CS 505 MPI HW

Due date : March 27, 5pm (you can email the HW answer)

Due date changed to March, 29, 5pm (via email only to majumdar@sdsc.edu)

Project : You will develop a parallel MPI code for matrix multiply i.e. C = A * B where A, B, and C a re N X N matrices. You will follow the approach outlined below. This algorithm only needs MPI_Send() and MPI_Recv() for communication.

Algorithm : This is a master-worker algorithm. If there are NP processors then one of them is master and the other (i.e (NP-1) ) processors are workers. Master processor has the matrices A and B.

Master initializes matrices A and B with some double precision values. (Remember in Fortran a matrix is stored column wise and in C a matrix is stored row wise, hence the Fortran and C algorithm will be different)

C algorithm : Master sends the whole matrix B and appropriate rows of A to workers. Each worker does its part of matrix multiply and sends the partial C back to master. Master puts the whole C matrix together.

C hint: Master needs to find # of rows of A to be sent to workers. Master needs to let workers know how many and which particular rows each worker is receiving.

To do this master needs to send 4 messages to all workers :

i.starting location of rows of A each worker is receiving

ii. # of rows of A each worker is receiving

iii. matrix B

iv. rows of A each processor is receiving 

The above 4 messages can be sent in a for loop (across number of workers) by master where the for loop indices are the destination processors. Within the for loop “starting location of rows of A each worker is receiving” can be updated.

The workers receive the above 4 messages and do their part of matrix multiplication. All the workers store results in C starting in (0,0) location.

Workers send the following 3 messages to master :

i.starting location of rows of C where each worker’s partial C will be stored

ii. # of rows each worker is sending to master

iii. partial C

The master receives in a for loop (across workers) :

i.starting location of rows of C

ii. numbers of rows of C being received

iii. partial C from each worker and stores it in correct location to recreate whole C

The for loop indices are the source processors in above receives.

Fortran algorithm : Master sends the whole matrix A and appropriate columns of B to workers. Each worker does its part of matrix multiply and sends the partial C back to master. Master puts the whole C matrix together.

Fortran hint: Master needs to find # of columns of B to be sent to workers. Master needs to let workers know how many and which particular columns each worker is receiving.

To do this master needs to send 4 messages to all workers :

i.starting location of columns of B each worker is receiving

ii. # of columns of B each worker is receiving

iii. matrix A

iv. columns of B each processor is receiving 

The above 4 messages can be sent in a do loop (across number of workers) by master where the do loop indices are the destination processors. Within the do loop “starting location of columns of B each worker is receiving” can be updated.

The workers receive the above 4 messages and do their part of matrix multiplication. All the workers store results in C starting in (1,1) location.

Workers send the following 3 messages to master :

i.starting location of columns of C where each worker’s partial C will be stored

ii. # of columns each worker is sending to master

iii. partial C

The master receives in a do loop (across workers) :

i.starting location of columns of C

ii. numbers of columns of C being received

iii. partial C from each worker and stores it in correct location to recreate whole C

The do loop indices are the source processors in above receives.

How to time code :

C:
 { double to, t1 ;

    Initial three MPI calls
    in master :
    to = MPI_Wtime( ) ;

    Code
    t1 = MPI_Wtime( ) ;

   Printf("Time %f in sec\n", t1 - t0) ;

Fortran :
double precision  t0, t1
initial three mpi calls

In master :

  t0 = MPI_Wtime( )

  Code 

  t1 = MPI_Wtime( )

print*, 'Time in sec =', t1 -t0, 'sec'

How to compile :

ultra% tmcc -lmpi Ccode.c -o Ccode ( or tmf77/tmf90 -lmpi fortcode.f -o fortcode)

How to run interactively :

ultra% bsub -q hpc -m ultra -I -n 2(or 3 or 5) Ccode

For 9 processor case write the following script in a file called say myscript:

#!/bin/csh

#BSUB -q express

#BSUB -o output.file

#BSUB -e error.file

#BSUB -n 9

#BSUB -m ultra

pam Ccode

and then submit myscript as follows :

ultra% bsub < myscript

What you need to email in :

1. Copy of the parallel code (this code should not be more than few pages).

2. For NP=3 and N=4 run the parallel code and print out values of A, B, and C to make sure the parallel coding is correct i.e. you get correct matrix multiply result; compare to actual correct multiplication result for this case. For the part 3 turn off all the print statements.

3. Timing results for N = 1000 on 2, 3, 5, 9 processors. For 2, 3, and 5 processor case you can run interactively on the hpc queue. Write a bsub script and run on the express queue for the 9 processors case (since hpc queue has maximum processor limit of 8 processors). 

