
CS 596 1

OpenMP History

• What is it?
– Extensions to Fortran, C and C++ for portable SMP

programming
• higher-level than POSIX threads

– Mainly Fortran comment directives and C/C++ pragmas
• can be ignored by a non-OpenMP compiler

• Why is it?
– Many compiler vendors (particularly Fortran) had vendor-

specific SMP directive support
• not portable and with subtle differences in meaning

– Previous attempts at standardization had failed

CS 596 2

OpenMP History
(continued)

• Primary OpenMP participants
– Compaq, HP, IBM, Intel, KAI, SGI, Sun

• U.S. Dept. of Energy ASCI Program
• OpenMP Fortran API, Version 1.0, published Oct.

1997
• OpenMP C API, Version 1.0, published Oct. 1998

CS 596 3

OpenMP Directives

• PARALLEL regions
– Most basic parallel construct
– Code enclosed by PARALLEL/END PARALLEL is executed

redundantly by a "team" of threads
• Can be basis for coarse-grained parallelism

– Initial thread that encountered directive becomes "master" of
team

• !$OMP PARALLEL PRIVATE(CHUNK,LB,UB),
SHARED(A)

• CHUNK = ...; LB = ...; UB = ...
• CALL WORK(A(LB:UB))
• !$OMP END PARALLEL

– IF clause condition determines whether to execute in parallel

CS 596 4

OpenMP Work-sharing Directives

• Work-sharing constructs
– Contains block of code that threads of a PARALLEL region

execute co-operatively
• All threads must encounter work-sharing at same time

– DO (Fortran) / FOR (C)
• Iterations of loop are split amongst threads, in chunks

determined by a scheduling algorithm (user-specified or
default)

!$OMP DO PRIVATE(S) SHARED(A, B)
DO I = 1, 100
S = B(I)
A(I) = S*(S+1)

END DO
!$OMP END DO

CS 596 5

OpenMP Work-sharing Directives
(continued)

– Work-sharing DO scheduling algorithms
• Designed to balance work load amongst

threads or maintain cache locality
• Work is assigned to threads in chunks

• !$OMP DO SCHEDULE(schedule-type[, chunk-
size])

• DO I = 1, 100
• ...
• END DO

CS 596 6

OpenMP Work-sharing Directives
(continued)

– STATIC
• Threads receive chunks of iterations in thread

order, round-robin
• Good if every iteration contains same amount

of work
• May help keep parts of an array in a particular

processor's cache
– DYNAMIC

• Thread receives chunks as thread becomes
available for more work

• Default chunk size is 1
• Good for load-balancing

CS 596 7

OpenMP Work-sharing Directives
(continued)

– GUIDED
• Thread receives chunks as the thread becomes

available for work
• Chunk size decreases exponentially, until it

reaches the chunk size specified (default is 1)
• Balances load and reduces number of requests

for more work
– RUNTIME

• Schedule is determined at run-time by
OMP_SCHEDULE

• Useful for experimentation

CS 596 8

OpenMP Work-sharing Directives
(continued)

• Ex: loop with 100 iterations and 4 threads
• SCHEDULE(STATIC)

• SCHEDULE(DYNAMIC, 15)

• SCHEDULE(GUIDED, 8)

Thread 0 1 3 2 1 1 2

Iteration 1-15 16-30 31-45 46-60 61-75 76-90

Thread 0 1 2 3

Iteration 1-25 26-50 51-75

Thread 0 1 2 3 3 2 3 1

Iteration 1-25 26-44 45-58 59-69 70-77 78-85 86-93 94-100

76-100

91-100

CS 596 9

OpenMP Work-sharing Directives
(continued)

• SECTIONS
– Blocks of code are split amongst threads - task

parallel style
– A thread might execute more than one block or no

blocks
!$OMP SECTIONS
!$OMP SECTION

CALL TASK1
!$OMP SECTION

CALL TASK2
!$OMP SECTION

CALL TASK3
!$OMP END SECTIONS

CS 596 10

OpenMP Work-sharing Directives
(continued)

• SINGLE
– Block of code is executed by a single thread

!$OMP SINGLE
GLOBAL_CNTR = GLOBAL_CNTR + 1
PRINT *, GLOBAL_CNTR

!$OMP END SINGLE

CS 596 11

OpenMP Work-sharing Directives
(continued)

• NOWAIT clause
– Normally threads encounter a barrier

synchronization at end of work-sharing construct
– NOWAIT on END DO/END SECTIONS/END

SINGLE specifies that threads that complete
assigned work can proceed

CS 596 12

OpenMP Combined Directives

• Combined directives
– PARALLEL DO and PARALLEL SECTIONS
– Same as PARALLEL region containing only DO or

SECTIONS work-sharing construct

!$OMP PARALLEL DO
DO I = 1, 100
A(I) = B(I)

END DO

CS 596 13

OpenMP Data Scoping

• Data scoping
– PRIVATE

• Each thread has its own copy of the specified variable
• Variables are undefined after worksharing region

– SHARED
• Threads share a single copy of the specified variable

– DEFAULT
• A default of PRIVATE, SHARED or NONE can be

specified
• No default(private) in C)
• Note that loop counters are always PRIVATE by default;

everything else is SHARED by default

CS 596 14

OpenMP Data Scoping
(continued)

REAL :: A(100), T1, T2
!$OMP PARALLEL DO SHARED(A),

PRIVATE(T1,T2)
DO I = 1, 100
T1 = F(I); T2 = G(I)
A(I) = SQRT(T1**2 + T2**2)

END DO
! Each thread has private copy of T1 & T2
! Threads share A - write to distinct
! elements

CS 596 15

OpenMP Data Scoping
(continued)

• Data scoping (continued)
– REDUCTION

• Each thread has its own copy of the specified
variable

• Can appear only in reduction operation
• All copies are "reduced" back into the original

master thread's variable

CS 596 16

OpenMP Data Scoping
(continued)

SUM = 0
!$OMP PARALLEL DO REDUCTION(+:SUM)

DO I = 1, 100
SUM = SUM + A(I)

END DO
! Each thread's copy of SUM is added
! to original SUM at end of loop

