
CS 596 1

Uniform memory access (UMA)
Each processor has uniform access time
to memory - also known as
symmetric multiprocessors (SMPs)
(example: SUN ES1000)

Non-uniform memory access (NUMA)
Time for memory access depends on 
location of data; also known as Distributed 
Shared memory machines. Local access is faster 
than non-local access. Easier to scale
than SMPs (example: SGI Origin 2000)

P P P P

BUS
Memory

Shared Memory: UMA and NUMA

P P P P
BUS

Memory

Network

P P P P
BUS

Memory



CS 596 2

SMPs: Memory Access Problems

• Conventional wisdom is that systems do not 
scale well
– Bus based systems can become saturated
– Fast large crossbars are expensive



CS 596 3

SMPs: Memory Access Problems

• Cache Coherence : When a processor modifies a shared 
variable in local cache, different processors have different value 
of the variable. Several mechanism have been developed for 
handling the cache coherence problem

• Cache coherence problem
– Copies of a variable can be present in multiple caches
– A write by one processor my not become visible to others
– They'll keep accessing stale value in their caches
– Need to take actions to ensure visibility or cache coherence



CS 596 4

I/O devices

Memory

P1

$ $ $

P2 P3

1
2

34 5

u = ?u = ?

u:5

u:5

u:5

u = 7

Cache Coherence Problem

• Processors see different values for u after event 3
• With write back caches, value written back to memory 

depends on circumstance of which cache flushes or writes 
back value when

• Processes accessing main memory may see very stale 
value

• Unacceptable to programs, and frequent!



CS 596 5

Snooping-Based Coherence

• Basic idea:
– Transactions on memory are visible to all processors
– Processor or their representatives can snoop (monitor) 

bus and take action on relevant events
• Implementation 

– When a processor writes a value a signal is sent over the 
bus 

– Signal is either
• Write invalidate - tell others cached value is invalid 

and then update
• Write broadcast/update - tell others the new value 

continuously as it is updated



CS 596 6

SMP Machines

• Various Suns such as the E10000/HPC10000
• Various Intel and Alpha servers
• Crays: T90, J90, SV1



CS 596 7

“Distributed-shared” Memory (cc-NUMA)

• Consists of N processors and a global address 
space
– All processors can see all memory
– Each processor has some amount of local memory
– Access to the memory of other processors is slower
– Cache coherence (‘cc’) must be maintained across the 

network as well as within nodes
• NonUniform Memory Access

P P P P
BUS

Memory

Network

P P P P
BUS

Memory



CS 596 8

cc-NUMA Memory Issues

• Easier to build with same number of processors 
because of slower access to remote memory 
(crossbars/buses can be less expensive than if all 
processors are in an SMP box)

• Possible to created much larger shared memory 
system than in SMP

• Similar cache problems as SMPs, but coherence 
must be also enforced across network now!

• Code writers should be aware of data distribution
– Load balance
– Minimize access of "far" memory



CS 596 9

cc-NUMA Machines

• SGI Origin 2000
• HP X2000, V2500



CS 596 10

Distributed Memory

• Each of N processors has its own memory
• Memory is not shared
• Communication occurs using messages 

– Communication networks/interconnects
• Custom

– Many manufacturers offer custom interconnects
• Off the shelf

– Ethernet
– ATM
– HIPI
– FIBER Channel
– FDDI

M

P

M

P

M

P

M

P

M

P

M

P

Network



CS 596 11

Types of Distributed Memory Machine 
Interconnects

• Fully connected
• Array and torus

– Paragon
– T3E

• Crossbar
– IBM SP 
– Sun HPC10000

• Hypercube
– Ncube

• Fat Trees
– Meiko CS-2



CS 596 12

Multi-tiered/Hybrid Machines

• Clustered SMP nodes (‘CLUMPS’): SMPs or even 
cc-NUMAs connected by an interconnect network

• Examples systems
– All new IBM SP
– Sun HPC10000s using multiple nodes
– SGI Origin 2000s when linked together
– HP Exemplar using multiple nodes
– SGI SV1 using multiple nodes



CS 596 13

Reasons for Each System

• SMPs: easy to build, easy to program, good price-
performance for small numbers of processors; predictable 
performance due to UMA

• cc-NUMAs (Distributed Shared memory machines) : 
enables larger number of processors and shared memory 
address space than SMPs while still being easy to program, 
but harder and more expensive to build

• Distributed memory MPPs and clusters: easy to build and 
to scale to large numbers or processors, but hard to 
program and to achieve good performance

• Multi-tiered/hybrid/CLUMPS: combines bests (worsts?) of 
all worlds… but maximum scalability!


