
CS 596 1

Example #1

• What is wrong in the pseudo code below
assuming that the code wants to call the function
work with variable i where i goes from 0 to np-1?
And how would you correct that?

np = omp_get_num_threads() ;
#pragma omp parallel for schedule(static)
for (i=0; i<np; i++)
work(i);

CS 596 2

Example #1 Solution

• The OpenMP functions omp_get_num_threads()
and omp_get_thread_num() are valid inside a
parallel region only. Must re-write as:

#pragma omp parallel private(i)
{

i = omp_get_thread_num() ;
work(i);

}

CS 596 3

Example #2

• What’s the problem with this code fragment?

I=10

!$OMP PARALLEL

!$OMP& PRIVATE(I)

I = I + 1

!$ OMP END PARALLEL

PRINT*I

CS 596 4

Example #2 Solution

• I is undefined at this point. Need to rewrite:

!$OMP PARALLEL

!$OMP& FIRSTPRIVATE(I)

I = I + 1

!$ OMP END PARALLEL

PRINT*I

CS 596 5

Example #3

• Parallelize the following serial program without
using the reduction directive.

#include <stdio.h>
main()

{
int i, k = 0;

for (i = 1; i <= 1000; i++)
k += 1 ;

printf("%d\n", k);
}

CS 596 6

Example #3 Solution

#include <stdio.h>
main()
{
int i, k = 0, k1;
#pragma omp parallel shared(k) private(i,k1)
{
k1 = 0 ;
#pragma omp for
for (i=1; i <= 1000; i++)

k1 += 1;
#pragma omp critical
k += k1;
}
printf("%d\n", k);

}

CS 596 7

Example #4 Part 1

• What will be the printed value of j in the following program:
#include <stdio.h>
int j;
#pragma omp threadprivate(j)
int main()
{
j = 1;
#pragma omp parallel copyin(j)
{
#pragma omp master
j = 2;

}
printf("j= %d\n", j);

}

CS 596 8

Example #4 Part 1 Solution

• The value 2 is printed by the master thread.
Within a master section the master thread's
copy of threadprivate variable is accessed and
set to 2.

CS 596 9

Example #4 Part 2

• Will the result of the above code be affected if the
'master' directive is changed to 'single' and how?

CS 596 10

Example #4 Solution Part 2

• Here the printed value is indeterminate. In the
single section, some single thread, but not
necessarily the master thread, would set j to 2.
The printing is always done by the master thread.

CS 596 11

Example #5

• What’s the problem with the following code:

!$OMP PARALLEL

!$OMP& PRIVATE(I)

I = I + 1

!$ OMP END PARALLEL

Call Sub(I)

CS 596 12

Example #5 Solution

• I is undefined when the Sub(I) is called because it
was declared private. It must be declared
lastprivate to persist.

!$OMP PARALLEL

!$OMP& LASTPRIVATE(I)

I = I + 1

!$ OMP END PARALLEL

Call Sub(I)

CS 596 13

Example #6

• What kind of scheduling will you suggest for the following
and why?
void sub_6(float a[], float b[], int n)
{
int i, j ;
#pragma omp parallel shared(a,b,n)
private(i,j)
{
#pragma omp for schedule (????) nowait
for (i = 1; i < n; i++)
{
for (j = 0; j <= i; j++)
b[j+ n*i]=(a[j+n*i] + a[j+n*(i-1)])/2.;

}
}

}

CS 596 14

Example #6 Solution

• Since amount of work in each iteration is different
we would use schedule(dynamic, 1) to get
good load balance.

CS 596 15

Example #7

• What’s the problem in the following code:

!$OMP PARALLEL (Default)

!$OMP CRITICAL

Call Sub(N)

!$OMP BARRIER

!$ OMP END CRITICAL

Call Sub(2)

!$ OMP PARALLEL

CS 596 16

Example #7 Solution

• Problem: deadlock!

• Note on scheduling: Correct result should not
depend on scheduling. Your code should work
correctly with any scheduling. Run it with
different scheduling to find the best performance.

CS 596 17

Example #8

• Among the following two codes (sub8_a and sub8_b) ,
which one has more OpenMP overhead and why?
void sub8_a(float a[],float b[],int n, int m)
{
int i, j;
for (j = 0; j < m ; j++)
{

#pragma omp parallel shared(a,b,n,j)
private(i)
{
#pragma omp for nowait
for (i = 0; i < n; i++)
a[i + n*j] = b[i + n*j] /a[i + n*(j-1)];

}
}

}

CS 596 18

Example #8 (continued)

void sub8_b(float a[],float b[],int n,int m)
{
int i, j;
#pragma omp parallel shared(a,b,n,m)
private(i,j)
{
for (j = 0; j < m ; j++)

{
#pragma omp for nowait
for (i = 0; i < n; i++)

a[i + n*j] = b[i + n*j]/a[i + n*(j-1)];
}

}
}

CS 596 19

Example #8 Solution

• Since the omp parallel directive is outside the
j loop , the sub8_b forms teams of threads less
often, and thus reduces overhead.

CS 596 20

Example #9

• What will Value of Z be once the above code is finished
executing?

INTEGER X(3), Y(3), Z

!$OMP PARALLEL DODEFAULT(PRIVATE) SHARED(X)

!$OMP REDUCTION(+: Z)

DO K=1,3

X(K) = K

Y(K) = K*K

Z = Z + X(K) * Y(K)

END DO

!$OMP END PARALLEL DO

CS 596 21

Example #9 Solution

2781Z

941Y

321X

Thread 2Thread 1Thread 0Variable

Z = 36 after loop finishes

CS 596 22

Review

• OpenMP is
– Portable, Shared Memory Multi-processing API

• Fortran 77, Fortran 90, C, and C++
• OS-neutral

– Standardizes Fine-grained Parallelism
• Supports Coarse-grained Algorithms

– Directive-based
• Single-source code solution

CS 596 23

Parallelism in OpenMP

• Parellelism achieved by threads and implented
using fork-join model
– less flexible than Pthreads
– much easier to write and maintain
– offers most of the performance

• Threads are created when first PARALLEL region
is encountered

• Threads sleep (minimum impact on system
resources) or spin (maximum performance)
between PARALLEL regions
– Logically, just one thread between regions

CS 596 24

Parallelism in OpenMP

• Only have multiple threads in PARALLEL regions
– Marked by $OMP PARALLEL in Fortran,

valid until $OMP END PARALLEL
– Marked by #pragma omp parallel in C,

valid only for next statement (or composite
statement)

• Only have parallelism inside work sharing
constructs within PARALLEL regions:
– Just having multiple threads does not mean work

is shared!
– Only three work sharing constructs: DO

(Fortran)/FOR(C), SECTION, and SINGLE

CS 596 25

OpenMP Structure

• Worksharing
– do/for, sections, single

• Synchronization
– barrier, critical, ordered,master, atomic, flush

• Data scoping
– shared, private, firstprivate, lastprivate,

threadprivate, reduction
• OpenMP library

– OMP_GET_NUM_THREADS(), etc
• OpenMP environment variables

– OMP_NUM_THREADS, etc.

CS 596 26

CS 596 27

Parallelizing Procedure

1. Profile to locate candidate parallel loop(s)
2. Analyze variables and code
3. Insert directives and/or restructure
4. Compile and run program
5. Debug

CS 596 28

Work Sharing

• DO/FOR
– $OMP DO in Fotran, but can be combined with PARALLEL:

$OMP PARALLEL DO (and closed with $OMP END
PARALLEL)

– #pragma omp for in C
• SECTION

– #pragma omp parallel sections
{

#pragma omp section
phase1();
#pragma omp section
phase2();
#pragma omp section
phase3();

}

