
CS 596 1

OpenMP Data Scoping
(continued)

• Data scoping (continued)
– FIRSTPRIVATE

• Like PRIVATE, but copies are initialized using value from
master thread's copy

– LASTPRIVATE
• Like PRIVATE, but final value is copied out to master

thread's copy
• For DO: last iteration; SECTIONS: last section

– THREADPRIVATE
• Procedures called within a thread share data that is not

visible to other threads
• Provides a way of declaring common blocks that are

specific to a thread

CS 596 2

C OpenMP API

• Functionality provided is similar to that for
Fortran
– Include file: #include <omp.h>
– Format is a pragma

• #pragma omp parallel for schedule(static)
private(j)

• #pragma omp parallel
• #pragma omp critical

– Pragmas apply to a block of code, no “end”
pramgas

CS 596 3

C OpenMP API
(continued)

– Some differences in spellings
#pragma omp parallel for private(j)
for(i=0; i < 100; i++){
j = f(i);
a[i] = j*j;
}

– Nested/recursive locks allowed
• same thread can set acquire a lock arbitrary

number of times
– Threadprivate makes file-scope variable local to a

thread

CS 596 4

C OpenMP API
(continued)

– No "default(private)" clause
– Conditional compilation only allowed via

the _OPENMP macro

CS 596 5

C Examples

#pragma omp parallel
#pragma omp critical

{
thread_bind();

}

#pragma omp parallel for schedule(static) private(j)
for(i=i1;i<=i2;i++)

for(j=j1;j<=j2;j++)
psi[i][j]=new_psi[i][j];

}

CS 596 6

OpenMP Data Scoping
(continued)

• Data scoping (continued)
– FIRSTPRIVATE

• Like PRIVATE, but copies are initialized using
value from master thread's copy

– LASTPRIVATE
• Like PRIVATE, but final value is copied out to

master thread's copy
• For DO: last iteration; SECTIONS: last section

CS 596 7

OpenMP Data Scoping
(continued)

!$OMP PARALLEL DO LASTPRIVATE(TEMP)
DO I = 1, 100
TEMP = F(I)

END DO
PRINT *, 'F(100) == ', TEMP
! TEMP is equal to F(100) at end of loop

CS 596 8

OpenMP Data Scoping
(continued)

I = 17
!$OMP PARALLEL SECTIONS FIRSTPRIVATE(I)
!$OMP SECTION

! Each thread has its own I variable,
! and I is equal to 17 here
DO J = I, 100
B(J) = J

END DO
!$OMP SECTION

DO I = 1, 100
SUM = SUM + A(I)

END DO
!$OMP END PARALLEL SECTIONS

CS 596 9

OpenMP Synchronization Directives

• Synchronization and MASTER constructs
– MASTER

• Only the master thread executes the enclosed block of
code

– CRITICAL
• Only one thread at a time executes the enclosed block
• May specify a name that is common to multiple

CRITICALs

!$OMP PARALLEL PRIVATE(MYDATA)
!$OMP CRITICAL(MYSECT)

READ *, MYDATA
!$OMP END CRITICAL(MYSECT)

...
!$OMP END PARALLEL

CS 596 10

OpenMP Synchronization Directives
(continued)

• BARRIER
– Threads in a team wait until entire team reaches the barrier

!$OMP PARALLEL
!$OMP DO REDUCTION(+:S)

DO I = 1, 100
S = S + F(I)

END DO
!$OMP END DO NOWAIT

...
!$OMP BARRIER

! Can now use S
!$OMP END PARALLEL

CS 596 11

OpenMP Synchronization Directives
(continued)

• ORDERED
The enclosed block of code is executed in per iteration order

!$OMP PARALLEL DO ORDERED SCHEDULE(DYNAMIC)
DO I = 1, 100
IF(A(I) > 100.0) THEN

!$OMP ORDERED
S = S + A(I)

!$OMP END ORDERED
END IF

END DO

CS 596 12

OpenMP Synchronization Directives
(continued)

• ATOMIC
– Specifies an atomic update of a variable can be

used, if available

!$OMP PARALLEL SHARED(S)
...

!$OMP ATOMIC
S = S + 1.0
...

!$OMP END PARALLEL

CS 596 13

OpenMP Synchronization Directives
(continued)

• FLUSH example

!$OMP PARALLEL SHARED(WORK_READY)
IF (OMP_GET_THREAD_NUM() == 0) THEN
CALL SETUP_WORKQUEUES
WORK_READY = .TRUE.

!$OMP FLUSH(WORK_READY)
ELSE

100 CONTINUE
!$OMP FLUSH(WORK_READY)

IF(.NOT. WORK_READY) GO TO 100
CALL START_WORKING
END IF

!$OMP END PARALLEL

CS 596 14

OpenMP Synchronization Directives
(continued)

• FLUSH {, list-of-vars}
– Forces memory synchronization, flushing/loading

of values of variables to/from memory, etc.
– Can build broadcast or point-to-point

communication primitives

CS 596 15

OpenMP Conditional Compilation

• Conditional compilation
– Introduced with a !$, C$ or *$ trigger

!$OMP PARALLEL PRIVATE(I)
!$ I = 0

CALL SUB(I)
– !$OMP END PARALLEL
– Or can use _OPENMP macro in cpp

!$OMP PARALLEL PRIVATE(I)
#idef _OPENMP

I = 0
#endif
!$OMP END PARALLEL

CS 596 16

OpenMP Environment Variables

• Environment variables
– OMP_SCHEDULE

• specifies the default scheduling algorithm to
use for DO

– OMP_NUM_THREADS
• specifies the default number of threads to use

– OMP_DYNAMIC
• specifies whether the number of threads can be

changed automatically at execution time by the
implementation

CS 596 17

OpenMP Environment Variables
(continued)

• OMP_NESTED
– permits or disables nested parallelism
– when disabled, a parallel region encountered

while another region is active creates a new team
consisting of a single thread

CS 596 18

OpenMP Library

• Library procedures
– Execution environment procedures

• Used to control and query the parallel
environment

• OMP_SET_NUM_THREADS,
OMP_GET_NUM_THREADS,
OMP_GET_MAX_THREADS,
OMP_GET_THREAD_NUM,
OMP_GET_NUM_PROCS,
OMP_IN_PARALLEL, OMP_SET_DYNAMIC,
OMP_GET_DYNAMIC, OMP_SET_NESTED,
OMP_GET_NESTED

CS 596 19

OpenMP Library
(continued)

• Lock procedures
– Used to implement locks at a lower, more flexible,

level than CRITICAL construct
– OMP_INIT_LOCK, OMP_DESTROY_LOCK,

OMP_SET_LOCK, OMP_UNSET_LOCK,
OMP_TEST_LOCK

