
CS 596 1

Miss Rate Reduction Techniques
• There are various miss rate reduction techniques such as

– Larger block size
– Higher associativity
– Hardware prefetching
– Prefetch instructions

• We will discuss compiler optimizations which requires no
hardware changes… the magical reduction comes from optimized
software…hardware designer’s favorite solution!

• The increasing performance gap between processors and main
memory has inspired compiler writers to scrutinize the memory
hierarchy i.e.to look into compile time optimization options

CS 596 2

How data stored in memory

• In C data stored row wise in memory; in fortran data stored
column wise in memory

C Fortran

CS 596 3

Loop Interchange
• /* before */

for (j = 0; j < 100, j = j + 1)
for (i = 0; i <5000; i = i +1)

X[i][j] = 2* X[i][j] ;
• /* after* /

for (i = 0; i < 5000 ; i = i + 1)
for (j = 0; j < 100 ; j = j +1)

X[i][j] = 2* X[i][j] ;
• Original loop accessed data in non sequential order; changing the

nesting of the loops can make the code access the data in order it
is stored

• This technique reduces misses by improving spatial locality i.e.
maximized use of data in cache block before it is discarded

• Need to know how data stored in C or fortran

CS 596 4

Loop Interchange (cont..)
• The original code would skip through memory in stride of 100

words; you always want stride of 1
• In C data stored row wise in memory; in fortran data stored

column wise in memory

C fortran

CS 596 5

Loop Fusion

• Some programs have separate sections of code that accesses the
same arrays with the same loops and perform different
computations on the common data

• By “fusing” the code into single loop, the data that are fetched
into the cache can be used repeatedly before being swapped out

• This approach utilized temporal locality principle of cache
design

CS 596 6

The original code will take all the misses to access array A and C
twice, once in the 1st loop and then again in the 2nd loop. In the fused
loop the 2nd statement freeloads on the cache accesses of the first
statement.

/*before*/
for (i=0; i<N; i = i+1)
for (j=0; j<N; j = j+1)

A[i][j] =
1/B[i][j]*C[i][j] ;

for (i=0; i<N; i = i+1)
for (j=0; j<N; j = j+1)

D[i][j] = A[i][j] +
C[i][j] ;

/*after*/
for (i=0; i<N; i = i+1)
for (j=0; j<N; j = j+1)
{

A[i][j] =
1/B[i][j]*C[i][j] ;

D[i][j] = A[i][j] +
C[i][j] ;
}

Loop Fusion (cont….)

CS 596 7

Blocking

• The most famous of cache optimization
• Tried to reduce misses by improving mostly temporal locality
• Dealing with multiple arrays where some arrays are accessed by

rows and some by columns
• Since both rows and columns are used in every iteration of the

loop storing accessing by rows or columns doesn’t help (loop
interchange doesn’t help)

• Instead of operating on entire rows or columns of an array,
blocked algorithms operate on submatrices or blocks.

• Goal is to maximize accesses to the data loaded into the cache
before it is replaced

CS 596 8

! before
do i = 1,n
do j = 1, n
do k = 1,n

X(i,j) = X(i,j) + Y(i,k)*Z(k,j)
end do
end do
end do

• The two inner loop read all N by N elements of Z
• Access the same N elements in a row of Y repeatedly
• Write one row of N elements of X

Blocking (cont…)

CS 596 9

X j Y k Z j

• White empty boxes are not yet touched
• Thin arrow means older access
• Bold arrow means newer access
• If all the data fit in cache (three N X N matrices), there is no problem
• Otherwise in worst case there would be (2N + 1) elements read from memory to

calculate one element of X
• For N2 element of X, in worst case, there would be (2N3 + N2) read from memory

i i k

1 2 3 4 1 2 3 4 1 2 3 4

1
2
3
4

Blocking (cont…)

CS 596 10

• To ensure that the elements accessed fit in the cache, the original code is
changed to compute on a submatrix of size nB by nB

• This is done by having the loops compute in step size of nB rather than going
from beginning to end of X and Z

!after
do ib = 1, n, nB
do jb = 1, n, nB
do kb = 1,n, nB

do i = ib, min(n,ib+nB-1)
do j = jb, min(n,jb+nB-1)
do k = kb, min(n,kb+nB-1)

X(i,j) = X(i,j) + Y(i,k)*Z(k,j)
end do
end do
end do

end do
end do
end do

Blocking (cont…)

CS 596 11

X j Y k Z j
1 2 3 4

• White empty boxes are not yet touched
• Thin arrow means older access
• Bold arrow means newer access
• In contrast to before smaller number of elements are accessed
• This exploits combination of spatial and temporal locality depending on

fortran (Y temporal and Z spatial) or C (Y spatial and Z temporal)
• nB is the blocking factor

i j k

1 2 3 4 1 2 3 4

Blocking (cont…)

CS 596 12

Blocking (cont…)

loop equation : X(i,j) = X(i,j) + Y(i,k)*Z(k,j)
first pass over i, j, k :

ib = 1,4,2
jb = 1,4,2
kb = 1,4,2
i = 1,2
j=1,2
k=1,2

X11 = Y11*Z11+Y12*Z21
X12 = Y11*Z12+Y12*Z22
X21 = Y21*Z11+Y22*Z21
X22 = Y21*Z12+Y22*Z22

CS 596 13

loop equation : X(i,j) = X(i,j) + Y(i,k)*Z(k,j)
second pass over i, j, k :

ib = 1,4,2
jb = 1,4,2
kb = 3, 4
i = 1,2
j=1,2
k=3,4
X11 = X11 + Y13*Z31+Y14*Z41
X12 = X12 + Y13*Z32+Y14*Z42
X21 = X21 + Y23*Z31+Y24*Z41
X22 = X22 + Y23*Z32+Y24*Z42

Blocking (cont…)

CS 596 14

• Continue blocking algorithm….

Blocking (cont…)

