S(7) is the source distribution. The above
equation can also be derived from the integral transport form of the K eigenvalue
equation ( equation (2.8) ) by using the operator F and the following property of the

Green’s function:
///df’dﬁ’dE’G(F’,ﬁ’,E’ RO, E) = (2.16)

The multiplication eigenvalue problem of equation (2.14) is then solved by the

method of power iteration [Var62, Wac66, Nak77].

2.3 Monte Carlo K Calculation

Source iteration and fission matrix methods are two techniques used for Monte
Carlo K calculations. There are three different, but correlated, estimators [Bri88§]
that can be used to estimate K using the two algorithms. They are collision, ab-
sorption and track length estimators. These estimators are used to estimate K for
a particular batch. Averaging over all the active batches gives the final estimate
of K for each of the three estimators. Active batches are the ones that are used to

accumulate K after the fundamental mode source distribution has been reached.

2.3.1 Monte Carlo K Estimators

An estimator is a specific function of the random samples, of a random variable,

that statistically represents a true unknown mean. If x is a random variable with an
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associated distribution and an unknown mean, then the function X(x1, X2, X3,...,X5)
is an estimator of the unknown mean. The set {x;, X2, X3,...,X,} consists of n inde-
pendent random samples selected from the probability density distribution of x. A
good estimator should be unbiased, consistent, and efficient [Bow72]. An estimator

is unbiased if its expected value equals the true mean, pu, i.e.,
B(Y) = 5. 217

for all X. Consistency applies to a single sample where the sample size, n, becomes
large. An estimator is consistent if it approaches, in a statistical sense, the true
mean as n gets large. An efficient estimator is the one, among a group of unbiased
estimators, that produces the minimum variance for a given sample size n. Mathe-
matical expression for each of the three estimators of K are given here. We use the
superscripts C, A and TL for the collision, absorption and track length estimators
respectively.

Collision Estimator:

The collision estimate of K for an active batch is:

o 1 2%
K® = N%:Z:WZ 5 (2.18)

where,

i = all collisions for a particle in regions where fission is possible;

j = all source particles for a batch;

N = number of source particles for a batch; and

W, = weight of particle entering collision.

Then the quantity VVZ% in equation (2.18) is the expected number of neutrons to
be produced from a fission process in collision i. Hence K¢ is the mean number of

fission neutrons produced per generation (or batch).
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Absorption Estimator:

The absorption estimator of K for an active batch:

1 vy
K= =S W 2.19
N XZ: Y, (2.19)
where,
1 = an analog capture event; and
Y, = macroscopic absorption cross section.
Track Length Estimator:
The track length estimator for K is given by,
1 vy
K™= =SS aw, 2= (2.20)
NS5 PN

where,

d = track length segment;

i = all track length segments,d, for a particle; and

j = all source particles for a batch.

In criticality calculations at the end of each batch (or fission generations) an estimate
of K is produced by each of these three estimators. The final K estimator of each type
is the average over many batch K estimates. Recent studies [Urb95a] have suggested
that a combination of the three estimators to be the best K estimate available. In our
research work we have used the collision estimator for all criticality and perturbation
calculations. It should be emphasized that for Monte Carlo criticality calculations,

the final result is not a point estimate of K, but rather a confidence interval.

2.3.2 Monte Carlo K algorithms

The source iteration and fission matrix algorithms for Monte Carlo criticality

calculations are discussed below using the collision estimator. For simplicity of no-
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tation, we assume a homogeneous system made up of a single isotope material that
has cross sections vX¢, 3; and X;.

Source Iteration Algorithm:

The source iteration method is formulated by solving the source equation (equation
(2.15)),

"(7) = /5” V() A(7, ) dr’ (2.21)

and calculating K as the ratio of source neutrons of two successive neutron genera-

tions [Ussh8, Men68] as follows:

J 5n(r)dr

K= Fseninar

(2.22)

S™(7) is the source distribution of the n* generation of neutrons and A(7, ") describes
the probability that a neutron originating at 7 produces a fission neutron at 7. The

Monte Carlo source iteration algorithm is given below:

1. N source neutrons are started with an initial guessed spatial distribution. Fach

neutron has a starting weight W = 1.0.

2. At every collision point where fission is possible we perform the following op-

erations.

(a) Accumulate the tally for the collision estimator,

2y
TALLY; = TALLY; + W; %=1

t

where,
i = each collision by the neutron, and

j = all neutrons, j = 1,2,.....N.
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(b) We record the location and the number (n’;) of source neutrons to be
started from that location (where collision occurred) for the next genera-
tion:

Wiv¥y 1

"= INTEGER(——
nZ G R( Et I(—I_f)’

where £ 1s a random number between 0 and 1, and K is the last batch’s

eigenvalue or a guessed one for the first batch.

(c) For survival biasing, we set the new weight after the i’ collision, W, to,
Wipr = W=

(d) We also apply the Russian roulette technique [Lew93] to eliminate low

weight neutrons.

3. After all the N neutron histories have been tracked, the eigenvalue for that

generation or batch is calculated as;

N
> TALLY;

K==
N

4. The next batch is started with N’ source neutrons, where

N' = Z n;
J
For this next batch each source particle has a starting weight,

N

This completes the source iteration algorithm. It should be noted that the number

of neutrons, started in each batch, times the weight of each neutron, for that batch,



26

is constant for the all batches, i.e., W*N’ is same for all the batches. N’ is close to
N due to the K normalization done in step 2(b). If the initial guess of K is too low
or too high, the number of fission neutrons produced for the next batch will be too
high or too low relative to the desired nominal number N. The number of fission
neutrons, n;’ stored at each collision is rounded up or down (step 2(b)) to an integer
(including zero) with a probability proportional to its deviation from that integer.
Fission Matrix Algorithm:

The fission matrix method [Kap58, Mih67] solves the eigenvalue equation
KSWﬁi/ﬂmAmWMﬁ (2.23)

which holds for every generation. Equation (2.23) can be discretized and is then

reduced to the matrix equation,

KS = AS, (2.24)

where S is the source eigenvector and A is the fission matrix. The element A(l,m)
of the fission matrix describes the probability that a neutron starting in cell m will
generate a fission neutron in cell n [Ave58]. Assuming that the physical space is
discretized into M cells, the Monte Carlo fission matrix algorithm can be described

as:

1. N source neutrons are started with an initial guessed spatial distribution. Fach
neutron has a starting weight W = 1.0. An array C(m) keeps track of the

number of neutrons that start from cell m where m = 1,2,....M.

2. At every collision point where fission is possible, the following operations are

performed:
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(a) If the collision occurs in cell 1, accumulate into matrix B(l,m) the contri-

bution to K due to a neutron that started from cell m, i.e.,

Y
Yy

B(l,m)= B(l,m)+ W,

where
1 = every collision that a neutron encounters and ¥ and ¥; are macro-

scopic cross sections for cell 1.

(b) Record the location and the number (n';) of source neutrons to be started

from that location (where collision occurred) for the next generation.

W.vde 1
= INTEGER(-2=1— 4
n; R( ST £),

where £ is a random number between 0 and 1, and K is the previous batch

eigenvalue (or a guessed one for the first batch).

(c) For survival biasing, adjust the new weight after the i’ collision,

(d) Apply the Russian roulette technique [Lew93] to eliminate low weight

neutrons.

. After all the N neutron histories have been tracked, compute the fission matrix

A(l,m) element,
B(l,m)
C(m)

A(l,m) =

The element A(1,m) gives the expected number of fission neutrons produced in
cell 1 due to a unit source neutron in cell m. The dominant eigenvalue, or K, of

the fission matrix A can be calculated by using a matrix iterative algorithm.



28

4. Start the next batch with N’ source neutrons, where

N' = Z n;,
J
where each source particle has a starting weight,

N

This completes the fission matrix algorithm. As with source iteration, the quantity
W*N’ is preserved for all batches. There are two ways to formulate the fission
matrix algorithm. These two formulations are explained in detail in section 2.5. The
numerical examples of section 2.4 are solved using the cycle fission matrix approach,
where the elements of the matrix B(I,m) and the array C(m) are zeroed out at the
begining of every batch.

The following information is provided to a Monte Carlo eigenvalue simulation

algorithm:

the nominal number of source histories per batch;

the initial guess of K;

the number of initial batches, I;, to be discarded before tally accumulation;

the total number of batches, I;, for the problem; and

an initial spatial distribution for the source.

The number of active batches, 1, that are used to evaluate the mean and the standard

deviation for K is then given by,

L=1—1I. (2.25)



29

2.3.3 Statistics for Monte Carlo K Calculation

A Monte Carlo eigenvalue simulation provides the following estimate of the av-

erage eigenvalue,

1 Qo
K=—% K, 9.6
e 7 Z e ( )

a =1

where K, is the batch eigenvalue. The sample variance in this estimate of K is

I, I
S K2 (> K;)?

2 _ — ) 2.27
T o1 (-1 (227)
The standard deviation is then
=2 (2.28)
15

which is provided along with the average eigenvalue estimate. The expressions for
the variance and standard deviations assume that the batch eigenvalues are indepen-
dent, hence no batch-to-batch correlations exist after the fundamental eigenmode is

reached.

2.3.4 Issues Related to Monte Carlo K Calculation

The first issue that needs to be addressed regarding Monte Carlo K calculations
is that of source convergence. Before accumulating any K tally data, enough batches
must be performed and discarded to allow the source neutron distribution to attain
the fundamental mode [WhiT1]. Good spatial sampling is important for attaining and
maintaining the fundamental eigenmode. Maintaining the fundamental eigenmode
may be difficult, especially for systems with high dominance ratio, due to the batch-
to-batch correlations in the spatial distributions of fission neutrons. This is due to the
fact that for systems with high dominance ratio, there is less neutron communication
between different regions of the system and spatial correlations between batches may

prevail.
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The second issue deals with the assumption that the batch eigenvalues are in-
dependent. For systems with a high dominance ratio, batch-to-batch correlations
among fission neutron distribution exist, and this assumption is invalid. This results
in an underestimation of the standard deviation [Moo76, Gel90a]. Various studies
[Mac73, Gas75] have been done to account for this phenomenon.

The third issue involves the choice of the optimum number of batches versus the
optimum number of neutrons per batch [Lew93], as illustrated in figures 2.2 and 2.3.
Figure 2.2 pertains to the case where a large number of neutrons per batch has been

followed for a few batches, while figure 2.3 shows the case where a small number

I, Monte Carlo eigenvalues

} —
I'Il
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Exact eigenvalue

Number of batches.

Figure 2.2: Few Batches with Large Number of Histories per Batch.

of neutrons per batch was followed for a large number of generations. Note that
in figure 2.2, the fundamental eigenmode is not reached, even though the variance
in the eigenvalue estimate is small. On the other hand, figure 2.3 shows that the

fundamental
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Monte Carlo eigenvalues

%

Exact eigenvalue

Number of batches.

Figure 2.3: Large Number of Batches with Few Histories per Batch.

eigenmode is reached, albeit with a large variance in the eigenvalue estimator.

Lastly, we address the issue of bias in Monte Carlo eigenvalue calculation [Gel91].
The bias is a result of the fission source normalization done after each batch. Numer-
ical experiments [Bow83] suggest that biases in fluxes and eigenvalues are negligibly
small for most practical cases. The conclusion that, in practice, the eigenvalue bias
is negligible and smaller than a single standard deviation, also has strong theoreti-
cal support [Gel90b]. A detailed analysis of bias [Bri86, Gel94] gives the following
equation;

E{Ko} = Ao — (;VTC;)(UR — 0.2, (2.29)

where,

Ko is the biased Monte Carlo eigenvalue computed by averaging over generations or
batches;

Ao 1s the true eigenvalue;

o2 is the true variance in Kg;
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0,% is the apparent variance in Ky, computed by assuming that estimates of K from
different generations are independent; and

Ng is the active number of generations.

Thus the bias, AJ, is given by,

Ng

AN = —
2o

(012 — 04?), (2.30)

and the relative bias (compared to the standard deviation) is bounded by

A
AN _ No o
(oF3 2 )\0

(2.31)

< 0.0025, and hence if Ng is less

For typical eigenvalue calculations one prefers =

than 800 the bias will be less that a standard deviation [Gel90a]. It should be noted

that the bias itself is independent of Ng since o2

is proportional to NLG Therefore, an
adequate number of histories per batch should be tracked; and a number of batches

should be simulated which is statistically large enough, but not so large such that

the bias in the estimate of K is a significant fraction of the standard deviation.

2.4 Numerical Results

In the following subsections we provide various numerical results for Monte Carlo
eigenvalue calculations and compare them to benchmark and discrete ordinates (Sy)
results. The comparison of results verifies the accuracy of our Monte Carlo algorithms
and codes. The benchmark [KapT74] results are for one energy group, homogeneous
slabs and are based on analytical transport theory. The discrete ordinate results
were obtained using the TWODANT [O’De82| code. Monte Carlo eigenvalue results
are given for both the source iteration and the fission matrix algorithms. All the test

problems show here are for systems with isotropic scattering.
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2.4.1 Numerical Results 1

Numerical results of this section show the batch eigenvalues, the batch averaged
eigenvalues, and the standard deviation for the batch averaged eigenvalues. This first
numerical test problem [Kap74] is for a single energy group, critical, homogeneous
slab, with isotropic scattering, and vacuum boundary conditions on both ends. The
half thickness of the slab is 8.3295135616 cm and the cross sections are ¥;= 1.0 cm™!,
¥, =0.9cm™" and #X; = 0.11 cm™', as shown in figure 2.4. The Monte Carlo cases
shown here are for 120 batches, with the initial 40 batches discarded, each batch
consisting of 2000 neutrons. Figure 2.5 shows the plot of batch eigenvalue, batch
averaged eigenvalue, and the standard deviation of the batch averaged eigenvalue
using source iteration. The value of the batch averaged K after 80 active batches
is .99988 +0.56E-3. Figure 2.6 shows the same results utilizing the fission matrix
approach, where the value of K is .99983 +£0.55E-3. It should be noticed that for both
cases the estimated eigenvalue is within one standard deviation of the benchmark
(K =1.0) result. From now on, only the batch averaged eigenvalue and its associated

standard deviation will be provided.

- . -1
Zt =1.0 cm1 , ZS =0.9 cm1 , V Zf =0.11 cm

Vacuum | I | Vacuum

<= 8.3295135616 CmM -

Figure 2.4: Configuration of Homogeneous Slab.

Table 2.1 compares the source iteration and the fission matrix results for different
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single energy critical homogeneous slab problems [Kap74] with vacuum boundary
conditions on both ends. These problems are similar to that shown in figure 2.4
except different cross sections and half thicknesses. All the Monte Carlo results
were produced with 40 inactive batches, 80 active batches and 2000 neutrons per
batch. We notice that as the half thickness decreases, in terms of mfps, the standard
deviation of the eigenvalue increases, even though all the problems are simulated
with the same number of batches and neutrons per batch. This is due to the fact
that neutrons leak out more easily from smaller systems and hence fewer neutrons

contribute to the eigenvalue estimators.



35

1.015 T I I I I

batch averaged eigenvalue with standard deviation

1.01

batch eigenvalue

1.005

0.995

T
1

T
1

T
1

0.99 | | | | |
70 80 90 100 110 120

Number of batches

Figure 2.5: Eigenvalue Calculation Using Source Iteration Algorithm.
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Figure 2.6: Eigenvalue Calculation Using Fission Matrix Algorithm.
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Half thickness (mfp) % Source iteration | Fission matrix
5.6655054562 1.02 | 0.99930 £+.85E-3 | 0.99970 +.91E-3
3.300263772 1.05 1.0005 +.12E-2 | 1.0005 +.14E-2
2.113309666 1.10 0.9999 +.15E-2 | 1.0008 £.15E-2
1.289379285 1.20 1.0004 +.19E-2 | 1.0007 +.19E-2
0.93772556 1.30 0.9976 £.23E-2 | 1.0000 £+.22E-2
0.73660355 1.40 1.0049 +.21E-2 | 1.0052 +.23E-2
0.51196298 1.60 1.0052 +.28E-2 | 1.0023 +.29E-2
0.31102598 2.00 0.9987 +.37E-2 | 1.0036 +.36E-2

Table 2.1: Results for Homogeneous Critical Slabs.

Next in table 2.2 we show the results for single energy group heterogeneous slab
test problems with configurations as shown in figure 2.7 and 2.8. The Monte Carlo
eigenvalue results (I; = 40, I, = 80, 2500 neutrons per batch) are compared to that
of the TWODANT code with S3; quadrature sets and inner and outer iteration

convergence criteria of 107!,
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Figure 2.7: Configuration of Heterogeneous Slab 1.

Problem TWODANT

Source iteration

Fission matrix

Hetero-slab 1 0.847805

0.84829 + .63E-3

0.84805 + .68E-3

Hetero-slab 2 1.00010

1.0012 + .17E-2

1.0061 + .17E-2

Hetero-slab 3 0.925597

0.9194 £+ .16E-2

0.9307 £+ .20E-2

Table 2.2: Results for Heterogeneous Slab Problems.
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Figure 2.8: Configuration of Heterogeneous Slabs 2 and 3.
2.4.2 Numerical Results I

In this section we provide results for two dimensional XY geometry cases in

one and two energy groups. Test problems 1 and 2 are for one energy group cases.
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Configurations for problems 1 and 2 are specified in figure 2.9. The first test problem
is a 8 cm by 8 ¢m square region with homogeneous cross sections of ¥;=1.0 cm™!,
Y =0.11 cm™', and ¥, = 0.9 cm™'; and with vacuum boundary conditions on all
sides. The second test problem is an 8 cm by 8 cm square region with an interior 4
cm by 4 c¢m square region and vacuum boundary conditions on all sides. The inner
square tegion has cross sections of ¥;=1.0 ecm™', ¥3; = 0.21 cm™', and

¥, = 0.9 cm™!, and the rest of the system has cross sections of ¥;=1.0 cm™!,

Y =0.11 cm™, and X5 = 0.9 cm™'. Test problems 1 and 2 were simulated for 120
active batches, 40 inactive batches and with 4000 neutrons per batch. Test problem
3 is a homogeneous square region with vacuum boundary conditions on all sides and
two energy groups. Cross sections for test problem 3 and the configuration is shown
in figure 2.10. Test problem 3 was simulated with 120 active batches, 40 inactive
batches and 2500 neutrons per batch. Results for the two dimensional problems are

shown in table 2.3. The reference TWODANT results are for Sig quadrature sets

and with inner and outer iteration convergence criteria of 107'2,

Problem TWODANT | Source iteration Fission matrix

Test Problem 1 0.640792 0.64089 + .73E-3 | 0.64130 £+ .83E-3

Test Problem 2 1.004494 1.00502 £.89E-3 | 1.00609 +.82E-3

Test Problem 3 1.489619 1.4897 +.17E-2 1.4880 +.20E-2

Table 2.3: Results for Two-Dimensional Problems.
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Figure 2.9: Configuration of Two-Dimensional One Energy Group Problems.
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Figure 2.10: Configuration of Two-Dimensional Two Energy Group Problem.

2.5 Cycle Versus Cumulative Fission Matrix Algorithm

We have mentioned in section 2.3.2. that there are two variations of the fission
matrix algorithm. In this section we introduce these two variations and perform
numerical experiments to study the effect of these two algorithms on different test
problems. In section 2.3.2 the fission matrix algorithm was described. We have
shown that for every collision that occurs in a cell 1, we accumulate in a matrix
B(1,m) the contribution to K due to a neutron that started from cell m. An array

C(m) stores the number of neutrons that started from cell m. After all histories are
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tracked, the fission matrix A(I,m) is computed as

A(l,m) =

(2.32)

The dominant eigenvalue, or K, of the fission matrix A is evaluated numerically.

The first variation of the fission matrix algorithm, called the cycle fission matrix
(cyfm) algorithm, zeroes out all elements of the matrix B(I,m) and the array C(m)
at the begining of each batch. Hence, the fission matrix is formed only from the
contribution of all neutrons of a particular batch. The batch K is calculated at
the end of each batch, along with the batch averaged K over all batches, and the
standard deviation of the batch averaged K. Fission source normalization is done
using the batch K. Since the fission matrix is computed for every batch, independent
of any contribution from previous batches, the batch Ks are independent and we can
calculate the batch averaged K and the associated standard deviation.

The second variation, called the cumulative fission matrix (cumfm) algorithm,
does not zero out elements of the matrix B(l,m) and the array C(m) at the begining
of each batch. Contributions to both B(I,m) and C(m) are accumulated over batches
and the fission matrix A(l,m) is computed from them. At the end of each batch
we calculate the batch K. Since contributions to the fission matrix are accumulated
over batches, the batch eigenvalues are not independent in a statistical sense, and
hence the batch averaged eigenvalue and the associated standard deviation are not
computed. The batch K is used for fission source normalization.

We now perform computational experiments to see the effect of these two fission
matrix algorithms on different test problems. We will specifically look at the effect
of these algorithms on loosely coupled versus tightly coupled problems. Effects of

different batch sizes, inactive and active batches will also be studied. The test
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cases [Urb95b] are slab geometry problems, with isotropic scattering and vacuum
boundaries.

The first test problem is a tightly coupled problem consisting of a 60 mfp homo-
geneous slab with ¥, = 1.0, ¥, = 0.7, and v¥; = 0.3071. A fine mesh Ss; calculation
gives a K of 1.02070 for this test problem. Results for this test problem are shown
in table 2.4 for different batch sizes and for different numbers of inactive and active
batches. We observe from table 2.4 that both fission matrix algorithms perform
equally well. We cannot differentiate one being superior to the other algorithm for
this test problem. For this test problem the effect of different batch sizes and different
numbers of inactive and active batches is not significant.

The second test problem, which is a loosely coupled problem, is a lattice of fuel
regions and absorber regions. The fuel regions are each 2 cm thick and are separated
by 1 cm thick regions of absorbing material. The material at the boundaries is
another 1 cm slab of absorbing material. There are 19 fuel regions and the thickness
of the entire slab is 58 c¢cm. Cross sections of the fuel regions are ¥;=1.0, ¥,=0.7,
and vX¥;=0.3071; and cross sections of the absorbing regions are ¥;=1.0, ¥,=0.001,
and v¥;=0.0. A fine mesh TWODANT calculation gives a K of 0.59852 for this
problem. Results for this test problem are shown in table 2.5 for different batch sizes
and for different numbers of inactive and active batches. We observe from table 2.5
that the cumulative fission matrix algorithm performs better than the cycle fission
matrix algorithm. The test problem is a loosely coupled problem due to the strong
absorbing materials separating fuel regions. Sampling only with neutrons of each
batch does not provide good enough sampling for fission reaction, and hence the
cycle fission matrices do not represent the loosely coupled system well. Even for

the last case of table 2.5, i.e., with 5000 neutrons per batch, the eigenvalue has not
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reached the

Fine mesh TWODANT K= 1.02070
#of neutrons/batch I, I, cyfm cumfm
500 [;=0,1,=80 1.02053+.27E-3 | 1.01923
500 1,=20,I,=60 | 1.02096 +.29E-3 | 1.01923
1000 [;=0,1,=80 1.02072+.21E-3 | 1.01995
1000 [,=20.1,=60 | 1.02123+.19E-3 | 1.01995
1500 [;=0,1,=80 1.02026+.19E-3 | 1.01991
1500 [,=20,I,=60 | 1.02079+.16E-3 | 1.01991
2000 [;=0,1,=80 1.01989+.15E-3 | 1.01946
2000 1,=20.1,=60 | 1.02019 +.13E-3 | 1.01946
3000 [,=10.1,=150 | 1.020080+.91E-4 | 1.02011
3000 [,=50.1,=150 | 1.02024 +.10E-3 | 1.02011
4000 [,=10.1,=150, | 1.0203244+.73E-4 | 1.01993
4000 [;=50,1,=150, | 1.020564+.70E-4 | 1.01993
5000 [;=10,I,=150, | 1.020732+.69E-4 | 1.02023
5000 [;=50,1,=150, | 1.021019+.59E-4 | 1.02023

Table 2.4: Cycle (batched averaged) and Cumulative Fission Matrix Results for the
First Test Problem.
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Fine mesh TWODANT K= 0.59852
# of neutrons/batch L, I, cyfm cumfm
500 [,=0,1,=80 0.791+ .11E-1 | 0.6005
500 [,=20,I,=60 | 0.792+ .12E-1 | 0.6005
1000 [,=0,1,=80 0.69714+.77E-2 | 0.59925
1000 1,=20,1,=60 | 0.70244+.94E-2 | 0.59925
1500 [,=0,1,=80 0.65044.29E-2 | 0.59872
1500 1,=20,1,=60 | 0.65124+.37E-2 | 0.59872
2000 [,=0,1,=80 0.6466+.58E-2 | 0.59953
2000 1,=20,I,=60 | 0.6512+.75E-2 | 0.59953
3000 [,=10,I,=150 | 0.6268+.16E-2 | 0.60026
3000 [,=50,1,=150 | 0.6289+.22E-2 | 0.60026
4000 [,=10,I,=150, | 0.61862+.99E-3 | 0.59909
4000 [,=50,1,=150, | 0.6189+.12E-2 | 0.59909
5000 [,=10,I,=150, | 0.6176+.12E-2 | 0.59883
5000 [,=50,I,=150, | 0.6188+.15E-2 | 0.59883

Table 2.5: Cycle (batched averaged) and Cumulative Fission Matrix Results for Sec-
ond Test Problem.

correct fine mesh result for the cycle fission matrix algorithm. We observe that as
the number of neutrons per batch is increased, the cycle fission matrix eigenvalue
approaches the correct result. This indicates that a large number of neutrons per
batch is necessary for the cycle fission matrix algorithm to perform well for this
test problem. In figure 2.11 we plot the batch eigenvalue and the batch averaged

eigenvalue of the cycle fission matrix algorithm and the batch eigenvalue of the
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cumulative fission matrix algorithm for the first test problem with 5000 neutrons per
batch and ;=50 and [,=100. Only the last 40 batches are shown in figure 2.11. From
this figure we notice that the batch eigenvalue of the cumulative fission matrix is far
superior to the batch eigenvalue of the cycle fission matrix, as expected, whereas
the batch averaged eigenvalue of the cycle fission matrix and the batch eigenvalue of
the cumulative fission matrix show comparable accuracy. Figure 2.12 shows similar
plot for second test problem. From figure 2.12 it is clear that the cumulative fission
matrix algorithm yields superior results to the cycle fission matirx algorithm for
loosely coupled problems.

Numerical experiments with other test problems have also shown similar be-
haviour. We can make a few conclusions from these numerical experiments. As
expected, the batch eigenvalue of the cumulative fission matrix algorithm always
provides superior result compared to the batch eigenvalue of the cycle fission matrix
algorithm. The batch eigenvalue of the cumulative fission matrix algorithm and the
batch averaged eigenvalue of the cycle fission matrix algorithm provide comparable
results for tightly coupled problems, where there is enough neutron communication
between different regions. For a loosely coupled system, the cumulative fission ma-
trix eigenvalue result is superior to the batch averaged eigenvalue of the cycle fission
matrix algorithm. For this kind of system, the cycle fission matrix algorithm should

be used with caution.
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Figure 2.11: Fission Matrix (Cycle and Cumulative) K for First Test Problem.
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CHAPTER III

CORRELATED SAMPLING MONTE CARLO

3.1 Introduction

In this chapter, the correlated sampling technique, for Monte Carlo eigenvalue
perturbation calculations, is described. Several issues that lead to the combination
of the fission matrix and correlated sampling methods as a Monte Carlo eigenvalue
perturbation technique are discussed. The idea of performing a Monte Carlo sim-
ulation in an artificial reference system, different from both the unperturbed and
perturbed systems, is introduced. Numerical results are provided in support of all

the theories developed in this chapter.

3.2 Difficulties of Monte Carlo Eigenvalue Perturbation

In a straightforward Monte Carlo approach, a perturbation effect would be evalu-
ated by performing two independent simulations for the perturbed and unperturbed
systems. The perturbation result is then calculated by taking the difference between
these two independent simulations. In this approach, the variance of the result in-
creases as the perturbation becomes smaller, and hence the differential effect becomes
difficult to observe due to a very large uncertainty [Rie86]. This can be explained by

deriving the expression of the variance of a differential effect.

50
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Let x be a random variable with an associated distribution and an unknown mean.
We denote the function X(x1, X2, X3,...) as an estimator of the unknown mean. The

expected value of X is given by,

E(X), (3.1)

and the variance by,

V(X) = E(X — B(X))". (3.2)

X may depend on several variables and parameters. Let us assume a small variation
in a parameter (or parameters) resulting in a different unknown mean, which is

estimated by the function X*, with expectation value,
E(X7), (3.3)

and variance,

V(X*) = B(X* — B(X™))% (3.4)

Therefore the expectation of the differential effect due to the small variation in the

parameter(s) is given by,
E(X — X*) = B(X) — B(X"), (3.5)
and the variance of the differential effect by,
V(X = X*)=V(X) 4+ V(X*) — 2cov(X, X7). (3.6)

If the two estimates E(X) and E(X*) are obtained by two independent Monte Carlo
simulations (i.e., in the absence of any correlations between the two simulations),

the covariance term in equation (3.6) vanishes and the variance is

V(X - X*) = V(X) + V(X*). (3.7)
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This is larger than either of the variances separately and may be larger than the
expression given in equation (3.6) [Spa69]. Hence, it is possible to reduce the variance
of the differential effect, specially for small perturbations, if one has a strong positive

correlation between the unperturbed and perturbed Monte Carlo simulations.

3.2.1 Numerical Examples

Numerical examples are provided here to demonstrate that straightforward sub-
traction of two independent Monte Carlo simulations is problematical for calculating
small perturbation effects. All the test problems correspond to a homogeneous, one
energy group, slab, with thickness of 16 ¢cm and vacuum boundary conditions on
both ends. Table 3.1 shows the unperturbed and perturbed cross sections and AK
results calculated by two independent Monte Carlo simulations and the reference
TWODANT simulation. Monte Carlo results are for 30 inactive batches, 70 active
batches and 2000 neutrons per batch. The TWODANT results were generated using

S32 quadrature sets and inner and outer iteration convergence criteria of 10712,

Unperturbed cross sections:
¥=1.0 cm™!, v¥=0.11 em™!, ¥,=0.9 cm™!
Problem # | Perturbed cross sections | TWODANT AK | Monte Carlo AK
1 AY;=.001, A¥,=.001 -.008807 -.00843 F.89E-3
2 A¥,=.0001, A¥,=.0001 -.000888 .00033F.89E-3
3 AY¥y=.0001 .000903 .00124 +.86E-3

Table 3.1: Perturbation Results from Independent Monte Carlo Simulations.

Results of table 3.1 show, with the exception of the first test problem, that

subtracting two independent Monte Carlo runs to calculate small perturbation effects
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can yield significant errors. Similar observations can be found in other references
[Wal94, Gal95] also. Later in this chapter (in section 3.3.4), test problems 1, 2 and 3
are solved using the combined correlated sampling fission matrix (CSFM) approach
(with the same number of batches and neutrons per batch as in the cases of table
3.1) and the results are significantly more accurate than in table 3.1. Also, later in
this chapter, it is shown that when the correlated sampling technique is applied with
the source iteration method, it encounters severe difficulties; and it is found that the
combined CSFM method yields far superior results in Monte Carlo calculations of

perturbation effects.

3.3 Correlated Sampling Technique

Correlated sampling techniques force all the histories corresponding to the per-
turbed system to follow the same transition points in phase space as the unperturbed
histories. Appropriate weight factors are then used to adjust the particle weights at
the transition points. This can be explained mathematically by looking at the in-
tegral form of the neutron transport equation (equation 2.1), expressed in terms of
collision density and its solution by the Neumann series [Spa69, Lux91]. The collision

density equation is given by,

o) = [ el x)dy +Q(a), (35)

where x and y are the coordinates of a particle in the six-dimensional phase space,
k(x,y) is the transport kernel from y to x, ¢(z) is the collision density of particles
entering a collision in x, and Q(x) is the external particle source in x. The Neumann

series solution of equation (3.8) is given by,
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o) = i eulz)

=Q(z) + Z/V ----- /V/f(un,:ls)/i(un_l,un) ..... k(ug, ug)duy,.....du1Q(uq), (3.9)
n=1
where k(u;_1,u;) is the probability that a particle entering into a collision at 7;_4
with energy Eiy will appear at 7; with energy E},
K(uimt, i) = K(Fioy, By — 7, B). (3.10)
Here
po(z) = Q(z), (3.11)

is the direct source contribution term. For n = 1 we get the once-collided term,

o1(z) = /v o, 2)Q(ur ) duy (3.12)

Similarly for n = 2,3... etc. the twice, thrice ... etc. collided terms can be found. The
transport kernel x(u;_1,u;) is expressed in terms of the product of a collision kernel,

C(E‘i_l — Ei|ﬁ—1)7 and a translation kernel, T(7;_; — 7;|F;), as shown below,

—

K(uimt, ui) = K(Fimy, By — 7 By) = C(Eiy — Ei|7_)T(Fimy — 7 E;),  (3.13)
or
KRi—1 = Ci—lTi—l- (314)

The kernel C;_; denotes the probabilities of particles that are coming out of a collision
in 7;_y with direction Q and energy E;, i.e., E; = QZEZ The collision kernel can be

represented explicitly as,

C(Eiy — Eilii) = > piCi(Ei — Eilfi), (3.15)
j
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where p; denotes the probability of scattering collision of type j, and C is the cor-
responding collision kernel. Each C; can be normalized to the mean number of

secondaries, v, per event,
/Oj(ﬁi_l — E’Z|T_';_1)dE’Z = Vj. (316)

For elastic scattering events, v = 1; for fission v > 1. The probabilities p; can be

written as,

Es' _)i— 7Ei—
py = Sl Bica) (3.17)
Et(ri—lin—l)

where ¥,; is the macroscopic scattering cross section for scattering type j.
The kernel T;_; represents the probability for the transport of particles from 7;_;
to the next collision in 7. For example, if ¥,(r_1, E}), the total macroscopic cross

section at (75_1, Ez), is spatially constant along the direction oF then,
T(ric1 — 1| E) = S EDexp(—X:(E;)d), (3.18)

where d is the distance from 7;_1 to ;.
To develop expressions for correlated sampling tracking, we will denote the trans-

port kernel of the unperturbed system by,

k¥ = k(U Uipr; D7), (3.19)

k3

and that for the perturbed system by,

kY = k(ug, ugr; XP). (3.20)

k3

¥ and Y¥? denote a generic cross section for the unperturbed and the perturbed

systems, respectively, and the perturbation in cross section can be expressed as,

AY, = ¥P — 0%, (3.21)
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Now the collision densities for the unperturbed and the perturbed systems are re-

spectively,
e(@) = Q@)+ X [ -+ [ (] " du)Q(un), (3:22
and

)= Q)+ X [ [Tt Q(u), (323)

The difference between the two collision densities is a function of the cross section
change AY,. As shown before, independent simulation of the unperturbed and
perturbed systems and straightforward subtraction of the results is not sufficient for
calculating perturbation effects, especially for small perturbations. In the correlated
sampling method, the perturbed histories are forced to follow the same trajectories as
the unperturbed histories including the same transition points in phase space [Rie84].
A weight factor is used for the perturbed histories to account for the resulting biasing

due to the forced transition. The weight factor for the perturbed system is given by,

p
F (g, A,) = FY = =, (3.24)

k3

Now the perturbation effect is given by,

Ap(x; AY,) = P (z) — " (2) =

ij:l/v """ /V(ﬁoFip - 1)[fll ki Pdu; Q(uq)]. (3.25)

We notice in the expression for Ap(x) that the summation expression for the unper-

turbed collision density, ¢“(z), has been multiplied by the weight factor

(ﬁ FP—1).

A is tallied at each collision point and contributes to the calculation of the pertur-

bation.
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3.3.1 Correlated Sampling in a Reference System

The correlated sampling technique described in the previous section assumes that

the actual simulation is done in the unperturbed system and the adjusting weight

factors F's (= :513) account for the simulation of the correlated perturbed particles.
The weight carried by the perturbed particles would be a product of these adjusting
weight factors Fs. This requires that the adjusting weight factors for the correlated

game must always remain finite, which implies,
kY > 0,67 > 0. (3.26)

In some actual simulations these conditions may not be satisfied. For example,
in calculating perturbation effects due to voids, a particular phase-space transition
probability may vanish in the perturbed system but exist in the unperturbed one. To
account for this difficulty, a Monte Carlo perturbation approach has been developed
[Rie88] where the actual simulation is done in an artificial reference system different
from both the unperturbed and perturbed systems. The probability density func-
tions describing the transition process in the reference system are a weighted mean
of the probability density functions of the unperturbed and perturbed systems. The
important characteristic of the reference system is that all particle reactions that
can take place in the unperturbed and perturbed systems will also have a non-zero
probability in the reference system. Thus, for example, a voided region would not be
admissible in the reference system if the unperturbed or perturbed systems were not
voided. However, the transpose is acceptable, i.e. one could have a voided region
in the perturbed system, in which case the weights would be appropriately modified
if a collision occurred in the “voided” region. The responses for the unperturbed

and perturbed systems are calculated by correlating them to the reference system'’s
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simulation. Also by the proper choice of the reference (ref) system, it is possible

to avoid large fluctuations of the adjusting weight factors, :;—:c and ;—gf, and re-
duce uncertainty of the differential effect. The reference system [Maj94] may be
chosen freely, but it also depends on the type of problem solved [Lux89]. Since the
choice of the reference system will have an effect on the variance, it may be subject
to optimization methods[Lar95]. This by itself leads to a topic of future research.
In appendix A, some preliminary computational parametric studies are performed
to observe the effect of different reference systems on the result of a perturbation
problem. In this research work, the arithmetic average of the parameters of the un-
perturbed and perturbed systems has been used as the parameters for the reference
system. One of the requirements of the reference system is that % and ;;—ff should
be as constant as possible. We will now explicitly derive the adjusting weight factors
for the unperturbed and perturbed systems and introduce the concept of a d-scatter
in the forward direction to avoid large fluctuations in the adjusting weight factors.
The cross sections for the reference, unperturbed and perturbed systems are ¥.7¢/,
¥ and XP, respectively, where x denotes a different cross section type. According

)

to our choice of the reference system, we have,
ref 1 U
¥l = §[Ezp + XP]. (3.27)

The spatial collision distance, d, is sampled from E;efea:p(—E:efd) in the reference
system. Then the adjusting weight factors (WF) for the unperturbed and perturbed

systems are given by,

YiPexp(=X"d) X7

WFw = =
S eap(=Xid) o

exp[(X7 — ¥¥7)d], (3.28)

and
Yiexp(=Xid) X}
Sieap(—xild) B

WE? = exp[(2; — ¥P)d], (3.29)
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respectively. The weight which is carried along by the unperturbed and perturbed
particles is the product of these adjusting weight factors, WF*? and WF?, respec-
tively.

Now, assuming ¥} > X,”, the adjusting weight factor for the unperturbed history
has a positive exponent and may assume large values if d is large. Similarly, the
factor for the perturbed history may assume a very small value. To avoid these large
fluctuations, a é-scatter in the forward direction is added to all three total cross
sections [Rie88]. Introduction of a pseudo-collision with a é-scatter in the forward
direction increases the number of collisions without changing the expectation values.
For each of these three cases the é-scatter is chosen to yield the same total cross

section plus é-scatter :

N7 el = NP 4§ = X 4 6P, (3.30)
Using these o-scatters,
YT 4 e
WE® =2t T °  cap[(D 4§77 — 2% — §%)d] =1, 3.31
E;ef —I—(Sref p[( 13 t ) ] ( )
and
NP4 6P
WFr = =t op(sp 46 X7~ 7)d) = 1. (3.32)

57 4 bres

Thus the large fluctuations in WF"? and W F? are avoided. The reference system’s
cross sections are chosen using equation (3.27) and a é-scatter for the reference system
(67¢f) is selected. Next equation (3.30) can be used to determine the §-scatters for

the unperturbed and perturbed systems.
3.3.2 Variance Reduction Using é-scatter
Variance reduction techniques can be applied to the reference system’s particles.

We have applied survival biasing and Russian roulette [Lew93] to the reference sys-

tem’s particles and correlated the unperturbed and perturbed systems’ particles to
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the reference system’s particles. After determining the site of collision, the survival

chance of the reference system particle is sampled from,

ref _ Egef + 57’6f

S T 3.33
ps E;@f _I_ 57’€f ( )

where Y7¢/ is the macroscopic scattering cross section of the reference system. Next,

the survival chance of the unperturbed and perturbed particles are sampled from,

yup . sup
P = e (3.34)
srel 4 gred
and
MNP 4 6P
R s (3.35)

SR

respectively. The weights of the reference, unperturbed and perturbed particles are

modified at the site of the j** collision as follows,

Wi = wrpred, (3.36)
Wit = Wil pgr, (3.37)
WP = WP pb. (3.38)

After the weight adjustment, Russian roulette is applied to the reference system
particles. In this procedure, one checks to determine if the reference system particle
weight has fallen below some minimum value, in which case the reference system
particle as well as the unperturbed and perturbed particles are terminated. In this
research work we have simulated isotropically scattering systems. After each collision

event the new angular distribution for a neutron is chosen isotropically.

3.3.3 Correlated Sampling and Source Iteration

Most Monte Carlo codes determine the eigenvalue of a system by the source it-

eration method. Application of the source iteration method encounters difficulties
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when used to calculate eigenvalue perturbations because perturbed weights are prop-
agated from one generation to another. Experience has shown [Rie89, Rie84, Gal95]
that the statistical fluctuations in the propagated weights grow considerably, and
for most cases any useful information regarding the perturbation is lost over many
generations. We have solved the same problems given in table 3.1 by applying the
correlated sampling technique to the source iteration method of eigenvalue calcula-
tion. The actual Monte Carlo simulation is done in the reference system, with cross
sections determined as the average of the unperturbed and perturbed systems. As
discussed earlier, a é-scatter cross section is added to the total cross section for each
of the reference, unperturbed, and perturbed systems to avoid fluctuations in the
adjusting weight factors. For illustration, the value of §”° is given along with the
perturbation results in table 3.2. The standard deviation of a single generation AK

is given by,

2

I, Iq
SAKZ (Y AK,)
n=1 n=1
L—1 L(,—1)

(3.39)

s =

where [, is the active number of fission generations up to and including the current

generation. The standard deviation of the mean is,

: (3.40)

L’ﬁ
D=

and is provided with the numerical Monte Carlo results in table 3.2.
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Unperturbed cross sections:
¥=1.0 cm™1, v¥=0.11 ecm™, ¥,=0.9 cm™!
Problem # | Perturbed cross sections | TWODANT AK | Monte Carlo AK
1 AY;=.001, A¥,=.001 -.008807 -.007401 F.12E-4
§7¢f=.0005
2 AY,=.0001, AX,=.0001 -.000888 -.0007462F.12E-5
67 =.0001
3 AY;=.0001 .000903 .00082298 +.78E-6
67l =0.

Table 3.2: Perturbation Results Using Source Iteration and Correlated Sampling.

Similar to the table 3.1 results, the Monte Carlo runs for table 3.2 are for 30 inactive
batches, 70 active batches, and 2000 neutrons per batch. We observe from table 3.2
that for the problems analyzed, the source iteration method has difficulty estimating
the differential effect in eigenvalue. As mentioned before in section 3.2.1, the prob-
lems of table 3.2 will be solved (in section 3.3.4) using the CSFM method and will

provide significantly improved results.

3.3.4 Correlated Sampling Fission Matrix Method

We have shown in previous sections of this chapter that either (i) subtracting two
independent Monte Carlo simulations or (ii) combining source iteration and corre-
lated sampling fails to estimate small perturbation effects with reasonable accuracy.
Several references [Rie88, Sei91, Gal95] point out that for the calculation of Monte

Carlo perturbation effects it is necessary to utilize the fission matrix method to
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perform the eigenvalue calculation. To that end, two fission matrix equations,

KPS = A" G, (3.41)

and

K57 = APSP, (3.42)

for the unperturbed and perturbed systems respectively are needed to formulate and

solve for the eigenvalue perturbations:

AK = K? — K", (3.43)

In the above equations, K is the eigenvalue, S is the fission source vector, and A is
the fission matrix. One approach [Sei91, Gal95] utilizes the linearity of the transport

equation and splits the fission matrix into two parts:

Aup - AO —|— Al. (344)

The fission matrix Ag is formed by the particles that do not go through a perturbed
cell during a random walk simulation, whereas the fission matrix Ay is formed by the
particles that arrive from any perturbed cell. Since the perturbation is confined to
the perturbed cells, the matrix Ag is equal in both the unperturbed and perturbed
problems. The matrix A; is evaluated only for the perturbed problem. During par-
ticle tracking in the unperturbed system, all necessary information for particles that
enter any perturbed cell are saved. At the end of the simulation in the unperturbed
system, this information is then used to calculate to the matrix A; for the perturbed
system.

We have taken a different approach in which the correlated sampling technique

is applied to the fission matrix method [Rie88]. The actual Monte Carlo simulation
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is done in an artificial reference system with cross sections that are linear combina-
tion of the unperturbed and perturbed systems. The é-scatter cross sections in the
forward direction are used for the reference, unperturbed, and perturbed systems as
explained in section 3.3.1 of this chapter. For the determination of the fission ma-
trix of the reference system, the first generation is started with an assumed source
distribution and W™/ = 1, where W™/ is the weight of a reference system particle.
Likewise, the initial weights of the unperturbed (W*?) and perturbed (W?) particles
are also set to unity. Particle tracking is carried out only in the reference system and
the weights of the unperturbed and perturbed systems are modified by multiplying
them with appropriate adjusting weight factors, WF*? and WF?, respectively, dur-
ing the simulation. At the end of the first generation, source normalization is done
for the reference system particles to stabilize the neutron population. The source
normalization has no direct effect on other systems, except that the next generation
particles in the unperturbed and perturbed systems start out with the same weights
as that of the reference system particles. For the second generation, the fission
neutron production distribution obtained from the first generation is used for the
reference system particles. The particles in the unperturbed and perturbed systems
also use the same source distribution as that of the reference system for the second
generation. This process is continued for specified number of generations. A few of
the initial generations are discarded to avoid bias due to the initial source guess.
Now the fission rate is determined. Recall from our discussion on the fission
matrix algorithm of chapter 2 that the fission rate is determined by the probability
that a particle starting in volume element 1 generates a;,, particles in element m,

where a;,,, is an element of the fission matrix A. For the reference system, the matrix
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ef

ref
element a; > is scored as,
k)

[l/ref E;ef]

ref _  ref ref
e
DEETE)

CLl,m — al,m

, (3.45)

where "¢/ is the number of particles emerging from a fission reaction in the reference
system and E}ej is the macroscopic fission cross-section for the reference system. At
the same time, the fission matrix elements for the unperturbed and perturbed fission

matrices, A¥? and A?, are estimated as
) 9 9

upEuP
i, =t AW (3.46)
mo (=57 + 6]
and
pyP
@, =, 4w (3.47)

=+ o]
The dominant eigenvalues K™/, K*”, and K? of matrices A", A“? and AP, respec-

tively, are determined numerically, after which AK can be calculated as,
AK = K? — K" . (3.48)

As before, the standard deviation of the single generation AK is given by,

I, Iy 2
SAK2 (Y AK,)
n=1 n=1
. _ 3.49
7 L—1  I(I,—1) (3:49)

and the standard deviation of the mean is given by

Os

(3.50)

~
W=

This o is provided with the numerical Monte Carlo results. Variance reduction
schemes are applied as explained in section 3.3.2 of this chapter. The perturbation
problems of table 3.1 and 3.2 are now solved with the combined CSFM technique as

described above. These results are shown in table 3.3. Similar to table 3.1 and 3.2,
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the Monte Carlo runs for table 3.3 utilize 30 inactive batches, 70 active batches and

2000 neutrons per batch.

Unperturbed cross sections:
¥=1.0 cm™1, v =011 cm™ ¥,=0.9 cm™!
Problem # | Perturbed cross sections | TWODANT AK | Monte Carlo AK
1 A¥;=.001, A¥,=.001 -.008807 -.0089069 F.82E-5
§7ef=.0005
2 AY;=.0001, AX,=.0001 -.000888 -.00089601F.89E-6
67/ =.0001
3 A¥;=.0001 .000903 .00090325 +.51E-6
67l =0.

Table 3.3: Perturbation Results Using Fission Matrix and Correlated Sampling.

Comparing the results of table 3.1 and table 3.2 with that of table 3.3 we observe
that the CSFM technique provides significantly improved results compared with

direct subtraction or the source iteration method with correlated sampling.

3.3.5 Multigroup Energy Transfer

For energy dependent problems with multigroup cross sections, the scattering
matrix for the reference system may be determined by taking the average of the
unperturbed and perturbed scattering matrices. For example, suppose the scattering
matrices for the unperturbed and perturbed systems are given respectively by,

Ny Xyg

Y= uw owwo |, (3.51)

22
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and

X X
Y= xr x| - (3.52)

Then the scattering matrix for the reference system is,
ref 1
nrel = 5 RIS Y B (3.53)

For multigroup problems, survival biasing is applied at the site of the collision to the
reference, unperturbed and perturbed particles as explained in section 3.3.2. Then
the reference scattering matrix is used to determine the outgoing energy group of the
reference particle, using the probability of a reference particle to scatter from energy

group 1 to j :
Ejref
ref 12
it = e et (3.54)
R

The unperturbed and perturbed particles are constrained to follow the same energy

group transfer as the reference particle.

3.4 Numerical Results

In this section, numerical results are given for different eigenvalue perturbation
problems, utilizing the combined Monte Carlo CSFM method. The Monte Carlo AK
results are compared to that of the discrete ordinates code TWODANT [O’De82].
The TWODANT code is used to calculate the unperturbed and perturbed eigenvalues
separately; these are then subtracted to determine AK. The TWODANT code
results for slab geometry are generated with the S3; quadrature set and for X-Y
geometry with the Sig quadrature set. The inner and outer iteration convergence

criteria are set to 10712, The cross sections of the reference systems for all test
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problems are chosen as the average of that of the unperturbed and perturbed systems.

The percentage error given with all the results is calculated as follows:

(3.55)

Gerror — (TWODANT(AA) — MonteCarlo(AK )) -

TWODANT(AK)

Test Problem 1: heterogeneous slab, one energy group.

This case is a one energy group heterogeneous slab problem with vacuum boundary
conditions on both ends. Dimensions and unperturbed cross sections for the slab are
shown in figure 3.1. A perturbation is made in the 0.4 ¢m region in the middle. The
AK results for two perturbations are shown in table 3.4 along with the corresponding
TWODANT AKs. The Monte Carlo runs utilize 140 active batches, 60 inactive
batches and 8000 neutrons per batch. The standard deviation of the eigenvalue of

the reference system is 0.71E-3 for the first problem of table 3.4.

Region of perturbation

moderator
g moderator moderator
= fuel I fuel
3 | | | ] | _|_|
g | |
Ocm .8cm 1.2cm 28cm 3.2cm 48cm 52cm 6e¢

2 =.717 em’1, >, =.397 cm_l, Vi =.756 crrfl
fuel

Zt=285em™, I, =23eml, vy, =00cm’

moderator

Figure 3.1: Configuration of Heterogeneous Slab for Test Problem 1.
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Heterogeneous slab,

T=6.0cm

AY=.001

67¢F=.025

Y =717, ¥,=.32, v3;=.756  .8<X<1.2 and 4.8<X<5.2
¥=2.35, ¥,=0.05,vX,=0.0  all other X
Perturbation in TWODANT Correlated error
middle 0.4cm AK Monte Carlo AK | (%)
A¥,=.15, AX¥,=0.149, -0.019438 | -0.018991F .61E-4 | 2.3
AY,=.001 6l =15
AY,=.05, AX¥,=0.049, -0.007613 | -0.007509F .24E-4 | 1.4

Table 3.4: Perturbation Results for Test Problem 1 (heterogeneous slab, 1 group).

Test Problem 2a: homogeneous X-Y geometry, one energy group.

This case is a one energy group homogeneous X-Y geometry problem with vacuum
boundary conditions on all sides. Dimensions and unperturbed cross sections for
the problem are shown in figure 3.2. Cross section perturbations are made over the
entire square region. The AK results for three different perturbations are shown in
table 3.5, along with the corresponding TWODANT AKs. The first Monte Carlo
perturbation case utilizes 70 active batches, 30 inactive batches, and 2000 neutrons

per batch, while the second and third cases utilize 70 active batches, 30 inactive

batches, and 4000 neutrons per batch.
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vacuum

vacuum
vacuum

V\

«——— 16cm ——»

vacuum

Test problem 2a : homogeneous X-Y, 1 energy group

2 =1.0 cnfl, 2g=0.9 eni'! , vV Zf=0.llcm'1

vacuum

vacuum

vacuum

vacuum

Test problem 2b : heterogeneous X-Y, 1 energy group

24 =1.0 crrfl, 25 =09 et Y Zf=0.llcm'1

Figure 3.2: Configurations of X-Y geometry for Test Problems 2a and 2b.
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Unperturbed cross-sections Y=1.0,
Y=0.9, ¥,=0.1, v¥=0.11
Perturbed TWODANT Correlated error
cross-sections AK Monte Carlo AK | (%)
AvY = -.002 -0.016475 -0.016469F.16E-4 | .04
§7ef =0

AY,;=.001,A¥,=.001 -0.0072755 | -0.0074001F.76E-5 | 1.7

67/ =.0005

AY,=.002, AY,= .042 0.005958 0.00585+.11E-3 1.8

AY,=-.04,AvY ;=.039 67¢f = .00105

Table 3.5: Perturbation Results for Test Problem 2a (homogeneous X-Y, 1 group).

Test Problem 2b: heterogeneous X-Y geometry, one energy group.

This case is a one energy group heterogeneous X-Y geometry problem with vacuum
boundary conditions on all sides. Dimensions and unperturbed cross sections for
the problem are shown in figure 3.2. Cross section perturbations are made in the
middle square region. The AK results for three different perturbations are shown in
table 3.6, along with the corresponding TWODANT AKs. The first Monte Carlo
perturbation case utilizes 70 active batches, 30 inactive batches and 4000 neutrons
per batch, while the second and third Monte Carlo perturbation case employ 100

active batches, 40 inactive batches and 4000 neutrons per batch.
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Unperturbed cross-sections Y=1.0,
¥,=0.9, ¥.=0.1, v¥=0.11
Perturbed TWODANT Correlated error
cross-sections AK Monte Carlo AK (%)
AvY = .0009 0.0044562 0.00437654+.92E-5 1.8
§7ef =0

AY,;=.001,A¥,=.001 -0.0044909 | -0.0043577 F.88E-5 | 3.0

87/ =.001

AY,=.002, AY,= .042 0.003884 0.003781 £ .89E-4 | 2.6

AY,=-.04,AvY ;=.039 §¢f= .0015

Table 3.6: Perturbation Results for Test Problem 2b (heterogeneous X-Y, 1 group).

Test Problem 3a: homogeneous X-Y geometry, two energy group.

This case is a two energy group homogeneous X-Y geometry (10 cm X 10 ¢cm) problem
with vacuum boundary conditions on all sides. Cross section perturbations are done
over the whole square region. Unperturbed and perturbed cross sections and AK
results for a perturbation case is shown in table 3.7 along with the TWODANT AKs.

The Monte Carlo perturbation case has 110 active batches, 30 inactive batches and

2000 neutrons per batch.
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Unperturbed cross-sections
¥n=1.0, v¥pn=.11, Y11=.9, Ys12=.07
Yp=2.11, VY po=2.44, Ys21=0 Ys22=.98
Perturbed TWODANT Correlated error
cross-sections AK Monte Carlo AK (%)
A¥4=.001,A%,; = .001 0.122134 0.121524.14E-3 0.5
67 =.001

Table 3.7: Perturbation Results for Test Problem 3a (homogeneous X-Y, 2 group).

Test Problem 3b: Millstone Reactor Assembly.

This problem is a 10 cm X 10 ¢m square region with reflecting boundary conditions
on all sides. The unperturbed cross section correspond to a Millstone [NRC85] reac-
tor fuel assembly with 2.9 weight percent (w/o) enrichment, without burnable poison
(bp) pins at hot full power condition with 1398 ppm critical boron concentration,
while the perturbed cross section correspond to a 2.9 w/o, 20 burnable poison assem-
bly at the same conditions. These cross sections were generated using the CPM-2
[Jon8T7] code. Cross section perturbations are made over the entire square region.
The cross sections are given in table 3.8 and the AK result is given in table 3.9. The
Monte Carlo run utilizes 140 active batches, 60 inactive batches, and 6000 neutrons

per batch. The standard deviation of the reference system eigenvalue is 0.16E-3.
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0 bp : $4=25285, vX;1=.00642, Y,;=.22674, Y,,=.01678

Zt2:.85205, Z/Ef2:12351, 2521:0 2522:76202

20 bp : £,;=.24303, v¥;1=.00642, Y,;;=.21684, Y,,=.01602

Zt2:.79575, V2f2:.12377, 2521:0 2522:69020

Table 3.8: Millstone 2.9 w/o Two Group Cross Sections for Test Problem 3b.

TWODANT Correlated error

AK Monte Carlo AK (%)

-0.165136 —0.159771F .32E-4 3.2
67¢1=.006,67°/2=.03

Table 3.9: Perturbation Results for Test Problem 3b.

Test Problem 4: variation of test problem 1.
This is the same as test problem 1, except that the 0.4 c¢m region of moderator in
the middle 1s replaced with an absorber. Unperturbed cross sections of the absorber

are ¥y = 5.0 cm™!, and ¥, = 0.1 cm™!. Perturbed cross sections of the absorber
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are ¥y = 5.0 cm™!, and ¥, = 0.3 cm~!. The results are shown in table 3.10. The
Monte Carlo runs utilize 140 active batches, 60 inactive batches and 8000 neutrons

per batch.

Heterogeneous slab, T=6.0cm
Y, =717, ¥,=.32, v3;=.756  .8<X<1.2 and 4.8<X<5.2
¥=5.0, ¥,=4.9,r¥;=0.0 2.8<X<3.2

¥=2.35, ¥,=0.05,rX,=0.0  all other X

Perturbation in TWODANT Correlated error

middle 0.4cm AK Monte Carlo AK | (%)

AY,=-0.2, A¥;=0.2 0.00031 0.0002674F .35E-5 | 13.7
671 =0.0

Table 3.10: Perturbation Results for Test Problem 4 (heterogeneous slab, 1 group).

Test Problem 5: source convergence problem.

This test problem specifically looks into the case where the shapes of the unperturbed
and perturbed scalar fluxes are significantly different. The unperturbed problem is
a 16 mfp one group homogeneous slab with ¥, = 1.0, ¥, = 0.9, and v¥; = 0.11 and
vacuum boundary conditions on both ends. For the perturbed problem the middle 4
cm region of the slab is replaced with a material representing moderator with ¥; =
2.35, ¥, = 2.3, and vX¥; = 0.0. The perturbed and unperturbed scalar fluxes from

TWODANT are shown in figure 3.3.
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0.9 | |

unpert. flux —
- pert. flux - -

scalar flux

0 ! ! ! ! ! ! !
0 2 4 6 8 10 12 14 16
slab thickness in mfp

Figure 3.3: Perturbed and Unperturbed Scalar Fluxes from TWODANT.

Results of TWODANT and CSFM Monte Carlo AKs are shown in table 3.11. The
Monte Carlo case has 140 active batches, 60 inactive batches and 8000 neutrons per

batch.

TWODANT Correlated error

AK Monte Carlo AK | (%)

-0.168909 | -0.16695F .29E-3 | 1.2

67/ =1.35

Table 3.11: Perturbation Results for Test Problem 5.
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3.5 Summary and Discussion of Numerical Results

The results of table 3.1 show that subtracting the results of two independent
Monte Carlo simulations, to compute small perturbation effects can encounter prob-
lems. We have shown in section 3.3.3 that the Monte Carlo source iteration method,
when combined with the correlated sampling technique, also has difficulty estimating
small perturbation results. This led us to combine the correlated sampling technique
with the fission matrix approach for eigenvalue calculations. The results of table
3.3 show that the combined CSFM approach can provide significantly improved re-
sults compared with direct subtracting or the source iteration method combined with
correlated sampling.

In section 3.4 we have shown various numerical results for eigenvalue perturbation
problems using the CSFM method. We have compared these Monte Carlo AKs to
that of the TWODANT code. For test problems 1, 2a, 2b, 3a, and 3b we observe that
AKs calculated with the Monte Carlo and Sy methods always agree within 4% of
each other. Even though we have not included the standard deviation of the reference
eigenvalue for all the test problems (except for problems of table 3.4 and 3.9), this
standard deviation is always approximately an order of magnitude higher than that
of the AK. Extension to multigroup problems was straightforward and multigroup
problems have shown good agreement with the corresponding TWODANT results
also.

We notice that the error for test problem 4 is 13.7% which is significantly larger
than that of other test problems of section 3.4. If we compare the configuration
of test problem 4 with that of test problem 1 we observe that in test problem 4

the middle 0.4 cm region has been replaced by a strong absorber material. In both
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problems perturbation was done in the middle 0.4 ¢m region. Test problem 1 shows
2.3% error, whereas test problem 4 shows 13.7% error. Insertion of a strong absorber
in the middle region of the slab, converts the test problem 4 into a loosely coupled
system and hence there is less communication of neutrons between the two sides of
the absorber region. We believe that special variance reduction schemes are needed
to account for the lack of neutron communication for loosely coupled systems.

In test problem 5 we have specifically looked into the case where the unperturbed
scalar flux differs significantly in shape from the perturbed scalar flux as shown in
figure 3.3. The reference system is again chosen as the arithmetic average of the
unperturbed and perturbed systems. The purpose of this test problem is to see the
effect of fission source convergence between the reference, unperturbed and perturbed
systems. Since the scalar flux shapes are significantly different for the unperturbed
and perturbed systems, fission sources for the two systems would need to converge
to these two different shapes. The fission source of the reference system would
converge to a source shape that is in-between the unperturbed and perturbed fission
source shapes. From the results of table 3.11 we observe that for this test problem
the error in AK is approximately 1%. This relatively small error in AK implies
that the three fission sources for the reference, unperturbed and perturbed systems
converged to their respective correct fission sources even though according to figure
3.3 the converged fission source shapes are different for these systems.

In the CSFM method the actual Monte Carlo eigenvalue simulation is done in the
reference system. The fission sources of the unperturbed and perturbed systems are
correlated to that of the reference system. For every generation the fission neutrons
for the reference system are started from the previous generation of fission source

distribution of the reference system. No information regarding the fission source
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distribution of the unperturbed or the perturbed system is carried onto the next
generation. It is possible that there would be an inherent bias in AK due to this lack
of information for the unperturbed and perturbed fission source distributions. Test
problems of this chapter (and of chapter 4) show that this effect is not significant.
Even though the AK results are accurate, it does not imply that the unperturbed
and perturbed Ks converge to the correct values. It is possible that the unperturbed
and perturbed Ks have biased values, but due to the positive correlation of these Ks
the AK results are still accurate. We believe that more study might be necessary to

clearly define the limits where the CSFM method would encounter difficulties.



CHAPTER IV

MULTIPLE EIGENVALUE PERTURBATIONS

4.1 Introduction

In this chapter the idea of the CSFM technique is extended to calculate multiple
perturbations in the eigenvalue of the Boltzmann transport equation with a single
Monte Carlo simulation. The actual Monte Carlo simulation is done in an artificial
reference system different from the unperturbed and all perturbed systems. The
simulations of the unperturbed and all perturbed systems are correlated to the sim-
ulation of the reference system. This allows the determination of multiple AKs with
a single Monte Carlo simulation, yielding a significant reduction in computational

effort.

4.2 Multiple Reactivity Calculation

Let us now consider multiple AKs (AK;, i = 1,2,3,...,N) due to multiple small
perturbations of the same unperturbed system [Maj95a], where the N perturbed

systems are denoted by p;, 1 = 1,2,3,....N :

AK; = KP — K" i=1,2,3,...,N. (4.1)

80
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4.2.1 Reference System

We have chosen to define the reference system by,

re 1 u a ; .
syred — m(zg + Zzgz) i=1,2,3,...,N, (4.2)
=1

where x denotes a different cross section type. It is possible to choose a different
reference system; the optimum choice may vary from one problem to another. For all
the numerical results shown in this chapter we have used equation (4.2) to determine
the reference system. The Monte Carlo particle tracking is done in this reference
system. The distance to collision d is sampled from Et”fe;z:p(—szd). The ad-
justing weight factors for the unperturbed and all perturbed systems are then given

respectively by,

¥
WE = Etref cap(X = X7)d, (4.3)
t
and
RIS .
W FP: = eg:p(Etref - ¥P)d 50=1,2,3,..., N. (4.4)

Etref
4.2.2 Forward é-scatter

As with the single perturbation case, a d-scatter cross section is added to the total
cross sections of the reference, unperturbed and perturbed systems. The é-scatter
cross section for the reference system (§7¢/) is chosen, depending upon the problem,
such that,

67 2| S —maw(SF) | jif maz(S7) > 87, (4.5)

or

§eT > 0 S| i f 2 > max(SD). (4.6)
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The é-scatter cross section for the unperturbed system (6“?) and perturbed systems

(67,1 =1,2,3,...,N) are chosen as,
§r =yl 4 gref _xvp, (4.7)

and

5 = el o grel (4.8)

The conditions imposed by equation (4.5) and (4.6) ensure that all the é-scatter
cross sections are nonnegative. In our test problems the above four equations are
used to determine forward é-scatters for the reference, unperturbed and all per-
turbed systems. The distance to collision d in the reference system is sampled from
(27 + 5Tef)exp(—(2;ef + 6"7)d), and the modified biasing factors for the unper-

turbed and all perturbed systems become,

up up _ up up

WFY = - 7 =
(X, + 87 H)exp(— (X7 + é67¢/)d)

and

(X7 P )exp(— (X7 4 67)d)
(B + 6refyeap(— (27 + 67<5)d)
This avoids large fluctuations in WE*? and WEF?:.

WP =

(4.10)

4.2.3 AK Calculation

All of the simulation procedures described in section 3.3.4 and 3.3.5 apply to
multiple AK calculation and hence will not be repeated here. Only the additional
computations necessary for multiple AK calculation will be described in this section.
Instead of a single weight adjusting factor W? for a single perturbed system, now we
have multiple weight adjusting factors, W?is (i=1,2,...,N), for the multiple perturbed
systems. For the first fission generation, the starting weights of all the perturbed

particles are set to unity. For the fission matrix eigenvalue calculation in the reference
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system, the first generation is started with an assumed source distribution and W”¢/
= 1, where W”®/ is the weight of a reference system particle. During the random
walk simulation, the weight of each perturbed particle is modified by multiplying
them with an appropriate adjusting weight factor WE?:.

The fission matrix elements for the perturbed fission matrix, AP+, is scored as,
ey
DRENT]

The dominant eigenvalues K™, K*» and KP¢ of matrices A", A“? and APi respec-

ajy, = ajy, + Wr e =1,2,3,...V. (4.11)
tively, are determined numerically. Then, multiple AKs due to multiple perturba-

tions (p;, i = 1,2,3,...,N) are calculated as,
AK' = KPi — K% :§=1,2,...,N. (4.12)

Biasing factors for variance reduction of all the perturbed particles are:

i 4 §Pi
PP :% i=1,2,...N. (4.13)
sred 4 gres

The weights of all the perturbed particles are reduced as follows at the site of the j**
collision,

WP =W>rephi 5ie=1,2,...N. (4.14)

For multigroup problems, the scattering matrix of the reference system is,

S ﬁ( o té s ) i=1,2,3,.,N; (4.15)
where,
SN
o= | ymowm | 5i=1,2,3..0. (4.16)

For multigroup problems, survival biasing is applied to the reference, unperturbed
and all perturbed particles. Then the unperturbed and all perturbed particles follow

the same energy group transfer as the reference particle.
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4.3 Numerical Results

We have used the approach described in previous sections of this chapter to solve
multiple eigenvalue perturbation problems from a single Monte Carlo simulation.
Monte Carlo AKs are compared to that of the discrete ordinate code TWODANT
[0’De82]. To generate N AKs, due to N perturbations, the TWODANT code was
run (N+1) times, whereas the Monte Carlo code needed to be run only once. For
some of the test problems, we also compare the wall clock time required to compute
one AK versus N AKs using the Monte Carlo approach. For comparison of wall
clock timings we made an effort to choose dedicated machines and hence are able
to show timing results only for the test problems that were simulated on dedicated
machines. This comparison shows how much reduction in computational effort is
achieved from the multiple Monte Carlo perturbation approach. Cross sections of
the reference systems for all the test problems are chosen as the average of that of
the unperturbed and all perturbed systems, i.e., according to equation (4.2). Then
the reference systems é-scatter was chosen according to equation (4.5) or (4.6).
O-scatters for the unperturbed and all perturbed systems are then calculated from
equation (4.7) and (4.8). Value of 6"/ is given for each case with the perturbation
result. The following different test problems, similar to chapter 3 test problems, are

studied using the multiple Monte Carlo perturbation approach:

Test problem 1: homogeneous slab, one energy group

Test problem 2: heterogeneous slab, one energy group

Test problem 3: homogeneous X-Y geometry, one energy group

Test problem 4: heterogeneous X-Y geometry, one energy group
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e Test problem 5: homogeneous slab, two energy group

e Test problem 6: homogeneous X-Y geometry two energy group (Millstone as-

sembly cross sections)

Test problem 1: homogeneous slab, one energy group

This case is a one energy group homogeneous slab problem with vacuum boundary
conditions on both ends. Dimension and unperturbed cross sections for the slab are
shown in table 4.1. Cross section perturbations were done over the entire slab.
Calculated results of two AKs from a single Monte Carlo simulation are also shown
in table 4.1, along with the corresponding TWODANT results. The Monte Carlo

runs utilize 40 inactive batches, 100 active batches, and 2000 neutrons per batch.
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Homogeneous slab, 1 group, T=16 cm
Unperturbed cross sections:
¥=1.0 cm™!, v¥=0.11 em™ ¥,=0.9 cm™!
Perturbed TWODANT Two correlated error
cross sections AK Monte Carlo AK (%)
Ar¥=.001 0.00903 0.0090338+ .48E-5 .04
Av¥=-.001 -0.009028 -0.0090338F.48E-5 | .06
(671 =0)
AYy=1,A¥,=.1 -0.469124 -0.47711F.35E-3 1.7
AY,;=.0001,AX,=.0001 -0.000888 -0.00091015F.81E-6 | 2.5

(877 =.06668)

AY,;=.001,A¥,=.001 -0.008807 -0.0088790 F.75E-5 | 0.8
AY,;=.0001,AX,=.0001 -0.000888 -0.00089511F.75E-6 | 0.8

(87°7=.00068)

AY,;=.0001,AX,=.0001 -0.000888 -0.00089633F.71E-6 | 0.9

AY¥,;=-.0001,AX,=-.0001 0.000889 0.00089795F.7T1E-6 | 1.1

(87¢7=.00015)

Table 4.1: Perturbation Results for Test Problem 1 (two correlated AKs).

Test problem 2: heterogeneous slab, one energy group

This is the same problem as test problem 1 of chapter 3. Calculated results of
two AKs from a single Monte Carlo simulation are shown in table 4.2 along with
the corresponding TWODANT AKs. The Monte Carlo results utilize 50 inactive

batches, 100 active batches, and 6000 neutrons per batch.
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AY,=.001

§7¢f=.08838

Heterogeneous slab, 1 group;
T=6.0cm
Y, =717, ¥,=.32, v3;=.756  .8<X<1.2 and 4.8<X<5.2
¥=2.35, ¥,=0.05,vX,=0.0  all other X
Perturbation in TWODANT Correlated error
middle 0.4cm AK Monte Carlo AK | (%)
A¥,=.15, AX,=0.149, -0.019339 | -0.019024 F+.80E-4 | 1.6
AY;=.002
AY,;=.05, AX¥,=0.049, -0.007613 | -0.007510 F.31E-4 | 1.3

Table 4.2: Perturbation Results for Test Problem 2 (two correlated AKs).

Test problem 3: homogeneous X-Y geometry, one energy group

This is test problem 2a of chapter 3. Calculated results of three AKs from a
single Monte Carlo simulation are shown in table 4.3 along with the corresponding
TWODANT results. The first three Monte Carlo perturbations cases utilize 30

inactive batches, 70 active batches, and 2000 neutrons per batch, while the last case

utilize 40 inactive batches, 160 active batches, and 2000 neutrons per batch.
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AX,=0.0031,Ar¥ ;=0.004

67¢/=0.00141

Homogeneous X-Y geometry, 1 group
Perturbed TWODANT Correlated error
cross sections AK Monte Carlo AK | (%)
Av¥ ;=-0.002 -0.016475 -0.016493F.15E-4 A1
Av¥=0.0008 0.0065902 0.0065973+.63E-5 | .11
Av¥=0.011 0.090615 0.090713+.87E-4 A1
677 =0.0
AY,;=0.0005,A%,=0.0005 -0.0036524 | -0.0037185F.54E-5 | 1.8
AY,;=0.001,A%,=0.001 -0.007276 -0.007406F.10E-4 1.8
AY,;=0.0001,A%,=0.0001 -0.0007328 | -0.0007461F.11E-5 | 1.8
67¢/=0.00061
AY,=-0.00008,A¥;=0.00008 | 0.00059756 | 0.00059825+.94E-6 | .12
AY,=-0.0001,AX;=0.0001 0.0007471 0.0007479+.12E-5 | .11
AY,=0.0001,A¥;=-0.0001 -0.0007459 | -0.0007467F.12E-5 | .11
677 =0.0
AY,=0.0003,AX;=0.007 0.026820 0.026802+.38E-4 .07
AY,=-0.0067,Av¥ ;=-0.003
AY,;=0.002,AX;=-0.04 0.005958 0.00582+.11E-3 2.3
AY,=0.042,Av¥ =0.039
AY,;=0.0001,AX;=-0.003 0.0095791 0.0095781+.84E-5 | .01

Table 4.3: Perturbation Results for Test Problem 3 (three correlated AKs).
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Test problem 4: heterogeneous X-Y geometry, one energy group

This is test problem 2b of chapter 3. Calculated results of three AKs from a
single Monte Carlo simulation are shown in table 4.4 along with the TWODANT
AKs. The Monte Carlo cases have 40 inactive batches, 160 active batches, and 2000

neutrons per batch.

Heterogeneous X-Y geometry, 1 group

Perturbed TWODANT Correlated error
cross sections AK Monte Carlo AK | (%)
Av¥=-0.002 -0.009909 -0.009663F.23E-4 | 2.5
Av¥=0.0008 0.0039554 | 0.0039079+.94E-5 | 1.2
Av¥=0.011 0.056820 0.05566+.13E-3 2.0

67¢1=0.0
AY,;=0.0025,A%,=0.0025 -0.011035 -0.010755F.27E-4 | 2.5
AY;=0.001,A%,=0.001 -0.0044901 | -0.004356F.11E-4 | 3.0
AY,=0.002,AX,=0.002 -0.008872 | -0.008639 F.21E-4 | 2.6

§7¢/=0.001125

AY=0.001,A¥,=0.007 0.012602 | 0.012283+.36E-4 | 2.5
AY,= -0.006,AvY ;=-0.003
AY,=0.0015,A%,=-0.04 0.005765 | 0.00572+.11E-3 | 0.8
AY,=0.0415,AvY ;=0.039
AY,=0.0011,A%,=-0.003 0.001373 | 0.001365+.13E-4 | 54
AY,=0.0041,AvY ;=0.004

677 =0.00061

Table 4.4: Perturbation Results for Test Problem 4 (three correlated AKs).
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Test problem 5: homogeneous slab, two energy group

This case is for two energy group homogeneous slab problem with vacuum bound-
ary conditions on both ends. The slab is 10 cm thick and the unperturbed cross sec-
tions for the slab are shown in table 4.5. Cross section perturbations were done over
the entire slab. Calculated results of two AKs from a single Monte Carlo simulation
are also shown in table 4.5 along with the corresponding TWODANT results. The

Monte Carlo results have 30 inactive batches, 100 active batches, and 2000 neutrons

per batch.
Homogeneous slab, 2 group
¥n=1.0, v¥ =11, Ys11=.9, Y12=.07
Yp=2.11, vy po=2.44, Ys21=0 Y20=.98
Perturbed TWODANT Correlated error
cross-sections AK Monte Carlo AK (%)
AvY =.02 0.1602 0.16007+.30E-3 .08
Av¥Y=.04 0.3203 0.32015+.60E-3 .05
67¢11=0.0,6"/2=0.0
AvY=.02,A¥,; =.001 0.1427 0.14265 +.24E-3 .04
AvY =04 0.3203 0.321244.55E-3 3
67¢11=0.001,6"%/2=0.0
Av¥ 1=.005,A%,; = .001 0.0235 0.023199 +.33E-4 1.3
AvY =04 0.3203 0.32050+.51E-3 .06
§7¢/1=0.005,6"/2=0.0

Table 4.5: Perturbation Results for Test Problem 5 (two correlated AKs).



91

Test problem 6: homogeneous X-Y geometry (Millstone assemblies’ cross
sections), two energy group

This is the same as test problem 3b of chapter 3. The unperturbed cross section
is for 2.9 w/o, 0 bp Millstone [NRCS85] reactor assembly and the perturbed cross
sections are for 2.9 w/o, 20 bp and 2.9 w/o, 24 bp assemblies. The cross sections are
given in table 4.6 and the AK results are given in table 4.7. The Monte Carlo runs

utilize 40 inactive batches, 100 active batches, and 3000 neutrons per batch.

0 bp . Et1:25285, 1/2]61:00642, 2511:22674, 2512:01678

Et2:.85205, Z/Ef2:12351, 2521:0 2522:76202

20 bp : $=.24303, v¥;=.00642, X,;=.21684, 3,1,=.01602

Et2:.79575, 1/2]62:.12377, 2521:0 2522:69020

24 bp 1 Bu=.24117, v¥=.00642, 3,;=.21500, Y,1,=.01580

Et2:.78395, 1/2]62:.12387, 2521:0 2522:67520

Table 4.6: Two Group Cross Sections (2.9 w/o) of Millstone Assemblies.
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Homogeneous X-Y geometry, 2 group
TWODANT Correlated error
AK Monte Carlo AK (%)
-0.165136 -0.159668F.54 k-4 3.3
-0.194535 -0.187647F.62E-4 3.5
§7¢/1=0.008,6"/2= 0.045

Table 4.7: Perturbation Results for Test Problem 6 (Millstone cross sections, two
correlated AKs).

4.4 Discussion of Numerical Results

Various eigenvalue perturbation problems have been solved in the previous section
using the multiple perturbation CSFM approach. The methodology has worked
well for both small and large perturbations, even though the method is specifically
meant for problems where the perturbation is small and hence direct Monte Carlo
subtraction encounters difficulty. Results of multiple AKs, from a single Monte
Carlo simulation, have compared well with the corresponding AKs computed by the
TWODANT code. Comparing the relative errors of AKs between the TWODANT
code and the multiple perturbation CSFM Monte Carlo approach, we observe that
the results always agree within less than 4% for all test cases shown here. Since
the relative errors represent comparison of AK results between the CSFM method
and the TWODANT code, an agreement within 4% can be considered to be quite

accurate. Further observation of all the tabulated results in section 4.3 shows that
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in general, relative errors of AKs are slightly larger when perturbations in ¥; were
made, compared to perturbations in cross sections other than ;. This is due to
the fact that a perturbation in ¥;, in addition to biasing the fission reactions, also
forces the CSFM method to bias the weight adjusting factors (WF') for every distance
to collision sampled. On the other hand, a perturbation in the v¥; alone requires
biasing in the fission reactions only. We have not noticed any general trend in the
deterioration of results in going from homogeneous to heterogeneous problems or
from one energy group to two energy group problems. This suggests that the two
energy group CSFM method can be easily extended to multigroup problems. The
reference system for each test problem was chosen using equation (4.2) and the 6-
scatter cross sections were chosen using the conditions given in equations (4.5), (4.6),
(4.7) and (4.8). These equations provided reasonable choices for both the reference
system and d-scatter cross sections, and can easily be extended to multiple groups.

Since multiple AKs due to multiple perturbations are computed from a single
Monte Carlo simulation, a significant reduction in computational effort is achieved.
We provide two actual wall clock timing results in table 4.8 to show this. These timing
results were obtained on a dedicated HP700 series machine. From the timing results
of table 4.8 and various other timing results obtained on non-dedicated machines
(and hence not shown here), we can conclude that it requires less than 10% extra
computational effort for each additional AK calculation compared to the first AK
calculation. Most of this extra computational effort is due to the number of times
the matrix iterative algorithm is invoked. However, the computational time spent
in the matrix iterative algorithm is relatively modest compared to the time spent in

Monte Carlo particle tracking.
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Problem # of AK | Wall Clock

Type calculated | time (sec)
First problem one 1185.5
of table 4.3 three 14194
Second problem one 1117.1
of table 4.3 three 1359.3

Table 4.8: Timing Results for Multiple AK Calculations.

4.5 Multiple K Calculation Using CSFM

We have shown in the previous sections of this chapter that multiple AKs can
be calculated from a single Monte Carlo simulation with good accuracy using the
CSFM approach. In this section we will utilize this to calculate multiple Ks and show
the applicability of this method for design calculations. Our purpose is to apply the
CSFM method to evaluate eigenvalues of multiple systems that closely resemble each
other, i.e., all the different systems are slightly perturbed versions of a single system.
This single system can be referred to as the unperturbed system. We assume that
the eigenvalue of the unperturbed system is determined with arbitrary accuracy
from either a Sy or a Monte Carlo calculation or perhaps an analytical solution if
the unperturbed system is simple enough. The CSFM technique can then be applied
to compute multiple AKs relative to the unperturbed system’s eigenvalue. Using the
known K of the unperturbed system and the multiple AKs computed by the CSFM
method, we can evaluate the absolute Ks of the multiple perturbed systems.

The test problem is a 5em X 5cm square region with one group cross sections and

vacuum boundaries. The square region is divided into 25 square cells of dimension
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lem X lem. The 16 cells along the boundaries represent fuel cells, and the center
cell represents poison. Rest of the 8 cells represent moderator. The objective of this
design problem is to observe the effect of varying the scattering ratio of the poison
material on the eigenvalue of the system. The geometric configuration and cross

sections for the problem are shown in figure 4.1.

. Fuel :Zt: 17 Zs= 397, vzf= .756

Mod:Zt: 2.35, ZS: 2.3

Poison:Zy= 40  2,=01

Cross sections for three different scattering ratios :

Poison:Z¢= 40 2,507

Poison:Z¢= 40  2,=13

Poison:x¢ =40  2.,=19

Figure 4.1: Dimension and Cross Sections for K Calculation Problem.

According to a fine mesh (S16) TWODANT calculation, with inner and outer
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iteration convergence criteria of 107!, the K for the unperturbed system is 1.03006.
Next, the CSFM method is used to compute the three AKs corresponding to the three
different scattering ratios of the poison material at the center cell of the system. Using
these three AKs and the known K of the unperturbed system, we evaluate the three
Ks. These results are shown in table 4.9. The Monte Carlo runs utilize 100 inactive
batches, 260 active batches, and 4000 neutrons per batch. We have also calculated the
three eigenvalues corresponding to the three different scattering ratios of the poison

material using fine mesh S TWODANT simulations. These TWODANT results

. . . TWODANT(I{)—MonteCaHo(I())
are also shown in table 4.9 along with relative errors ( TWODANT(R)

The Monte Carlo eigenvalues agree within one tenth of a percent with the fine mesh
TWODANT eigenvalues. This example shows application of the CSFM approach for

design problems.

Cases TWODANT K | Monte Carlo K | error (%)

Case 0: poison

scattering ratio = % 1.03006 1.03006
Case 1: poison

scattering ratio = % 1.031031 1.0310054.13E-4 0.003
Case 2: poison

scattering ratio = ﬁ 1.032291 1.0322314.27F-4 0.006
Case 3: poison

scattering ratio = % 1.034017 1.0339054-.41F-4 0.01

Table 4.9: Results of K Calculation Problem.



CHAPTER V

MONTE CARLO PARTICLE TRANSPORT
ALGORITHMS ON PARALLEL PROCESSORS

5.1 Introduction

Monte Carlo particle transport is an inherently parallel computational method
that has been successfully implemented on diverse computational platforms such
as vector processors, shared memory and distributed memory Multiple Instruction,
Multiple Data (MIMD) parallel processors, multiple vector processors, and Single
Instruction, Multiple Data (SIMD) parallel processors. Vectorizing a Monte Carlo
algorithm requires a major change in the algorithm and coding; but the performance
gain due to vectorization can be significant and once vectorized it is relatively easy
to parallelize across multiple vector processors. Parallelizing a Monte Carlo code is
relatively easy, and the continuing decrease in the costs of massively parallel proces-
sors (MPPs) makes it attractive to adapt to a MPP. In this chapter we describe the
effort to adapt two classes of Monte Carlo particle transport algorithms on differ-
ent parallel machines. We provide details of the two parallel algorithms, including
modifications to the random number generator, and will present wall clock timing
results on different parallel architectures. The first algorithm is intended for a fixed

source application and simulates photon transport in a high temperature plasma.

97
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The second algorithm is intended for the calculation of eigenvalues and perturba-
tions in eigenvalues for neutron transport problems. The following constraint has
been imposed on both parallel algorithms - the Monte Carlo simulation should yield
identical results for runs with the same number of tasks, independent of the number
of CPUs which are actually executing these tasks. This is a generalization of the
principle of reproducibility, an essential characteristic of particle transport Monte

Carlo codes.

5.2 Parallel Photon Transport Algorithm

The xPHOT [Mar86] series of codes have been used for a number of years to
examine alternative algorithms for Monte Carlo particle transport on a variety of
computer architectures, including vector supercomputers and parallel processors.
These codes simulate the transport of photons in a high temperature plasma, and
include realistic opacity data and a general two-dimensional mesh. The most recent
version, TPHOT, allows investigation of methods for parallelizing time-dependent
Monte Carlo codes.

The basic algorithm that we have employed is the pool of tasks algorithm, where
the MASTER task partitions the workload into tasks, including the necessary data
to perform the simulation. These tasks, denoted the SLAVE tasks, are dispatched to
processors as they become available to process a task. The partitioning of workload
is done within each time step, for this time-dependent photon transport code, to
allow for non-Monte Carlo computation between time steps, such as to change the
material properties or modify the mesh. Therefore the overall simulation within a
time step is divided into N tasks, where each task has approximately % of the total

workload.
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The partitioning of the particles to balance the workload is done statistically
among the tasks. The SLAVE task follows the requisite number of particles, accu-
mulating partial tallies and other statistics as needed by the problem, and reports the
results back to the MASTER task, which accumulates the partial tallies into over-
all global tallies. The MASTER task reads the input file, constructs the necessary
arrays to describe the geometry and material properties (i.e., cross sections), and
transmits these data to the SLAVE tasks. For shared memory parallel processors,
such as the Cray YMP, these data are simply stored in the global COMMON, but
for a distributed memory parallel processor, this data is sent in a message to each
processor to be stored in its local memory. Figure 5.1 illustrates the basic parallel
algorithm used in TPHOT.

The overall workload can be divided into four categories: (1) pre-processing work,
(2) serial Monte Carlo, (3) parallel Monte Carlo, and (4) post-processing work. The
pre-processing work includes reading the input data and preparing geometry and
cross section data arrays, while post-processing includes writing the output results.
For our analysis, we define the overall simulation time as the sum of the serial Monte
Carlo work performed by the MASTER task before and after the random walks, and
the parallel Monte Carlo work performed by the SLAVE tasks for the random walk
simulations.

Independent and reproducible sequences of random numbers are generated by the
Lehmer [Leh51] tree technique, where the MASTER task generates starting seeds
with one generator (the “left” generator) and the SLAVE tasks then generate the
actual random sequences for their random walks with a second generator (the “right”
generator). In figure 5.2, the black dots represent the seeds produced by the left

generator. The white dots represent random numbers generated by each SLAVE’s
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right generator.

(Work by MASTER Task (serial) R
Read Generate initial seeds for N tasks
Input Construct message for SLAVE
tasks with geometry data, cross
section data etc.
Broadcast message to SLAVE tasks
= g
MASTER
SLAVE SLAVE |--- | SLAVE | ----. SLAVE
1 N

‘a\\\

Work by SLAVE Task (parallel) A

Receive message from MASTER
MASTER task

Generate source particles
Perform random walks
Accumulate patrtial tallies

Send partial tallies for MASTER

task
\_ W,
Work by MASTER Task (serial)
Receive messages from SLAVE

tasks
Accumulate global tallies

Figure 5.1: Flow Diagram for Fixed Source Parallel Monte Carlo Algorithm.



Figure 5.2: Lehmer Tree for Generating Independent Random Number Sequences.

This parallel random number generator was used by researchers [Mar93] for the

BBN Butterfly parallel processors. We had difficulty in porting this parallel random
For the KSR-1 we used the

number generator to the KSR-1 parallel processor.
random number generator of the EGS4 [Nel85] code. Each processor (“pthread ”in

case of the KSR-1) was supplied its own random number seed. These seeds were

generated using the skip ahead approach, which allowed each processor to generate a

sequence of random numbers that did not not overlap any other processor’s random

number sequence.
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5.2.1 Efficiency of Parallel Algorithm

The principal measure of parallelization efficiency is the speedup, Sy, defined to be
the ratio of the time to execute the computational workload W on a single processor
to the time on N processors,

!

Sy =-- | (5.1)

™~

where 71 is the time to execute the workload on a single processor and 7 is the time
to execute the workload on N processors.

The time 7y is the sum of three terms,

™N = Ts + Tp + AT : (52)

(1) the time 75 to execute the serial portion of the workload, (2) the time 7, to
execute the parallel portion, and (3) an additional time A7 due to the parallelization
overhead which is quite general and accounts for any overhead due to implementing
the algorithm on the parallel processor, either due to the hardware, the network,
the operating system, or the algorithm. We would expect it to be a function of the

number of processors, N, as well as the workload, W,
AT =Ar(N, W) . (5.3)

The theoretical speedup, S, is the speedup assuming zero parallelization overhead,

[ N (5.4)

Tp + Ts

which can be compared to the true speedup:

T

Sy =——
N T, + 7s + AT
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Note that the theoretical speedup is the best that can be achieved. The ratio of the

true speedup to the theoretical speedup is the parallelization efficiency,

SN
EN = S}g\}; 9

(5.6)
which is a measure of the efficiency of the parallel processor to execute a given
parallel algorithm. Any degradation in performance due to parallelization overhead

will result in ey being less than one.

Now we introduce the serial fraction f,

W W
=-S=-_"5 5.7
WS W (5.7)

f
where W is the total computational workload, consisting of the serial workload W,
and the parallel workload W,,, which can by definition be performed on N processors.

We define W in arbitrary units of workload and assume the processor speed is v

(workload unit per second), which leads to the following expression for the theoretical

speedup,
W/v
sth= L : (5.8)
R L
or
1
szhzi ) (5.9)

For Monte Carlo [Mar93], the total workload for the single processor cases (N=1)
can be approximated very well (as will be seen by our timing results) by a simple

linear function of the number of histories, N, to be simulated:
W=d+VN, . (5.10)

Now we divide equation (5.10) by v, which is a constant for a specific processor and

define new constants a and b to obtain the single processor execution time:

1 =a+bN, . (5.11)
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Since all histories are independent, they can be tracked in parallel. Further, it is
reasonable to associate the constant a with the serial time, 7,. The serial fraction is
given by,

f==2=— . (5.12)

Therefore, one can find the constants a and b by observing at least two different

workloads (i.e. different Ny ) for the N=1 (single processor) case.

5.2.2 Parallelization on the CRAY YMP

The TPHOT code has been implemented on the Cray YMP with eight CPUs by
researchers at Lawrence Livermore National Laboratory and yields correct results on
our test problems. This code was macrotasked on the Cray YMP, taking advantage
of its shared memory. The code yields identical results for a given number of tasks,
regardless of the number of Cray CPUs which are actually executing the simulation,

including a single processor which executes all tasks in sequence.

5.2.3 Parallelization on the BBN Butterfly

The message-passing version of TPHOT was implemented on Lawrence Livermore
National Laboratory’s 128 processor BBN Butterfly TC2000 using the Livermore
Message-Passing (LMPS), a library of message-passing routines. Each processor of
the BBN has 16 MBytes of memory that can be “shared” by all nodes via a “butterfly
switch”. Under LMPS, however, each node’s memory belongs to only itself from the
perspective of the application program. The code yielded identical results for the
test problem run with 8 tasks on both the BBN and the Cray. Many different runs
were made on the BBN, varying the number of processors from 1 to 116 and the
number of particles (i.e., the workload W) from 2400 to 24,000,000.

Table 5.1 gives the simulation times for the Butterfly as a function of the number
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Number Workload (W)
of 0.01 0.1 1.0 10.0 100.0
processors | time Sy time Sy time Sy | time Sy time Sy
(sec) (sec) fec) | (sec) (sec)
1 17 - 144 - 1407 - - - - -
4 6 2.83 38 3.79 357 3.94 - - - -
8 5 3.40 22 6.55 181 7.77 | 1769 17.95 - -
9 5 3.40 20 7.20 161  8.74 | 1595 8.82 - -
10 5 3.40 18  8.00 145 9.70 | 1416  9.94 - -
16 T 243 13 11.08 94  14.97 | 888 15.84 - -
32 15 1.13 15 9.60 54 26.06 | 450 31.27 - -
64 - - 31 4.65 53 26.55 | 251  56.06 | 2364 59.52
80 - - - - - - 223  63.09 | 1813 77.61
100 - - - - - - 215 6544 | 1493 94.24
116 - - - - - - 224 62.81 | 1366 103.0

Table 5.1: Observed TPHOT Execution Times and Speedups for BBN.

of processors N and the workload W. We have arbitrarily assigned W=1.0 to the case
with approximately 240,000 particles. Blanks appear in the table for two reasons:
(1) large workloads are prohibitively expensive on few processors, and (2) small
workloads on a large number of processors yield chaotic timings.

The speedups for each case in table 5.1 are computed using equation (5.1), using
the N=1 case for each workload as the reference serial case (for 7). This is not quite

correct, because this will not be the optimal serial code. This is probably not a large
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effect, but it will tend to make the speedups appear better than they should be.

Workload # of model single observed single serial
(W) histories | processor execution | processor execution | fraction
(Nh) time (71 )(sec) time (71 )(sec) (f)
0.01 2347 17.2 17 0.19
0.10 23843 143.8 144 0.023
1.00 238232 1407 1407 0.0024
10.0 2382320 14070 - 0.00024
100.0 23823200 140700 - 0.000024

Table 5.2: Parameters of BBN Linear Model.

5.2.4 Determination of Serial Fraction for BBN

Using the observed times in table 5.1 for the three cases W=0.01,0.10 and 1.0,
a simple linear fit yielded the following values for the constants a and b in equation
(5.11):

a=3.34 sec, (5.13)

b=0.00589 sec/history. (5.14)

To show the validity of the linear model in equation (5.11), table 5.2 compares the
predicted values of 7 using equation (5.11) and the observed values from table 5.1.
For the cases W=10.0 and 100.0, the serial execution times were too large to attempt,
and were estimated using the linear model. Also tabulated are the predicted values
of the serial fraction for each workload W. Speedup in table 5.1 for these cases use

the prediction for 7 from table 5.2.
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5.2.5 Parallelization Overhead for BBN

The theoretical speedup for the BBN as a function of N and W can be computed
using the calculated values for the serial fraction, f, given in table 5.2. When this
is done, the results compare quite poorly with the observed speedups tabulated in
table 5.1. This indicates that the parallelization overhead cannot be ignored, and
one needs to include a non-zero A7 in the equation for speedup i.e., equation (5.5).
Let us start with equation (5.5), and assume that A7 can be modeled as follows:

N -1

14

Ao

: (5.15)

where « is a constant. This model assumes that the increase in time due to paral-
lelization is proportional to the increase in the number of processors and inversely
proportional to the processor speed v. Substituting equation (5.15) into equation
(5.5) and using the results from equations (5.7) to (5.9), we find the following ex-

pression for speedup:

1
Y a(N-1
UL 4+ G2

SN (5.16)

This expression for speedup is used to find values of a that would force the pre-
dicted speedups to match the observed speedups given in table 5.1. These “required”
values of a show a trend in a somewhat independent of W but nearly linear with N,

the number of processors. Therefore, o was modeled as follows:

N
~0. — . 1
o 00006116 (5.17)

This expression is linear with N and the constant 0.0006 appears due to the fact
that the required a was approximately 0.0006 for N=116, somewhat independent of
W. Of course, this implies that the overhead term A7 is not linear in N but quadratic:

~0.0006

AT
d16v

N(N-1) . (5.18)
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This O(N?) dependence may be due to memory contention resulting from the
BBN implementation of the message passing system, LMPS, which relies on the
shared memory features of the BBN.

This expression for « in equation (5.17) was then used in equation (5.16) to
predict the speedups for the five different workloads and the number of processors
varying from 1 to 116. The results are shown in figure 5.3. The plots include the
observed speedups from table 5.1 for comparison. It is clear that this simple model,
which uses two empirical parameters (f and «), predicts the behavior of the BBN

very well over a wide range of numbers of processors and workloads.

120 - W=0.01 observed <
W=0.1 observed —+

W=1.0 observed O EVAN
100 - W=10.0 observed X ’
W=100.0 observed A\

80 - W=0.01 predicted - - - A - |
W=0.1 predicted — .
speedup W=1.0 predicted - - -
60 - W=10.0 predicted — .- -
W=100.0 predicted «---.""

40

20

0 20 40 60 80 100 120

number of BBN processors

Figure 5.3: Observed and Predicted Speedups for BBN.

This model explains the behavior of the performance curves. As the workload,
W, increases, linear speedups result even for the largest number of processors because
the serial fraction, f, is inversely proportional to W, and equation (5.16) shows that

the speedup becomes linear in N as f decreases and W increases. For small workloads,
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f increases and Sy goes to zero, except for a small numbers of processors where the
effect of the parallelization overhead vanishes, resulting again in a linear behavior of

speedup Sy.

5.2.6 Parallelization on the Kendall Square KSR-1

The University of Michigan operated a Kendall Square Research KSR-1 parallel
processor with 32 processors until its decommissioning in 1995. Although the memory
is physically distributed, as with the BBN Butterfly, it is logically shared due to the
unique architecture of the system. The message-passing version of the TPHOT code
was implemented on the KSR-1, utilizing “pthreads” which are not like macrotasking
on the Cray YMP. Table 5.3 tabulates the simulation times for our implementation
of TPHOT on the KSR-1. Since one “pthread” corresponds to one processor for our
timing runs, the table gives the run times in terms of “processors”. In almost all cases,
the Monte Carlo results are identical between the BBN and KSR-1 runs, with some
exceptions that are thought to be due to the fact that decisions made on floating point
arithmetic are sensitive to the order in which the sums are accumulated. In addition
to the observed times, table 5.3 includes the corresponding speedups computed using
equation (5.1) and using the single processor case for each workload as the reference
serial run.

Using the same approach as with the BBN, the constants a and b needed in
equation (5.11) for the KSR-1 were obtained using the single processor runs for
W=0.01, 0.10 and 1.0:

a=1.16 sec, (5.19)
b=0.001 sec/history. (5.20)

These values were then used to predict the serial execution time 7, as a function
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of workload W. These are given in table 5.4, along with the corresponding serial
function, f. As with the BBN, the workload W=10.0 was not simulated for N=1;
only the predicted values are shown. For the KSR-1, the value of a was found to
be approximately 0.002, somewhat independent of workload W. The observed and
predicted speedup plots for the KSR-1 are shown in figure 5.4. The speedup curves
of the KSR-1 show similar characteristics as that of the BBN Butterfly parallel

processor, i.e., as the workload increases, almost linear speedup is observed.

30 | :
W=0.01 observed —

. W=0.1 observed - -

25 W=1.0 observed — o
W=10.0 observed -

: W=0.01 predicted &

20 - W=0.1 predicted + -
W=1.0 predicted O

speedup 15 | W=10.0 predicted x

0 5 10 15 20 25 30
number of KSR processors (pthreads)

Figure 5.4: Observed and Predicted Speedups for KSR-1.



111

Number Workload (W)
of 0.01 0.1 1.0 10.0
processors | time Sy time time Sy | time Sy
(sec) (sec) (ec) | (sec)
3.52 1 25.9 248.2 1 - -
2.7 1.28 14.0 1.85 129  1.93 - -
2.9 1.25 8.6 3.02 65 3.82 | 640 3.9
4.6 0.77 7.1  3.66 355 6.99 | 335 7.4
16 8.6 0.42 9.7 2.67 24 104 | 173 14.3
28 13.9 0.26 152 1.71 214 11.6 | 107 23.1

Table 5.3: Observed TPHOT Execution Times and Speedups for KSR-1.

Workload # of model single observed single serial
(W) histories | processor execution | processor execution | fraction
(Nh) time (71 )(sec) time (71 )(sec) (f)
0.01 2347 3.62 3.51 0.33
0.10 23843 25.8 25.9 0.045
1.00 238336 248.2 248.2 0.0047
10.0 2383360 2472 - 0.00047
100.0 23833600 24706 - 0.000047

Table 5.4:

Parameters of KSR-1 Linear Model.
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5.3 Parallel Monte Carlo Eigenvalue and Perturbation

In this section we present the issues involved in parallelizing Monte Carlo eigen-
value (using source iteration and fission matrix) and perturbations (using correlated
sampling applied to the fission matrix approach) calculation algorithms [Maj95b].
Monte Carlo eigenvalue and perturbation algorithms differ from fixed source algo-
rithms in the sense that both require an iteration procedure to determine the source
distribution and the eigenvalue. At the end of each iteration, all the processors (mas-
ter and slaves) need to be synchronized and the slave processors need to exchange
information with the master processor. These synchronization and communication
requirements increase parallelization overhead compared to fixed source Monte Carlo
algorithms. The basic parallel algorithm used for eigenvalue and reactivity type sim-
ulation is shown in figure 5.5. We present in this section observed speedup perfor-
mances from the IBM-SP2 parallel computer and fit predicted theoretical curves to

these observed speedup results.

5.3.1 Parallel Algorithm

The eigenvalue and perturbation parallel algorithms are also based on a master-
slave approach, as described in section 5.2. The master processor divides the total
number of particles, for each fission generation, equally among all the available pro-
cessors or slaves. Each slave processor simulates random walk for particle histories
simultaneously with other slave processors. This simultaneous simulation of particle
histories among all the slave processors is possible because particle histories are inde-
pendent within each fission generation. Fach slave processor also stores the sites and
the number of next generation fission neutrons produced. This information is used

by each slave processor for the next fission generation. At the end of each fission
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Figure 5.5: Flow Diagram for Figenvalue and AK Parallel Monte Carlo Algorithms.

generation, tally results from each slave processor are collected in the master pro-

cessor and the eigenvalue is computed. This iteration procedure, over fission gen-



114

erations, is repeated several times. This parallel algorithm also obeys the principle
of reproducibility. Independent and reproducible sequences of random numbers are
generated using the EGS4 [Nel85] random number generator. Each processor is given
its own random number seed. These seeds are generated using the skip ahead ap-
proach, which allows each processor to generate a sequence of random numbers not

overlapping with any other processor’s random number sequence.

5.3.2 Theoretical Speedup Curves

Similar to section 5.2.1, an expression for speedup can be derived for the eigen-
value and perturbation parallel algorithms. For the master-slave algorithm, serial
communication takes place, because the master process can only receive one mes-
sage at a time. We expect the parallelization overhead and synchronization time to

be proportional to (N-1). Hence, we express A7 as;
Ar=ao(N-1) . (5.21)

The time for a parallel simulation on N processors can be written as;

bN,
TN:a—I—Th—I—a(N—l) : (5.22)

In the above equation, after evaluating constants a and b from two serial execution
time, all the terms are known except «. The parameter 7y is the actual measured
time on N processors of IBM-SP2. Hence, a can be determined from equation (5.22).

The observed speedup is expressed as;

! !
Sy = — = ) 5.23
N a—l—b%—l—a([\f—l) (5.23)
The predicted speedup follows the curve given by;
. N
Sn(predicted) = (5.24)

1+ 3N "’
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where,
g=— . (5.25)

Here 3 represents the fraction of total computation time spent in parallelization

overhead, communication, synchronization, etc. between two processors [Mat94].

5.3.3 IBM-SP2 Parallel Computer

The IBM-SP2 operated at the University of Michigan is a collection of 32 Power-
2 chips processors grouped into a number of frames [IBM94]. Each Power-2 chip
processor has 256 MBytes of memory. The group of processors has an additional
high performance switch (HP-2). The high performance switch can be linked in
either statically (when the parallel program is compiled) or dynamically (when the
program is invoked). The IBM-SP2 has a latency of 40 micro seconds and bandwidth
of 40 MBytes/sec. The IBM Message Passing Library (MPL) routines were used to

run the parallel tasks.

5.3.4 Results

We have measured parallel speedups for three different algorithms. The first and
second algorithms calculate eigenvalues using the source iteration technique and the
fission matrix approach, respectively. The third algorithm calculates AK using the
correlated sampling technique applied to the fission matrix approach of eigenvalue
calculation (two AKs are calculated from a single Monte Carlo simulation). The
amount of communication (measured within the master processor) between the mas-
ter and the slave processors is largest for the perturbation algorithm and smallest for
the source iteration eigenvalue algorithm. The number of communications required
per iteration for the source iteration algorithm is three, for the fission matrix algo-

rithm is four, and for the reactivity algorithm is eight. Table 5.5 shows the constants
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a and b for the three algorithms. In tables 5.6, 5.7, 5.8 and 5.9 we show wall-clock
timing results for different cases (i.e., number of particles/batch (p/b) and number
of batches (b)) on the IBM-SP2 for the three different algorithms. Figures 5.6 and
5.7 show observed and predicted speedup results for the source iteration eigenvalue
calculation. Figure 5.8 shows the percentage of total computation time spent in
communication (message passing) in the master processor for the source iteration al-
gorithm. Figures 5.9, 5.10, and 5.11 show similar plots for fission matrix eigenvalue
calculations and figures 5.12, 5.13 and 5.14 show plots for correlated sampling pertur-
bation calculations. We find that our predicted speedup results match the observed
results reasonably well. The observed results were taken on the dedicated IBM-SP2
parallel computer. From the speedup plots, we see that we obtain speedups close
to 9 for 10 processors for all the three algorithms. Among these three algorithms,
the perturbation algorithm shows largest fraction of total computation time spent in

communication.

Algorithm type a (sec) | b (sec/history)

Source Iteration Eigenvalue 0.5194 4.5692E-4

Fission Matrix Eigenvalue 0.02 4.434F-4

Correlated Sampling Reactivity | 0.7431 6.5815E-4

Table 5.5: Constants a and b of single processor execution time.
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# of Wall-clock timings in seconds
processors | Source Iteration | Fission Matrix | Correlated Sampling
1 365.84 357.52 527.59
2 212.23 183.96 279.25
4 105.24 100.11 158.92
8 58.72 59.51 97.61
10 50.73 56.39 81.55

case.

Table 5.6: Wall-clock Timing Results on IBM-SP2 for 8000 particle/batch, 100 batch

# of Wall-clock timings in seconds
processors | Source Iteration | Fission Matrix | Correlated Sampling
1 731.73 710.94 1053.57
2 377.43 369.10 590.04
4 200.64 190.38 280.29
8 107.58 107.40 166.28
10 98.18 89.30 151.37

batch case.

Table 5.7: Wall-clock Timing Results on IBM-SP2 for 16000 particle/batch, 100
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# of Wall-clock timings in seconds
processors | Source Iteration | Fission Matrix | Correlated Sampling
1 364.36 354.04 526.03
2 187.65 195.72 277.08
4 98.82 98.59 141.53
8 53.78 50.44 78.39
10 45.47 44.10 70.20

Table 5.8: Wall-clock Timing Results on IBM-SP2 for 16000 particle/batch, 50 batch

case.

# of Wall-clock timings in seconds
processors | Source Iteration | Fission Matrix | Correlated Sampling
1 729.08 709.55 1050.06
2 372.50 361.28 550.08
4 192.92 191.80 284.25
8 104.75 97.13 158.12
10 84.29 82.02 123.57

Table 5.9: Wall-clock Timing Results on IBM-SP2 for 32000 particle/batch, 50 batch

case.
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5.3.5 A7 for the IBM-SP2

The values of A7s for the IBM-SP2 computer was calculated from equation (5.22)
where 7y is the actual wall clock timing on N processors. In tables 5.10, 5.11, 5.12

and 5.13 we show the Ars corresponding to results of tables 5.6, 5.7, 5.8 and 5.9

respectively.

# of processors | Source Iteration | Fission Matrix | Correlated Sampling
2 29.2 6.58 15.0
4 10.0 11.4 26.4
8 12.5 15.1 30.8
10 13.7 20.9 27.9

Table 5.10: IBM-SP2 Ars for 8000p/b, 100 batch case.
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# of processors

Source Iteration

Fission Matrix

Correlated Sampling

2 11.4 14.4 62.8
4 17.3 13.0 16.3
8 15.7 18.7 33.9
10 24.6 18.3 45.0

Table 5.11: IBM-SP2 Ars for 16000p/b, 100 batch case.

# of processors

Source Iteration

Fission Matrix

Correlated Sampling

2 4.4 18.3 13.1
4 6.9 9.9 9.3
8 7.7 6.1 11.9
10 8.4 8.6 17.1

Table 5.12: IBM-SP2 Ars for 16000p/b, 50 batch case.

# of processors

Source Iteration

Fission Matrix

Correlated Sampling

2 6.4 6.5 22.8
4 9.6 14.4 20.3
8 12.9 8.4 25.7
10 10.6 11.0 17.5

Table 5.13: IBM-SP2 Ars for 32000p/b, 50 batch case.




125

Even though it is difficult to predict an empirical formula that exactly determines
Ats, we notice that for most of the cases A7 is about a constant. If A7 is assumed
to be a constant then « is proportional to % Hence speedup models for IBM-SP2
can be predicted reasonably well with two parameters, the serial time constant a and

the proportionality constant for %



CHAPTER VI

CONCLUSIONS AND FUTURE WORK

In this chapter we discuss the original aspects of this research work. Different
theories and issues that lead to the development of the numerical method for multiple
eigenvalue perturbation calculations are summarized. While developing the multiple
perturbation technique, we investigated two fission matrix algorithms for eigenvalue
problems. The significance of parallel computers for Monte Carlo particle transport
algorithms is discussed. Finally, we provide some suggestions for further research
topics. Some of these research topics would give more insights into the method
developed here, while others would extend and apply the ideas developed in this

work to different related problems of interest.

6.1 Conclusions

The main objective of this research work was to develop a computational method
that would calculate multiple perturbation effects in the eigenvalue of the Boltz-
mann transport equation for neutrons from a single Monte Carlo simulation. Even
though Monte Carlo methods can efficiently estimate the eigenvalue of the transport
equation, calculation of small perturbation effects encounters difficulties. It has been

shown in this research work by numerical examples, and by other researchers, that

126
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subtracting two independent Monte Carlo simulations for estimating perturbation
effects in eigenvalue is not efficient and sometimes provides incorrect estimates. This
is specifically true for cases in which the difference in eigenvalues is of the same order
as the uncertainty of the eigenvalues. Hence, to estimate eigenvalue perturbation ef-
fects using Monte Carlo techniques, the unperturbed and perturbed simulations need
to be positively correlated. Special Monte Carlo perturbation techniques such as the
correlated sampling, derivative operator sampling, or the importance function ap-
proach must be employed to obtain an efficient estimate of eigenvalue perturbations.
Our work has dealt with the correlated sampling technique.

In chapter 1T we discussed two Monte Carlo approaches to estimate the eigen-
value of a system, the source iteration method and the fission matrix approach. In
the source iteration technique, the eigenvalue of a system is calculated as the ratio
of source neutrons of two successive neutron generations. The fission matrix al-
gorithm solves the homogeneous neutron transport equation which holds for every
generation. This equation is discretized to generate a matrix equation. Monte Carlo
particle tracking is done to estimate contributions of neutrons to each of the matrix
elements of the fission matrix, and then the largest eigenvalue of the fission matrix
is determined numerically. We have investigated two variations of the fission matrix
algorithm. In the cycle fission matrix algorithm the fission matrix is generated from
contributions of all the neutrons of a particular batch. In contrast, in the cumulative
fission matrix algorithm the fission matrix is formed from contributions of neutrons
from all the batches up to and including the last batch. We have tested these two al-
gorithms for problems representing tightly coupled and loosely coupled systems. We
have observed from our computational experiments that for tightly coupled systems,

both the cycle fission matrix and the cumulative fission matrix algorithm perform
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well and yield comparable performance. But for loosely coupled systems, the cumula-
tive fission matrix algorithm performs better than the cycle fission matrix algorithm.
For loosely coupled systems there is less neutron communication between the differ-
ent parts of the system, and hence a fission matrix formed with the neutrons of a
particular batch provides poor sampling. One characteristic of the cumulative fission
matrix algorithm is that it does not provide any uncertainty of the results, since the
eigenvalues of different batches are not statistically independent.

The correlated sampling technique was applied to both the source iteration and
the cycle fission matrix approach. It was shown, by numerical experiments, that
the correlated sampling technique, when applied to the source iteration method,
fails to efficiently calculate perturbation effects in the eigenvalue of the transport
equation. It is not possible to calculate perturbations in eigenvalues by propagating
perturbed weights from one generation to another. Any useful information about
the eigenvalue perturbation is lost due to fluctuations in the perturbed weights from
one generation to another. However the calculation of the fission matrix constitutes
an initial value problem and correlated sampling or derivative operator sampling can
be applied directly. The correlated sampling technique, when applied to the fission
matrix method, can accurately and efficiently estimate small perturbation effects in
the eigenvalue. Next, we introduced the idea of performing the actual Monte Carlo
simulation in an artificial reference system different from both the unperturbed and
perturbed systems. The choice of a proper reference system is an important issue.
The important characteristic of the reference system is that a transition that may
occur in any of the unperturbed or perturbed systems could occur in the reference
system. Even after satisfying this characteristic there could be many choices for the

reference system. In appendix A we have performed computational experiments to
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address this issue and have shown that varying a reference system does impact the
outcome of the simulation and hence this issue should be addressed from theoretical
standpoint. For all our simulations, we have taken the reference system to be an
average of the unperturbed and all perturbed systems. We have also introduced the
concept of adding a forward é-scatter cross section to the total cross section of all
the systems to reduce fluctuations in the adjusting weight factors. All these theories
and numerical examples to support them are given in chapter I11.

Next, in chapter IV, the ideas of correlated sampling technique, fission matrix
approach, and an artificial reference system were combined to develop the multiple
perturbation CSFM Monte Carlo technique. In this technique the Monte Carlo sim-
ulation is done in an artificial reference system and multiple fission matrices for the
multiple perturbed systems and for the unperturbed system are formed by correlat-
ing them to the reference system’s fission matrix. The correlated sampling technique
allows one to form multiple fission matrices from a single Monte Carlo simulation. At
the end of the simulation, the dominant eigenvalue of each of the multiple fission ma-
trices of the perturbed systems are evaluated numerically, along with the dominant
eigenvalue of the unperturbed fission matrix. We have tested this Monte Carlo tech-
nique for various test problems and compared the results to that of the TWODANT
code. Satisfactory comparison of results between the multiple perturbation Monte
Carlo method and the TWODANT code validates the multiple perturbation method.
This method allows significant savings in computational efforts as discussed in chap-
ter IV. This method can be applied to problems in which it is desired to calculate
multiple perturbations in the eigenvalue due to small variations in cross sections.
Some practical examples of such problems are perturbations in eigenvalue due to

changes in soluble boron concentrations, different number of absorber rods in assem-
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blies, and different assembly loading patterns for global core calculations. We have
also shown that the CSFM method can be used as a tool for design applications
when the eigenvalue of the unperturbed system is known beforehand to a good ac-
curacy by a separate calculation. Even though the CSFM method is meant for small
perturbation problems, it has performed well for some large perturbation cases.

We have also implemented parallel Monte Carlo algorithms for particle transport
on the KSR-1, BBN Butterfly and IBM-SP2 parallel computers. Both fixed source
and eigenvalue type neutron transport algorithms were implemented on these ma-
chines. For many applications, Monte Carlo algorithms may be slow compared to
deterministic methods, whereas Monte Carlo algorithms are inherently parallel and
hence easy to parallelize compared to deterministic methods. We have observed close
to linear speedups for some of the example Monte Carlo problems. These speedups
are observed for both fixed source and eigenvalue type Monte Carlo algorithms. The-
oretical models of speedups for parallel particle transport algorithms were developed
and compare well with observed speedup results for all three parallel machines. As
the price of MPPs decreases, the inherent parallelism of Monte Carlo will make it a

significant computational tool of choice.

6.2 Future Work

Finally, we would like to suggest some future research directions based on this
work that would either provide more insight into the multiple perturbation approach
or make it applicable to other problems of interest. In appendix A we perform
a computational study on the choice of the reference system. Results of this study
suggest that an optimized choice of a reference system for a given problem is desirable.

An optimized reference system could be determined by requiring minimum variance
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in the result. This requires further theoretical study and we will leave this as a future
research topic.

The multiple perturbation method developed here is for an isotropic scattering
medium. A possible next step would be to extend this approach to anisotropic
scattering. Another possibility is to extend this approach to continuous energy Monte
Carlo.

Calculation of multiple perturbations in eigenvalue involves solution of fixed
source Monte Carlo problems over a number of fission generations. We were able
to calculate perturbations in the eigenvalue because this method was able to success-
fully solve fixed source problem for each generation. This suggests that this method
could be applied for solving perturbation problems in reaction rates. This would
lead to solution of perturbation problems in shielding calculations where different
shielding materials are tested.

In this research work we applied the fission matrix approach of eigenvalue calcu-
lation to the correlated sampling perturbation technique. We have mentioned that
another Monte Carlo perturbation technique is the derivative operator sampling ap-
proach. Another extension to this work might be to combine the fission matrix and

derivative operator sampling methods to calculate multiple eigenvalue perturbations.
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APPENDIX A

CHOICE OF A REFERENCE SYSTEM

The multiple perturbation method developed in this dissertation requires that
the Monte Carlo simulations be performed in a reference system different from the
unperturbed and all perturbed systems. We have chosen the reference system cross
sections to be the arithmetic average of the cross sections of the unperturbed and
all perturbed systems. It may be possible to choose another reference system that
is more appropriate for a given problem. An optimized reference system for a given
problem would be the one that produces the most accurate AK along with the min-
imum variance. Qur choice of reference system is based on intuition rather than
any theoretical study. We believe that it might be possible to study the choice of a
reference system as an optimization problem. We suggested this optimization prob-
lem as a future research topic in chapter VI. In this appendix we perform numerical
experiments to investigate the effect of the choice of a reference system on the result
of AK. We will perform these numerical experiments on a few problems that have
been used as example problems in this dissertation.

For the numerical experiment, we choose a problem in which there is only one
perturbed system corresponding to an unperturbed system. It is understood that

similar observations can be made for problems with multiple perturbed systems. The
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reference system’s cross sections will be varied according to the following formula,

S = aSP 4 (1—a) , 0<a<l, (A1)

where ¥, refers to some cross section. We would look at the AK results as a function
of a.

The first example is for a one energy group homogeneous slab problem with a
thickness of 16 ¢m and vacuum boundary conditions on both ends. Cross section
perturbation was done over the entire slab. Unperturbed cross sections of the slab

are as follows,

S = 10,57 = 0.9,v5% = 0.11, 5% = 0.1.

All the cross sections have units of cm™'. Perturbation was done in the fission cross

section of the slab, and the perturbed cross sections are as follows,
¥ =1.0,X2=0.9,v%% =0.111, %2 = 0.1.

Table A.1 shows the AK results as a function of . The Monte Carlo results were
generated from 30 inactive batches, 70 active batches, and 2000 neutrons per batch.

It appears from table A.1 that for this problem, when the reference system is
chosen as the unperturbed system, the most accurate result for AK is produced.
It should be noted that the errors are not linearly dependent on a. This analysis
assumes the TWODANT result as exact.

Next, we perturb the absorption cross section for the same homogeneous one
energy group slab problem as in table A.1. The perturbed cross sections are as

follows,

¥2=1.001 ,¥* =09 ,v¥} =011 ,%7=0.101.
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a | TWODANT AK | Monte Carlo AK | % error

1.0 0.00903 0.0090308+.58E-5 | 0.009
67l = 0.0

0.75 0.00903 0.0090344+.63E-5 | 0.05
67/ = 0.0

0.50 0.00903 0.0090496+.56E-5 | 0.22
67 = 0.0

0.25 0.00903 0.009021+.53E-5 0.1
67l = 0.0

0.0 0.00903 0.0090405+.54E-5 | 0.12
67/ = 0.0

Table A.1: Perturbation(in X ) Results as a Function of Reference System.

Perturbation results as a function of « are shown in table A.2. The Monte Carlo
results were generated using 30 inactive batches, 70 active batches and 2000 neutrons
per batch.

From table A.2 we observe that the most accurate result is achieved when «
equals 0.25. We observe for this case also that the errors are not a linear function of
a. Again these conclusions are made based on the fact that the TWODANT result
is the correct one.

The above two numerical experiments suggest that even though the results are a
function of the chosen reference system, it is difficult to determine the relation. For

complicated systems (heterogeneous, multigroup, etc.), it will be more difficult to
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a | TWODANT AK | Monte Carlo AK | % error

1.0 -0.008807 -0.0088914F.85E-5 0.96
§7ef =0.001
0.75 -0.008807 -0.0088895F.88E-5 0.94

§7ef = 0.00075

0.50 -0.008807 -0.0089069F.83E-5 1.13
67 = 0.0005
0.25 -0.008807 -0.008879F.84E-5 0.82

67 = 0.00025

0.0 -0.008807 -0.0088832F.94E-5 0.87

67 = 0.0

Table A.2: Perturbation(in ¥,) Results as a Function of Reference System.

determine this relationship. This is an optimization problem, and a theoretical in-

vestigation is required to gain more insight into it.
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APPENDIX B

TWODANT ACCURACY

In this appendix we perform accuracy test for the TWODANT code. For a given
problem we vary the mesh size as well as the quadrature sets to observe the effect
of these variations on TWODANT calculated eigenvalue results. These results guide
us to determine up to how many digits, after the decimal point, the TWODANT
calculated AKs are accurate.

The test problem is a homogeneous, one energy group, slab, with thickness of 16
cm and vacuum boundary conditions on both ends. Tables B.1 and B.2 show the
different eigenvalue results due to different mesh sizes and quadrature sets.

In most of our TWODANT calculations, for chapter 2, 3 and 4 results, we have
used mesh sizes and quadrature sets which are equivalent to that of the first row of
table B.1. This implies that the TWODANT AKs are accurate only up to five digits
after the decimal point. We observe that even though the inner and outer iteration
convergence criteria are set to 107'? the TWODANT eigenvalues are not accurate

up to that many digits after the decimal point.
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Mesh Size (mfp) | quadrature sets | convergence criteria | eigenvalue
0.125 32 10712 0.993070
0.0625 32 10-12 0.993075

0.03125 32 10712 0.993077
0.015625 32 1072 0.993077

Table B.1: Eigenvalue Results for Different Mesh Sizes.

Mesh Size (mfp) | quadrature sets | convergence criterion | eigenvalue
0.125 16 10-12 0.993056
0.0625 16 10712 0.993061

0.03125 16 10712 0.993063
0.015625 16 10-12 0.993063

Table B.2: Eigenvalue Results for Different Quadrature Sets.
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ABSTRACT

DEVELOPMENT OF A MULTIPLE PERTURBATION MONTE CARLO
METHOD FOR EIGENVALUE PROBLEMS AND IMPLEMENTATION ON

PARALLEL PROCESSORS

by

Amitava Majumdar

Chairperson: William R. Martin

We have developed a Monte Carlo method that calculates multiple perturbation
effects in the eigenvalue (K) of the Boltzmann transport equation for neutrons from
a single Monte Carlo simulation. Two Monte Carlo techniques, source iteration and
fission matrix approaches, have been described. We have shown that subtracting
two independent Monte Carlo simulations for eigenvalue perturbation calculation
encounters difficulties. It is necessary to utilize some type of Monte Carlo pertur-
bation technique. We have shown that the combination of the correlated sampling
and source iteration methods encounters difficulties in calculating eigenvalue per-
turbations. When the correlated sampling approach is combined with the fission
matrix approach, it can successfully evaluate eigenvalue perturbations. We have im-

plemented the idea of performing Monte Carlo simulation in an artificial reference



system. Utilizing the fission matrix approach, correlated sampling, and an artificial
reference system, we have developed the multiple perturbation technique. The ac-
tual simulation is done in an artificial reference system and all the perturbed and
unperturbed systems’ fission matrices are correlated to that reference system. At the
end of the simulation, the dominant eigenvalue of the unperturbed and all perturbed
fission matrices are evaluated numerically. This provides us with multiple AKs from
a single Monte Carlo simulation. We have tested this method for different test prob-
lems and the results compared well with that of the TWODANT Sy transport code.
This method allowed significant savings in computational effort.

We have implemented fixed source and eigenvalue algorithms for neutron trans-
port on three different parallel machines, the BBN Butterfly, KSR-1, and IBM-SP2.
We have addressed the issue of parallel random number generators and showed how
the fixed source and eigenvalue parallel algorithms differ. Theoretical models for
speedups have been developed and have compared well with the observed speedups.

Close to linear speedups were observed for many of the test problems.



