
CS 596 1

Interconnects

• Shared address space and message passing computers 
can be constructed by connecting processors and memory 
unit using a variety of interconnection network

• Dynamic/Indirect networks:
– cross bar
– bus based

• Static/Direct networks:
– completely connected
– star connected
– linear array
– ring
– mesh 
– hypercube



CS 596 2

More on Interconnects

• Dynamic Interconnect: Communication links are 
connected to one another dynamically by the 
switching elements to establish path among 
processors and memory banks. Normally used for 
share memory address space computers.

• Static/Direct Interconnect : Consists of point to 
point communication links among processors. 
Typically used for message passing computers.



CS 596 3

Dynamic Interconnect

• Cross bar switching : p processors, m memory banks

M1 M2       Mm

P1

P2

Pp

. . .

.
Switch element



CS 596 4

Dynamic Interconnect

• Cross Bar switch is a non blocking network i.e. 
connection of a processor to a memory bank 
does not block the connection of any other 
processor to any other memory bank.

Total # of switching elements required is 
f(p*m) = approx f(p*p) (assuming p = m)

As p   complexity of switching network f(p*p) 

Cross bar switches are not scalable in terms of 
cost.



CS 596 5

Dynamic Interconnect

• Bus based network: Processors are connected to 
global memory by means of a common data path 
called a bus.

Global Memory

BUS

P P P



CS 596 6

Dynamic Interconnect

• Bus based network 
• Simplicity of construction
• Provides uniform access to shared memory
• Bus can carry limited amount of data between the 

memory and processors
• As the number of processors increases each 

processor spends more time waiting for memory 
access while the bus is used by other processor



CS 596 7

Static Interconnect

• Completely Connected : Each processor has direct 
communication link to every other processor

• Star Connected Network : The middle processor is the 
central processor. Every other processor is connected to it. 
Counter part of Cross Bar switch in Dynamic interconnect. 



CS 596 8

Static Interconnect

• Linear Array : 
• Ring :

• Mesh Network :



CS 596 9

Static Interconnect

• Torus or Wraparound Mesh :



CS 596 10

Static Interconnect

• Hypercube Network : A multidimensional mesh of 
processors with exactly two processors in each dimension. A 
d dimensional processor consists of  

p = 2d processors
shown below are 0, 1, 2, and 3 dimensional hypercubes

0-D    1-D       2-D                 3-D       hypercubes



CS 596 11

More on Static Interconnects

• Diameter : Maximum distance between any two processors 
in the network. (the distance between two processors is 
defined as the shortest path, in terms of links, between 
them). This relates to communication time. Diameter for 
completely connected network is 1, for star network is 2, for 
ring is p/2 (for p even processors)

• Connectivity: This is a measure of the multiplicity of paths 
between any two processors (# arcs that must be removed 
to break into two). High connectivity is desired since it 
lowers contention for communication resources. 
Connectivity is 1 for linear array, 1 for star, 2 for ring, 2 for 
mesh, 4 for torus.



CS 596 12

More on Static Interconnects

• Bisection width: Minimum # of communication links that 
have to be removed to partition the network into two equal 
halves. Bisection width is 2 for ring, sq. root(p) for mesh with
p (even) processors, p/2 for hypercube, (p*p)/4 for 
completely connected (p even).

• Channel width: # of bits that can be communicated 
simultaneously over a link connecting 2 processors

• Channel rate: Peak rate at which a single physical wire link 
can deliver bits

• Channel BW : (channel width) * (channel rate)
• Bisection BW : (bisection width) * (channel BW)



CS 596 13

Communication Time Modeling

• Tcomm = Nmsg * Tmsg

Nmsg = # of non overlapping messages
Tmsg = time for one point to point communication

L = length of message ( for e.g in words)
Tmsg = ts + tw * L

latency = ts = startup time (size independent)
tw = asymptotic time per word (1/BW)



CS 596 14

Performance and Scalability Terms

• Serial runtime(Ts): Time elapsed between the begining
and the end of execution of a sequential program

• Parallel runtime(Tn): Time that elapses from the moment 
that a parallel computer starts to execute to the moment 
that the last processor finishes execution.

• Speedup(S): Ratio of the serial runtime of the best 
sequential algorithm for solving a problem to the time taken 
by the parallel algorithm to solve the same problem on N 
processors. 
Ts = serial time
Tn = parallel time on N processors
S = Ts/Tn



CS 596 15

Performance and Scalability Terms

• Efficiency: Measure of the fraction of time for which a 
processor is usefully employed. Defined as the ratio of 
speedup to the number of processor. E = S/N

• Amdahl’s law : discussed before
• Scalability : An algorithm is scalable if the level of 

parallelism increases at least linearly with the problem size. 
An architecture is scalable if it continues to yield the same 
performance per processor, albeit used on a larger problem 
size, as the # of processors increases. Algorithm and 
architecture scalability are important since they allow a user 
to solve larger problems in the same amount of time by 
buying a parallel computer with more processors.



CS 596 16

Performance and Scalability Terms

• Superlinear speedup: In practice a speedup greater than N 
(on N processors) is called superlinear speedup. This is 
observed due to 
1. Non optimal sequential algorithm
2. Sequential problem may not fit in one processor’s main   
memory and require slow secondary storage, whereas on 
multiple processors problem fits in main memory of N 
processors



CS 596 17

Sources of Parallel Overhead

• Interprocessor communication: Time to transfer data 
between processors is usually the most significant source of 
parallel processing overhead.

• Load imbalance: In some parallel applications it is 
impossible to equally distribute the subtask workload to 
each processor. So at some point all but one processor 
might be done and waiting for one processor to complete.

• Extra computation: Sometime the best sequential 
algorithm is not easily parallizable and one is forced to use a 
parallel algorithm based on a poorer but easily parallizable 
sequential algorithm. Sometimes repeatative work is done 
on each of the N processors instead of send/recv, which 
leads to extra computation.


