
CS 596 1

Instruction Set, Pipelining, and Instruction Level Parallelism (ILP)

• We have dealt with memory and cache issues
• For cache performance we looked at

– Loop interchange, loop fusion, and blocking

• Now we will get in the CPU and see how registers work with
instruction sets

• We will
– Explain pipeline architectures
– Study Instruction Level Parallelism (ILP)
– How knowledge of architecture, instruction and ILP can be used

• Sometimes increase in ILP and decrease in cache miss can
contradict each other

CS 596 2

• Current architectures are called load-store or register-register
architecture implying on can only access memory (via cache) only
with load and store instructions (also called general-purpose
register – GPR – architectures)

• Reasons for this :
1. Registers like other form of storage internal to the CPU – are faster

than memory
2. Registers can be used easily by a compiler than other forms of

internal storage
3. Registers can be used to hold variables. When variables are

allocated to registers the memory traffic is reduced and hence
program speeds up

CS 596 3

• The code sequence C = A + B looks like following in assembly
language :
load R1, A
load R2, B
add R3, R1, R2
store C, R3

• Load instruction loads A into register R1 and B into register R2,
add instruction adds content of register R2 and R1 into register R3,
and store instruction stores content of register R3 into C

• Experience (for e.g. running a collection of 12 integer programs on
Intel 80x86) shows that 10 simple instructions can account for 96%
of total instructions executed

• Implementors would make those fast since those are common cases

CS 596 4

Types and Numbers of Registers

• Types and numbers of registers vary from machine to machine
• Registers on a typical hypothetical machine:

– Thirty two 32-bit integer registers named R0, R1, ….., R31
– Additionally there is a set of floating point registers (FPRs) which can be

used as 32 single precision (32 bit) registers or as even-odd pairs holding
double precision values. This 64 bit FPRs are named F0, F2, F4, …… , F30

– Some machines have 64 bit registers

• Registers on the SUN HPC10000
• V9 architecture (64 bit architecture)

– (at least) 64 64-bit integer register (g,o,l,i registers)
– 32 32-bit (f0,f1,…,f31)

32 64-bit (f0, f2, …, f62)
16 128-bit (f0, f4,…,f60)

– Other kinds of registers that is used internally (i.e. not directly for user code)

CS 596 5

Pipelining

• Pipelining is an implementation technique whereby multiple
instructions are overlapped in execution. This implementation
technique exploits parallelism among the instructions in a
sequential instruction stream. All current CPUs uses pipelining

• Pipelining is equivalent to automobile assembly line. In a computer
pipeline each step in the pipeline completes a part of an instruction.
Like the assembly line different steps are completing different parts
of different instructions in parallel

• Each of the steps are called a pipe stage. The stages are connected
one to another to form a pipe. Instructions enter at one end,
progress through stages, and exit at the other end.

CS 596 6

Chair building process :unpipeline and pipeline

4p

2p
u

CS 596 7

• Goal is to keep the time taken by each pipe line stage balanced i.e.
more or less same as the time taken by any other pipeline stage

• If the stages are perfectly balanced then the time per instruction on
the pipeline machine, in ideal case, is equal to :

Time per instruction on an unpipelined machine
--

Number of pipe stages

• There is initial latency for the the first instruction but for large
number of instructions this is negligible

CS 596 8

• Speedup from pipelining equals the number of pipe stages
• Problems :

– Stages will not be perfectly balanced
– Pipelining does involve some overhead
– Time per instruction on the pipeline machine will not have its

possible minimum value, but can be close
• We will look at pipelining as yielding a reduction in the average

execution time per instruction or equivalently it can be looked upon
as decreasing the average clock cycle per instruction (CPI)

CS 596 9

Simple Implementation of Instructions

• First look at how instruction is implemented without pipilening
• In this implementation (different computers will have different

implementations) every instruction takes 5 clock cycles
• We will extend this to pipeline version resulting in lower CPI
• The five clock cycles are (for our example computer architecture):

1. Instruction fetch (IF) cycle : Send out program counter and fetch the
instruction from memory into instruction register

2. Instruction decode (ID) cycle : Decode the instruction and access the register
file to read registers

3. Execution cycle (EX) : The Arithmetic or Logic Unit (ALU) operates on the
operands prepared in previous cycle

4. Memory access/branch completion (ME) : load, stores, and branches
5. Write back (WB) cycle :Write the results to the register file whether it comes

from memory operation or from ALU

CS 596 10

The Basic Pipeline

clock cycle number

ME

WB

8

WBEXIDIFI+4

MEEXIDIFI+3

WBMEEXIDIFI+2

WBMEEXIDIFI+1

WBMEEXIDIFI

97654321Instr
#

CS 596 11

Observations

• Each instruction takes 5 clock cycles to complete. During each
clock cycle hardware will initiate a new instruction

• Latency is 5 clock cycles, after which one instruction gets executed
every clock cycle. Registers read in ID and data written to register
in WB. Separate instruction and data cache will allow this.

• Pipeline increases the CPU instruction throughput i.e. the number
of instructions completed per unit time but it does not reduce the
execution time of an individual instruction.

• In reality it increases slightly the execution time of each instruction
due to overhead required for control of pipeline

• Some of the operations (like EX) can take more than one clock
cycle which causes imbalance among pipeline stages

CS 596 12

Example: Consider a unpipelined machine. It has 10 ns clock cycles, it
uses 4 clock cycles for ALU ops, and branches, and 5 cycles for
memory ops. Assume relative frequency of these are 40%, 20%,
and 40% respectively. Assume due to pipeline overheads the
pipelined machine requires 1 ns overhead to the clock. Ignoring
latency how much speedup in the instruction execution rate will we
gain from pipeline.

CS 596 13

Answer : Average instruction execution time on the unpipelined
machine = clock cycle * average CPI

= 10ns * (4 * 40% + 4 * 20% + 5 * 40%)
= 10ns * (160 + 80 + 200) / 100
= 44 ns

On the pipeline machine we get one instruction per clock cycle
ignoring latency. Hence average instruction execution time on the
pipelined machine is = 10 + 1 = 11 ns

Speedup = 44/11 = 4 times

CS 596 14

Major Hurdles of Pipelining

• There are situations, called hazards, that prevent the next
instruction in the instruction stream from executing during its
designated clock cycle. Hazards reduce the performance from the
ideal speedup gained by pipelining.

• Kinds of hazards :
1. Structural Hazards : This arise from resource conflicts when the hardware

cannot support all the possible combinations of instructions in simultaneous
overlapped execution.

2. Data Hazards : Arise when an instruction depends on the results of a
previous instruction.

3. Control Hazards : Arise from the pipelining of branches and other
instruction that change the PC. (we are not going to talk about this much
more)

• Hazards in pipeline causes it to stall like CPU stalls in case of
cache miss.

CS 596 15

Performance of Pipelines with Stalls
• Stall causes the pipeline performance to degrade from the ideal

performance
• Speedup from pipelining =

average instruction time unpipelined
-- =
average instruction time pipelined

CPI unpipelined * clock cycle unpipelined
-- =
CPI piplined * clock cycle pipelined

CPI unpipelined clock cycle unpipelined
-------------------- * -----------------------------
CPI pipelined clock cycle pipelined

CS 596 16

Pipelining can be thought of as decreasing the CPI. The ideal CPI
on a pipelined machine is almost always 1.

Hence,
CPI pipelined =
Ideal CPI + Pipeline stall clock cycles per instruction =
1 + Pipeline stall clock cycles per instruction

If we ignore the cycle time overhead of pipelining and assume the
stages are perfectly balanced then the cycle time of the two
machines can be equal, leading to

CPI unpipelined
Speedup --

1 + Pipeline stall clock cycles per instruction

CS 596 17

One important simple case is where all the instructions take the
same number of cycles, which must equal the number of pipeline
stages (also called depth of the pipeline). Here the unpipelined CPI
is equal to the depth of the pipeline, leading to

Pipeline depth
Speedup = --

1 + Pipeline stall clock cycles per instruction

If there are no pipeline stalls then the speedup is equal to the
intuitive result i.e. the pipeline depth as expected in the ideal case.

CS 596 18

Structural Hazards

• For a pipelined machine overlapped execution of instructions occurs
• Requires pipelining of functional units and duplication of resources

to allow all possible combinations of instructions in the pipeline
• If some combination of instructions cannot be accommodated

because of resource conflicts, the machine is said to have structural
hazard

• Cases :
– When some functional unit is not fully pipelined then a sequence of

instructions using that unpipelined unit cannot proceed at the rate of one per
clock cycle

– When some resource has not been duplicated enough (e.g. only one register-
file write port but pipeline may want to perform two writes in a clock cycle) to
allow all combinations of instructions in the pipeline to execute

• A stall is commonly called a pipeline bubble or bubble since no
useful work gets done in that cycle

CS 596 19

Structural Hazard in the Basic Pipeline

• A machine with only one memory port will generate a conflict
whenever a memory reference occurs e.g. load and IF of I3 conflict

clock cycle number

ME

WB

8

WBEXIDIFI4

MEEXIDIFI3

WBMEEXIDIFI2

WBMEEXIDIFI1

WBMEEXIDIFload

97654321Instr
#

CS 596 20

Bubble Caused by Structural Hazard
• No instruction completes in clock cycle 8 (Instruction 1 is assumed

not to be a load or store so that there is no conflict with I3)
clock cycle number

WBMEEXIDIFI3

EX

8

MEIDIFI4

stall

WBMEEXIDIFI2

WBMEEXIDIFI1

WBMEEXIDIFload

97654321Instr
#

CS 596 21

Data Hazards

• Pipelining changes relative timing of instructions by overlapping
their execution

• Data hazards occur when pipeline changes the order of read/write
accesses to operands from what seen by sequentially executing
instructions on an unpipelined machine

• Consider following instructions on our machine with 5 clock cycle
instructions and 5 stage pipeline :

ADD R1, R2, R3
SUB R4, R1, R5
AND R6, R1, R7
OR R8, R1, R9
XOR R10, R1, R11

• All instructions after the ADD use the result of the ADD instruction

CS 596 22

clock cycle number

• The ADD instr writes value of R1 in 5th clock cycle but SUB reads it in 3rd clock
cycle. This is called data hazard

WBMEEXIDIFXOR
r10,r1,r11

WB

8

MEEXIDIFOR
r8, r1,r9

WBMEEXIDIFAND
r6,r1,r7

WBMEEXIDIFSub
r4,r1,r5

WBMEEXIDIFAdd
r1,r2,r3

97654321Instr#

CS 596 23

clock cycle number

• Data hazard is minimized with a hardware technique called forwarding
• The result is moved from where ADD produces it, EX/ME register, to where

SUB needs it in the
• Forwarding can be generalized to include passing a result directly to the

functional unit that requires it

WBMEEXIDIFXOR
r10,r1,r11

WB

8

MEEXIDIFOR
r8, r1,r9

WBMEEXIDIFAND
r6,r1,r7

WBMEEXIDIFSub
r4,r1,r5

WBMEEXIDIFAdd
r1,r2,r3

97654321Instr#

CS 596 24

• Three kinds of data hazards depending on the order of read and
write accesses in the instructions
– RAW (read after write) : one instruction tries to read source

before another writes to it (forwarding is used to avoid it)
– WAW (write after write) : Instruction I+1 tries to write an

operand before it is written by instruction I. The writes end up
being performed in the wrong order, leaving the value written by
I rather than the value written by I+1. (happens only in pipelines
that write in more than one pipe stage)

– WAR (write after read) : Instruction I+1 tries to write before
instruction I reads, so I incorrectly gets the new value. (this
cannot happen in our example pipeline since all reads (in ID) are
early than writes (in WB))

• Not all data hazards can be avoided and like structural hazards
require stalls

CS 596 25

Lets now look at floating point operations

• Impractical to require all FP ops to complete in one or even two
clock cycles since that would make slower clock or using
enormous logic in FP units

• Instead the FP pipeline will allow for a longer latency for
operations

• In FP pipelines
– The EX cycle can be repeated many times and the number of

repetitions vary for different FP operations
– There may be multiple FP functional units

CS 596 26

• Lets assume that there are four separate functional units
1. Main integer unit handles loads, stores, integer ALU ops, and

branches
2. FP and integer multiplier
3. FP adder that handles FP add, subtract, and conversion
4. FP and integer divider

• The execution stages of these functional units are not
pipelined

CS 596 27

Resulting structure of previous machine with three
additional unpipelined FP functional units

IF

EX
FP/Integer

multiply

ID

EX
Integer unit

EX
FP adder

EX
FP/Integer

divider

ME WB

CS 596 28

Lets build a pipelined FP functional units out of the
last one

CS 596 29

if a3

ex

m
1

m
2

m
3

m
4

m
5

m
6

m
7

a4a2a1id
wbme

Integer unit

div

FP/Int multiply

FP adder

FP/int divider

CS 596 30

• The pipelined machine supports multiple outstanding FP
operations:
– Up to four outstanding FP adds
– Up to seven outstanding FP/integer multiplies
– One divide since divide is not pipelined

• Complications :
– Requires introduction of additional pipeline registers (e.g. a1, a2, a3, a4)
– The id/ex register must be expanded to connect id to ex, div, m1, and a1

CS 596 31

Pipeline timing of a set of independent FP operations

WBMEEXIDIFSD

WBMEEXIDIFLD

WBMEA4A3A2A1IDIFADD

WBMEM7M6M5M4M3M2M1IDIFMULT

CS 596 32

Stall occurs when the ADD depends on MULT

WBME
stall

A4
stall

A3
stall

A2
stall

A1
stall

IDIFADD

A3A2A1stallstallstallstallstallIDIFADD

WBMEM7M6M5M4M3M2M1IDIFMULT

