
CS 596 1

Lets now look at floating point operations

• Impractical to require all FP ops to complete in one or even two
clock cycles since that would make slower clock or using
enormous logic in FP units

• FP pipeline will allow for a latency for operations
• In FP pipelines

– The EX cycle can be repeated many times and the number of
repetitions vary for different operations

– There may be multiple FP functional units

CS 596 2

• Lets build with four separate functional units
– Main integer unit handles loads, stores, integer ALU

ops, and branches
– FP and integer multiplier
– FP adder that handles FP add, subtract, and conversion
– FP and integer divider

• These execution stages of these functional units are not
pipelined

CS 596 3

Resulting structure of previous machine with 3 additional
unpipelined FP functional units

IF

EX
FP/Integer

multiply

ID

EX
Integer unit

EX
FP adder

EX
FP/Integer

divider

ME WB

CS 596 4

Lets build pipelined FP functional units out of the
last one

CS 596 5

if a3

ex

m
1

m
2

m
3

m
4

m
5

m
6

m
7

a4a2a1id
wbme

Integer unit

div

FP/Int multiply

FP adder

FP/int divider

CS 596 6

• The pipelined machine supports multiple outstanding FP
operations:
– Up to four outstanding FP adds
– Up to seven outstanding FP/integer multiplies
– One divide since divide is not pipelined

• Complications :
– Requires introduction of additional pipeline registers (e.g. a1, a2,

a3, a4)
– The id/ex register must be expanded to connect id to ex, div, m1,

and a1

CS 596 7

Pipeline timing of a set of independent FP operations

WBMEEXIDIFSD

WBMEEXIDIFLD

WBMEA4A3A2A1IDIFADD

WBMEM7M6M5M4M3M2M1IDIFMULT

CS 596 8

Stall occurs when the ADD depends on MULT

WBME
stall

A4
stall

A3
stall

A2
stall

A1
stall

IDIFADD

A3A2A1stallstallstallstallstallIDIFADD

WBMEM7M6M5M4M3M2M1IDIFMULT

CS 596 9

Advanced Pipelining, ILP, and Loop-level Parallelism

• We have seen how pipelining can overlap the execution of
instructions when they are independent of one another

• This is called Instruction Level Parallelism (ILP) since the
instructions can be evaluated in parallel

• Now we will look at how the pipelining ideas can be extended by
increasing amount of parallelism exploited among instructions

• Amount of parallelism available within a basic block (i.e. a
straight line code sequence with no branches in except to the
entry and no branches out except at the exit) is small

CS 596 10

One approach is to increase amount of parallelism among
iterations of a loop called loop-level parallelism

for (i = 1, i <= 1000, i = i +1)
x[i] = x[i] + y[i] ;

Every iteration of the loop can overlap with any other iteration
(i.e. loop level parallelism exists) but within each loop
iteration there is not much overlap

We are interested in increasing instruction level parallelism
in loops like above

CS 596 11

• To keep a pipeline full, parallelism among instructions must be
exploited by finding sequences of unrelated instructions that can
be overlapped in pipeline

• To avoid pipeline stalls, a dependent instruction must be
separated from the source instruction by a distance in clock cycles
equal to the pipeline latency of that source instruction

• How well this can be done by compiler depends on the ILP
available in the program and on the latencies of the functional
units

• One key is to hide stalls

CS 596 12

We make up the following latencies:

Assume integer load latency of 1, an integer ALU operations
latency of 0, a latency of 1 for branch

0Store double Load double

1FP ALU opLoad double

2Store doubleFP ALU op

3Another FP ALU
op

FP ALU op

Latency in clock
cycles

Instruction using
result

Instruction
producing result

CS 596 13

• We will look at how compiler (or may be you !) can increase the
amount of ILP by unrolling loops

for (i =1; i <= 1000 ; i ++)
x[i] = x[i] + s ;

• The loop is parallel since each iteration is independent
• But we are interested in ILP (not loop-level parallelism) now

CS 596 14

• Straightforward assembly code for the loop with latencies shown
in table previously :

loop : LD F0, 0(R1) ;F0 Array element
ADDD F4, F0, F2 ;add scalar in F2
SD 0(R1), F4 ;store result
SUBI R1, R1, 8 ;decrement pointer

8 bytes
BNEZ R1, loop ;branch R1!=zero

• R1 is initially the address of the element in the array with the
highest address, and F2 contains the scalar value s; we assume
that the element with lowest address is at zero

CS 596 15

Look at the execution of the loop without scheduling

clock cycle issued
loop: LD F0, 0(R1) 1

stall 2
ADDD F4, F0, F2 3
stall 4
stall 5
SD 0(R1), F4 6
SUBI R1,R1, #8 7
stall 8
BNEZ R1,loop 9
stall 10

This requires 10 clock cycles per iteration; 1 stall for LD,2 for the
ADDD, 1 for SUBI, and one for branch

CS 596 16

Look at the execution of the loop with scheduling by compiler

clock cycle issued
loop: LD F0, 0(R1) 1

SUBI R1,R1, #8 2
ADDD F4, F0, F2 3
stall 4
BNEZ R1,loop 5
SD 8(R1), F4 6

CS 596 17

Observations from scheduled loop

• Execution time has been reduced from 10 clock cycle (without
scheduling) to 6 clock cycle (with scheduling)

• One loop iteration completed and result stored back every 6 clock
cycle but actual operations (load, add, and store) takes 3 of those
clock cycles

• Remaining three clock cycles required for loop overhead, SUBI,
BNEZ, and a stall

• Question : How can we decrease the ratio of loop overhead ?

CS 596 18

• Answer : Add more non-loop overhead i.e. load, add and store
operations within a loop

• A scheme for increasing the number of instructions relative to the
number of branch and overhead instructions is loop unrolling

• Loop unrolled four times :

for (i = 1; i <= 1000 ; i = i + 4) {
x[i] = x[i] + s ;
x[i + 1] = x[i + 1] + s ;
x[i + 2] = x[i + 2] + s ;
x[i + 3] = x[i + 3] + s ;

}

CS 596 19

Unrolled loops cycles without scheduling
Loop : clock cycle issued

LD F0 , 0(R1) 1
ADDD F4,F0,F2 2
SD 0(R1), F4 3 (drop SUBI & BNEZ)
LD F6,-8(R1) 4
ADDD F8,F6, F2 5
SD -8(R1), F8 6 (drop SUBI & BNEZ)
LD F10, -16(R1) 7
ADDD F12, F10, F2 8
SD -16(R1), F12 9 (drop SUBI & BNEZ)
LD F14, -24(R1) 10
ADDD F16, F14, F2 11
SD -24(R1), F16 12
SUBI R1, R1, #32 13
BNEZ R1,loop 14

• This will run in 28 cycles – each LD has 1 stall, each ADDD 2,
SUBI 1, the branch 1, plus 14 instruction issue cycles

• 7 clock cycles for each of the four elements

CS 596 20

Unrolled loops cycles with scheduling

loop: LD F0, 0 (R1)
LD F6, - 8 (R1)
LD F10, -16 (R1)
LD F14, -24 (R1)
ADDD F4, F0, F2
ADDD F8, F6, F2
ADDD F12, F10, F2
ADDD F16, F14, F2
SD 0(R1), F4
SD -8 (R1), F8
SUBI R1, R1, #32
SD -16 (R1),F12
BNEZ R1, loop
SD 8(R1), F16 ; (-32 + 8 = -24)

• Execution time of the unrolled loop has dropped to a total of 14 clock cycles,
or 3.5 clock cycles per element, compared with 7 cycles per element before
scheduling and 6 cycles when scheduled but not unrolled

CS 596 21

Benefits of unrolling

• Gain from scheduling on the unrolled loop is even larger than on
the original loop

• Unrolling loops exposes more computation that can be scheduled
to minimize stalls

• Loop unrolling is a simple but useful method for increasing the
size of straight line code fragments that can be scheduled
effectively

CS 596 22

Summary of loop unrolling

• Determine that loop unroll would be useful by finding that the
loop iterations were independent, except for the loop maintenance
code

• Use different registers to avoid constraints that would be needed
if the same registers were used for the same computations

• Eliminate the extra tests and branches and adjust loop
maintenance code

• Determine that loads and stores in the unrolled can be
interchanged since the loads and stores from different iterations
are independent

• Schedule the code so that any dependency needed to yield the
same result at the original code is preserved

CS 596 23

Loop-level Parallelism
• Loop-level parallelism is normally analyzed at the source level or

close to it; while most analysis of ILP is done once instructions
have been generated by the compiler

• Loop-level analysis involves determining what dependencies exist
among the operands in the loop across the iterations of the loop

• We will concentrate on data dependencies which arise when an
operand is written at some point and read at a later point

• Need to determine whether data accesses in later iterations are
data dependent on data values produced in earlier iterations

• Dependence in the following loop body between two uses of x[i],
but this dependence is within a single iteration. No dependence
between instructions in different iterations

for (i = 1 ; i <= 1000; i ++)
x[i] = x[i] + s ;

CS 596 24

• for (i = 1; i <= 100; i = i + 1) {
A [i + 1] = A [i] + C [i] ; /* S1*/
B [i + 1] = B [i] + A[i + 1] /* S2 */ }

• There are two different kind of dependencies :
– S1 uses a value computed by S1 in an earlier iteration since

iteration i computes A[i +1] which is read in iteration i +1;
same is true of S2 for B[i] and B[i+1]

– Another dependency is that S2 uses A [i+1] which is
computed by S1 in the same iteration

• The dependence of S1 on an earlier iteration of S1 is called
loop-carried dependence implying dependence exists between
different iterations of the loop

• The second dependence (i.e. S2 depending on S1) is not loop-
carried and if existed alone would not prevent execution of
multiple iterations in parallel

CS 596 25

• for (i = 1; i < = 100 ; i = i +1) {
A[i] = A[i] + B[i] ; /* S1 */
B[i+1] = C[i] + D[i]; /* S2 */}

• Statement S1 uses the value assigned in the previous iteration by
statement S2, so there is loop carried dependency between S2 and S1

• S1 depends on S2 but S2 does not depend on S1, so we can
interchange them

• Neither statement depends on itself
• On the first iteration of the loop, S1 depends on B[1]

A[1] = A[1] + B[1]
for (i = 1; i < = 99 ; i = i +1) {

B[i+1] = C[i] + D[i] ; /* S1 */
A[i+1] = A[i+1] + B[i+1]; /* S2 */}

B[101] = C[100] + D[100];
• No more loop-carried dependence

CS 596 26

ILP versus Reducing Cache Misses

• Sometimes compiler must choose between improving ILP and
improving cache misses

for (i = 0; i < 512; i = i + 1)
for (j = 1, j < 512 ; j = j + 1)

x[i][j] = 2* x[i][j-1] ;

• Data is accessed in order they are stored (row wise in C), hence
minimizes cache misses

CS 596 27

To increase ILP we try to unroll the loop :

for (i = 0; i < 512 ; i = i +1)
for (j = 1; j < 512; j= j + 4) {

x[i][j] = 2*x[i][j-1] ;
x[i][j+1] = 2*x[i][j] ;
x[i][j+2] = 2*x[i][j+1] ;
x[i][j+3] = 2*x[i][j+2] ;

}

Data dependency prevents loop unrolling for ILP

