
CS 596 1

Programming Parallel Computers

• Programming single-processor systems is
(relatively) easy due to:
– single thread of execution
– single address space

• Programming for shared memory systems can be
benefit from the single address space

• Programming for distributed memory systems is
the most difficult to due multiple address spaces
and need to access remote data

CS 596 2

• Both parallel systems (shared memory and
distributed memory) offer ability to perform
independent operations on different data (MIMD)
and implement task parallelism

• Both can be programmed in a data parallel, SIMD
fashion

CS 596 3

Single Program, Multiple Data (SPMD)

• SPMD: dominant programming model for shared
and distributed memory machines.
– One source code is written
– Code can have conditional execution based on

which processor is executing the copy
– All copies of code are started simultaneously and

communicate and synch with each other
periodically

• MPMD: more general, and possible in hardware,
but no system/programming software enables it

CS 596 4

SPMD Programming Model

Processor 0 Processor 1 Processor 2 Processor 3

source.c

source.c source.c source.c source.c

CS 596 5

Shared Memory vs. Distributed Memory

• Tools can be developed to make any system
appear to look like a different kind of system
– distributed memory systems can be programmed

as if they have shared memory, and vice versa
– such tools do not produce the most efficient code,

but might enable portability

• HOWEVER, the most natural way to program any
machine is to use tools & languages that express
the algorithm explicitly for the architecture.

CS 596 6

Shared Memory Programming: OpenMP

• Shared memory systems (SMPs, cc-NUMAs) have
a single address space:
– applications can be developed in which loop

iterations (with no dependencies) are executed by
different processors

– shared memory codes are mostly data parallel,
‘SIMD’ kinds of codes

– OpenMP is the new standard for shared memory
programming (compiler directives)

– Vendors offer native compiler directives

CS 596 7

Accessing Shared Variables

• If multiple processors want to write to a shared
variable at the same time there may be conflicts :

Process 1 and 2
1) read X
2) compute X+1
3) write X

• Programmer, language, and/or architecture must
provide ways of resolving conflicts

Shared variable X
in memory

X+1 in
proc1

X+1 in
proc2

CS 596 8

OpenMP Example #1: Parallel loop

!$OMP PARALLEL DO

do i=1,128

b(i) = a(i) + c(i)

end do

!$OMP END PARALLEL DO

• The first directive specifies that the loop immediately
following should be executed in parallel. The second
directive specifies the end of the parallel section (optional).

• For codes that spend the majority of their time executing
the content of simple loops, the PARALLEL DO directive
can result in significant parallel performance.

CS 596 9

OpenMP Example #2; Private variables

!$OMP PARALLEL DO SHARED(A,B,C,N)
PRIVATE(I,TEMP)

do I=1,N

TEMP = A(I)/B(I)

C(I) = TEMP + SQRT(TEMP)

end do

!$OMP END PARALLEL DO

• In this loop, each processor needs its own private
copy of the variable TEMP. If TEMP were shared,
the result would be unpredictable since multiple
processors would be writing to the same memory
location.

CS 596 10

OpenMP Example #3: Reduction variables

ASUM = 0.0

APROD = 1.0

!$OMP PARALLEL DO REDUCTION(+:ASUM)

REDUCTION(*:APROD)

do I=1,n

ASUM = ASUM + A(I)

APROD = APROD * A(I)

enddo

!$OMP END PARALLEL DO

• Variables used in collective operations over the
elements of an array can be labeled as
REDUCTION variables.

CS 596 11

• Each processor has its own copy of ASUM and APROD.
After the parallel work is finished, the master processor
collects the values generated by each processor and
performs global reduction.

• More on OpenMP coming in a few weeks...

CS 596 12

Distributed Memory Programming: MPI

• Distributed memory systems have separate
address spaces for each processor
– Local memory accessed faster than remote

memory
– Data must be manually decomposed
– MPI is the new standard for distributed memory

programming (library of subprogram calls)
– Older message passing libraries include PVM and

P4; all vendors have native libraries such as
SHMEM (T3E) and LAPI (IBM)

CS 596 13

MPI Example #1

• Every MPI program needs these:
#include <mpi.h> /* the mpi include file */
/* Initialize MPI */
ierr=MPI_Init(&argc, &argv);

/* How many total PEs are there */
ierr=MPI_Comm_size(MPI_COMM_WORLD, &nPEs);

/* What node am I (what is my rank? */
ierr=MPI_Comm_rank(MPI_COMM_WORLD, &iam);
...
ierr=MPI_Finalize();

CS 596 14

MPI Example #2

#include
#include "mpi.h”

int main(argc,argv)
int argc;
char *argv[];
{

int myid, numprocs;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
/* print out my rank and this run's PE size*/
printf("Hello from %d\n",myid);
printf("Numprocs is %d\n",numprocs);
MPI_Finalize();

}

CS 596 15

MPI: Sends and Receives

• Real MPI programs must send and receive data
between the processors (communication)

• The most basic calls in MPI (besides the three
initialization and one finalization calls) are:
– MPI_Send
– MPI_Recv

• These calls are blocking: the source processor
issuing the send/receive cannot move to the next
statement until the target processor issues the
matching receive/send.

CS 596 16

Message Passing Communication

• Processes in message passing program
communicate by passing messages

• Basic message passing primitives
• Send (parameters list)
• Receive (parameter list)
• Parameters depend on the library used

A B

CS 596 17

Flavors of message passing

• Synchronous used for routines that return when the
message transfer is complete

• Synchronous send waits until the complete message
can be accepted by the receiving process before
sending the message (send suspends until receive)

• Synchronous receive will wait until the message it is
expecting arrives (receive suspends until message sent)

• Also called blocking

CS 596 18

Nonblocking message passing

• Nonblocking sends (or receive) return whether or not
the message has been received (sent)

• If receiving processor is not ready, message may wait in
a buffer

A Bbuffer

CS 596 19

MPI Example #3: Send/Receive

#include "mpi.h"
/**
This is a simple send/receive program in MPI
**/
int main(argc,argv)
int argc;
char *argv[];
{

int myid, numprocs, tag,source,destination,count,buffer ;
MPI_Status status;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
tag=1234;
source=0;
destination=1;
count=1;
if(myid == source){

buffer=5678;
MPI_Send(&buffer,count,MPI_INT,destination,tag,MPI_COMM_WORLD);
printf("processor %d sent %d\n",myid,buffer);

}
if(myid == destination){

MPI_Recv(&buffer,count,MPI_INT,source,tag,MPI_COMM_WORLD,&status);
printf("processor %d got %d\n",myid,buffer);

}
MPI_Finalize();

}

CS 596 20

• More on MPI coming in several weeks...

CS 596 21

Programming Multi-tiered Systems

• Systems with multiple shared memory nodes are
becoming common for reasons of economics and
engineering.

• Memory is shared at the node level, distributed
above that:
– Applications can be written using OpenMP + MPI
– Developing apps with MPI only might be possible

