Solution CS 505 Quiz# 3 , 3/25/02 NAME=solution
(all questions are worth 10 points; answer either Fortran or C code questions)

Q1.i. Is MPI a language (like Fortran or C) or a library?

Ans. Library.

 Q1.ii. What is the main difference between point to point communications and collective communications in MPI?

Ans. In point to point communication only two processors take part. Collective communication can be from one to many, many to one, or many to many processors.

 Q2.i. Give a pseudo code for unidirectional communication.

Ans. If (myrank == 0) then

call MPI_send(.,., …)
 elseif (myrank == 1) then

call MPI_Recv(.,.,…)
 endif

 Q2.ii. Name a collective communication call in MPI where only data is transferred.

Ans. MPI_Bcast ()

Q2.iii. Name a collective call in MPI where some mathematical operation is done.

Ans. MPI_Reduce()

Q3.i. What is the difference between a blocking and a non blocking call in MPI?

Ans. . In blocking call the call returns only after the data is sent out of the user buffer (or received in the user buffer from the system buffer in case of MPI_Recv) to the system buffer in case of MPI_Send. Hence after the blocking call returns the user buffer can be used without causing any problem. When a non blocking call returns it only implies that the transfer of data from user buffer to system buffer has began in case of Isend, and similarly transfer of data from system buffer to user buffer has began in case of Irecv. Return from nonblocking calls does not imply that the data transfer from user buffer to system buffer has finished in case of Isend (or data transfer from system buffer to user buffer has finished in case of Irecv). Hence the user buffer cannot be modified in case of nonblocking call until the completion of the nonblocking call is confirmed by MPI_Wait() or MPI_test().

 Q3.ii. What is the non blocking equivalent call of the MPI_wait() call?

Ans. MPI_test ()

Q4. Three processors have the following data in an array in each processor:

Proc0

Proc1

Proc2

a(1) = 1

a(1) = 4

a(1) = 7

a(2) = 2

a(2) = 5

a(2) = 8

a(3) = 3

a(3) = 6

a(3) = 9

After a specific MPI routine call the data gets distributed as follows:

Proc0

Proc1

Proc2

b(1) = 1

b(1) = 2

b(1) = 3

b(2) = 4

b(2) = 5

b(2) = 6

b(3) = 7

b(3) = 8

b(3) = 9

What is this MPI routine called?

Ans. MPI_AlltoAll ()

Q5. Three processors have the following data in an array in each processor:

Proc0

Proc1

Proc2

a(1) = 1

a(1) = 2

a(1) = 4

a(2) = 3

a(2) = 5

a(3) = 6

After a specific MPI routine call the data gets distributed as follows:

Proc0

Proc1

Proc2

b(1) = 1

b(1) = 1

b(1) = 1

b(2) = 2

b(2) = 2

b(2) = 2

b(3) = 3

b(3) = 3

b(3) = 3

b(4) = 4

b(4) = 4

b(4) = 4

b(5) = 5

b(5) = 5

b(5) = 5

b(6) = 6

b(6) = 6

b(6) = 6

What is this MPI routine called?

Ans. MPI_allgatherv ()

Q6. Can the following code lead to deadlock or not, and why?

call MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

if (myrank = = 0) then

call MPI_ISend (sendbuf, ….)

call MPI_Recv (recvbuf, ….)

call MPI_Wait(request, status, ierr)

else if (myrank = = 1) then

call MPI_Isend (sendbuf, ….)

call MPI_recv (recvbuf, ….)

call MPI_Wait(request, status, ierr)

end if

Ans. This will not lead to deadlock since the program returns immediately from MPI_Isend and it starts receiving data from the other process. The MPI_Isend, being a non blocking call, does not need to buffer data in the system buffer.

Q7. Among the three processors, proc0 have the following data in an array:

Proc0

Proc1

Proc2

a(1) = 1

a(2) = 2

a(3) = 3

After a specific MPI routine call the data gets distributed as follows:

Proc0

Proc1

Proc2

b(1) = 1

b(1) = 2

b(1) = 3

What is this MPI routine called?

Ans. MPI_Scatter ()

Q8. One of the three processors have following data in an array:

Proc0

Proc1

Proc2

a(1) = 1

a(2) = 2

a(3) = 3

a(4) = 4

a(5) = 5

a(6) = 6

After a specific MPI call the data gets redistributed as follows:

Proc0

Proc1

Proc2

b(1) = 1

b(1) = 2

b(1) = 4

b(2) = 3

b(2) = 5

b(3) = 6

What is this MPI routine called?

Ans. MPI_Scatterv ()

Q9. What is the following MPI code (either Fortran or C) doing and what is the value of sum when it is run on 3 processors?

Fortran code :

program quiz

include 'mpif.h'

integer, allocatable :: a(:)

integer :: ibegin, iend, sum, tmp,value

call MPI_INIT(ierr)

call MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

allocate(a(1:nprocs*nprocs))

ibegin = myrank*nprocs + 1

iend = ibegin + nprocs - 1

do i = ibegin, iend

a(i) = i

end do

sum = 0

do i = ibegin, iend

sum = sum + a(i)

enddo

call MPI_REDUCE(sum, tmp, 1, MPI_INTEGER, &MPI_MIN, 0, MPI_COMM_WORLD, ierr)

value = tmp

if (myrank .eq. 0) then

print*, 'value=', value

endif

call MPI_FINALIZE(ierr)

end

C code :

#include <mpi.h>

#include <stdio.h>

#include <stdlib.h>

int nprocs, myrank, mpi_err;

#define mpi_root 0

void init_it(int *argc, char ***argv);

void init_it(int *argc, char ***argv)

{

mpi_err = MPI_Init(argc,argv);

mpi_err = MPI_Comm_size(MPI_COMM_WORLD, &nprocs) ;

mpi_err = MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

}

int main(int argc, char *argv[])

{

int i, ibegin, iend, sum, tmp, value ;

int *a ;

init_it(&argc, &argv);

ibegin = myrank*nprocs + 1 ;

iend = ibegin + nprocs - 1 ;

a = (int*)malloc(nprocs*nprocs*sizeof(int)) ;

for(i = ibegin; i < iend + 1; i++)

 a[i-1] = i;

sum = 0 ;

 for(i = ibegin; i < iend + 1; i++)

 sum = sum + a[i-1];

 mpi_err = MPI_Reduce(&sum, &tmp, 1, MPI_INT,

 MPI_MAX, mpi_root,MPI_COMM_WORLD);

value = tmp ;

 if(myrank == mpi_root) {

 printf("value = %d \n", value); }

 mpi_err = MPI_Finalize();}

Ans. PE0 sums 1 through 3, PE1 sums 4 through 6, and PE2 sums 7 through 9. PE0 has 6, PE1 has 15, and PE2 has 24. MPI_Reduce (. . ., MPI_MIN. .)

returns 6 from the above three. So value is 6.

Q 10. Following is a data array :

old_array

21
23
12
16
9
10
43
66
92
45
11
46

stride = 3

From the above we want to extract the following data so that we can send it to another processor:

new_array

21
16
43
45

What MPI routine would you use? What will be the values of the numerical parameters to this MPI routine?

Ans. . We need to use MPI_type_vector (4, 1, 3, ….)

The new data type has four blocks, each block has one elements in it, and the stride in the old data type is three.

