Miss Rate Reduction Techniques

e There are various miss rate reduction techniques such as
— Larger block size
— Higher associativity
— Hardware prefetching
— Prefetch instructions

« We will discuss compiler optimizations which requires no
hardware changes... the magical reduction comes from optimized
software...hardware designer’ s favorite solution!

e Theincreasing performance gap between processors and main
memory has inspired compiler writers to scrutinize the memory
hierarchy i.e.to look into compile time optimization options

CS5% SAN DIEGO STATE UNIVERSITY 1

How data stored in memory

* |In C datastored row wise in memory; in fortran data stored
column wise in memory

C Fortran
Ar/4/ /> // / //
T iy
y > v iv |V | v

CS5% SAN DIEGO STATE UNIVERSITY

Loop Interchange

o [* before*/
for(j=0;)<100,j=)+1)
for (1 =0;1<5000;1=1+1)
X[110] =2* X[]hT ;
o [* after* /
for(1=0;i<5000;i=1+1)
for(j=0;)<100;)=]+1)
X[=2* X[]h] ;
* Original loop accessed data in non sequential order; changing the

nesting of the loops can make the code access the datain order it
IS stored

« Thistechnique reduces misses by improving spatial locality i.e.
maximized use of data in cache block before it is discarded

e Need to know how data stored in C or fortran

L oop Interchange (cont..)

e Theorigina code would skip through memory in stride of 100
words, you always want stride of 1

* |In C data stored row wise in memory; in fortran data stored
column wise in memory

C fortran
—— 474
Af/4/ = // / //

T iy
prs > v iv |V | v

CS59% SAN DIEGO STATE UNIVERSITY 4

L oop Fusion

e Some programs have separate sections of code that accesses the
same arrays with the same loops and perform different
computations on the common data

e By “fusing” the code into single loop, the data that are fetched
INnto the cache can be used repeatedly before being swapped out

« Thisapproach utilized temporal |ocality principle of cache
design

CS5% SAN DIEGO STATE UNIVERSITY 5

Loop Fusion (cont....)

[* before*/ [* after*/

for (I=0; i<N; 1 = i+1) for (I=0; i<N; 1 = i+1)

for (j=0; j<N;j =j+1) for (j=0; j<N; j =j+1)
Allll] = r

vBlinrcuiil Alllll =

B> Clill] ;

for (i=0; i<N; i =i+1) L L

for (j=0; j<N;j = j+1) _ DiJh] =ANInI +
D[i][i] = A[i][j] + CliI[]

ClIh] }

The original code will take all the missesto accessarray A and C
twice, once in the 13 loop and then again in the 2" |oop. In the fused
loop the 2™ statement freel oads on the cache accesses of the first
statement.

CS5% SAN DIEGO STATE UNIVERSITY 6

Blocking

The most famous of cache optimization
Tried to reduce misses by improving mostly temporal locality

Dealing with multiple arrays where some arrays are accessed by
rows and some by columns

Since both rows and columns are used in every iteration of the
loop storing accessing by rows or columns doesn’'t help (loop
Interchange doesn’t help)

Instead of operating on entire rows or columns of an array,
blocked algorithms operate on submatrices or blocks.

Goal 1sto maximize accesses to the data loaded into the cache
beforeit is replaced

CS5% SAN DIEGO STATE UNIVERSITY !

Blocking (cont...)

| before
doi=1,n
doj=1,n
dok=1,n
X (1)) = X)) + Y(1,k)*Z(k,)
end do

end do
end do

 Thetwo inner loop read all N by N elements of Z
e Accessthe same N elementsinarow of Y repeatedly
e Writeonerow of N elements of X

CS5% SAN DIEGO STATE UNIVERSITY

Blocking (cont...)

X] Y Kk Z]
1 2 3 4 1 2 3 4 1 2 3 4
> >
1 ﬁ
2| — | =»
13 I k
4 v | Y

White empty boxes are not yet touched

Thin arrow means older access

Bold arrow means newer access

If all the datafit in cache (three N X N matrices), there is no problem

Otherwise in worst case there would be (2N + 1) elements read from memory to
calculate one element of X

For N2 element of X, in worst case, there would be (2N2 + N2) read from memory

CS5% SAN DIEGO STATE UNIVERSITY 9

Blocking (cont...)

 To ensure that the elements accessed fit in the cache, the original codeis
changed to compute on asubmatrix of size nB by nB

 Thisisdone by having the loops compute in step size of NB rather than going
from beginning to end of X and Z

| after

doib=1,n,nB

dojb=1,n,nB

dokb=1,n, nB
doi =ib, min(n,ib+nB-1)
doj =jb, min(n,jb+nB-1)
do k = kb, min(n,kb+nB-1)

X(1,)) = X(0,)) + Y(,k)*Z(k,))

end do
end do
end do

end do
end do
end do

CS59% SAN DIEGO STATE UNIVERSITY 10

Blocking (cont...)

X] Y Kk Z J
1 2 3 4 1 2 3 4 . o> 3 4
— — —1 |¢
—> — —> '
J S
Y

White empty boxes are not yet touched

Thin arrow means older access

Bold arrow means newer access

In contrast to before smaller number of elements are accessed

This exploits combination of spatial and temporal locality depending on
fortran (Y tempora and Z spatial) or C (Y spatial and Z temporal)

nB isthe blocking factor

CS 59 SAN DIEGO STATE UNIVERSITY 1

Blocking (cont...)

loop equation : X(i,)) = X(i,)) + Y(i,K)*Z(k,)
first passoveri, j, k :

CS 596

ib=1,4,2
ib=1,4.2
kb =1,4.2
i =1,2
i=1,2
k=1,2

X11=Y11*Z11+Y12* 7221
X12=Y11*Z12+Y 12* 222
X21=Y21*Z11+Y 22721
X22 =Y21*212+Y22* 222

SAN DIEGO STATE UNIVERSITY

12

Blocking (cont...)

loop equation : X(1,)) = X1, + Y(i,K*Z(Kk,))
second passover i, |, K
ib=14.2
jb=14,2
kb=3,4
1=1,2
j=1,2
k=3,4
X11=X11+Y13*Z31+Y14*Z41
X12 = X12 + Y13*Z32+Y 14* 742

X21=X21+Y23*Z31+Y 24~ 741
X22 =X22 + Y23*232+Y 24~ 742

CS5% SAN DIEGO STATE UNIVERSITY 13

Blocking (cont...)

o Continue blocking algorithm....

CS5% SAN DIEGO STATE UNIVERSITY

14

