
Function Rewriting for Query Optimization–A Demonstration

Simone Santini
National Center for Biomedical Research

ssantini@ncmir.ucsd.edu

Amarnath Gupta
San Diego Supercomputer Center

gupta@sdsc.edu

University of California San Diego

1 Introduction
Many modern databases areextensible, in the sense that
they allow the user (or, more often, the database program-
mer) to define new data types and the algebras that operate
on them [1, 2]. The data types created by the program-
mer are often defined asobjects(in the programming lan-
guage sense of the word) and the functions of their algebras
are expressed using a suitable procedural programming lan-
guage.

From the point of view of the database, in particular
from that of the query optimzer, any function defined for a
data type created by a programmer isopaquethat is, the op-
timizer can’t access anything other than the function name
and its signature.

Complex data types such as images, time series, vol-
umes, or other geometric data have often a composite struc-
ture and contain, as part of their definition, other data types
that provide (partial)representationsof the principal data
type. The functions defined for the principal data type are
often implemented in terms of the algebras of the data types
that represent it. In another paper ([3]) we argued in favor
of making this dependence explicit, so that the query opti-
mizer can take advantage of it and to rewrite the functions
and the conditions that are part of a query. Before continu-
ing this argument, however, we should like to introduce an
example to help us put the discussion on solid ground.

1.1 Our recurring example

Consider a data type containing image descriptions that
we will call, quite unsurprisingly,image . In our data
type, there are two ways of describing an image: with
a block color histogramand with a set ofregions. The
block histogram divides the images in a number of rectan-
gular regions arranged in a grid and, for each one of them,
computes a color histogram (see figure 1). Structurally,

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

Figure 1: Block color histogram

image

block
histogram

region
set

setarray

1

1
1

1

1

1

1

1
1

1

1

histogram region
n

n

n

label:string

polygon

point

feature
(stub)

Figure 2: Theimage data type.

this description is an array ofM × N objects of type
histogram . The color histograms have, of course, their
own algebras, including a functionsim that measures the
similarity of two histograms.

The second descriptor is a set of regions, obtained by
applying some suitable segmentation algorithms whose de-
tails are of no concern for this paper. Each region has a
boundary (represented by a polygon), a name (which is a
string), and some descriptor of the image characteristics
inside the region. For our examples, we don’t need to spec-
ify what the region descriptors are, except to point out that
they do not include color. The structure of the data type is
shown in figure 2 using a standard graphical notation for
class hierarchies.

Abstracting from the implementation details, each data
type is defined trough its algebra and, in general, functions
defined in a data type make use of functions defined for its
components. Table 1 reports the functions defined on the
various data types that we will use in the following exam-
ples.

Type Operation Description
Image colorsim(I, l, c) Similarity degree between the region labeledl of id I

and the color distribution (or color)c
getregions(I) Returns the set of labels of the regions of imageI
area(I, l) Computes the area of the region labeledl in imageI
gethist(I) returns the histogram associated to an image.

region poly(r) Returns the polygon defining the border of a region.
histogram count(h) Adds up all the entries in a histogram.

cut(h, p) Cuts the histogram, returning a histogram relative to
the inside of the polygonp.

sim(h, c) Returns a measure of the similarity between a his-
togram and a color

polygon parea(p) measures the area inside a polygon.

Table 1: Operations defined for the image data type and for its sub-types.

A parenthetical observation should be made about the
functioncut . The histogram that describe the contents of
each block do not preserve any spatial information. Con-
sequently, it is impossible to “cut” a block histogram with
a polygon (which means, in practice, to compute the his-
togram of the interior of the polygon) unless the polygon is
contained in the grid boundaries, which is usually not the
case. Therefore, an histogram that derives from the “cut”
function is only an approximation of the true histogram of
the interior of the polygon, and this circumstance will in-
troduce errors in the query results.

Here, however, we will not consider this aspect of a rep-
resentation, and we will always assumethat the functions
are exact.

To give a flavor of how rewriting will be used, consider
the following query on a database containing image data
types:

select I
from imagetable
where count(select R from R in

getregions(I) where P(R)) > 3
and
sum(select area(R) from R in

getregions(I) where P(R)) > 45

This query asks for all images in which there are at least
three regions that satisfy the predicateP with a total area
of at least 45. One of the properties of the functioncount
is that it depends only on the number of elements in a set,
and not on their nature. Thanks to this observation, the first
condition can be rewritten as

count(select area(R) from R in
getregions(I) where P(R)) > 3

Now the internal select is the same for the two condi-
tions, and we can devise a query plan that takes advantage
of this fact to re-use some of the work already done for one
condition, applying it to the other.

2 A Function Algebra
If we want to allow the kind of rewriting that we are con-
sidering in this paper, it is necessary to declare explicitly to
the optimizer the definitions of the functions of all the prin-
cipal data types defined by the programmer (image, in this
example) in terms of functions on its constituents (block
histograms and region sets in the example). In other words,
we need afunction algebrato define our functions. Once
the function algebra is available, we can use it to support
rewriting rules. This demonstration is based on the func-
tion algebra defined in [3], whose operations are shown in
figure 2 together with the programming constructs to which
they give rise. Monoid homorphisms are, in essence, a
form of strustural recursion and are described elsewhere
[4, 5]. Primitive recursion is defined as:{

�(f, g)(0, x) = f(x)
�(f, g)(n + 1, x) = g(x,�(f, g)(n, x)) (1)

These operations are used to define rewriting rules. The
algebraic aspects of these rules is considered in [3]. Here,
we will describe only the language based on this algebra by
which the rules are specified.

3 Function algebra language
The language defined in this section specifies the rewriting
rulesthat the query rewriter is allowed to use. In addition
to the rules specified in this manner, there are a number
of general rules that depend only on the properties of the
function algebra and that apply to all functions. Examples
of such rules are the distributivity of the conditional

if(P ◦ v, u ◦ f ◦ v, u ◦ g ◦ v) ≡ u ◦ if(P, f, g) ◦ v (2)

and the duplicate elimination in the cartesian composition

〈〈f, g〉, g〉 ≡ 〈f × id, π2〉 ◦ 〈id, g〉 (3)

whereπ2 is the projection function defined asπ2(x, y) = y.
Some of theseunconditionalrewriting rules are reported in
table 3. They are built into the optimizer and the program-
mer doesn’t have to specify them.

Operation Definition Description Programming
f ◦ g (f ◦ g)(x) = f(g(x)) Function Composition @
〈f, g〉 〈f, g〉(x) = (f(x), g(x)) cartesian composition comp
f × g (f × g)(x, y) = (f(x), g(y)) cartesian product (_, _)
[⊕,⊗](f) (see text) monoid homomorphism h(op1, op2)(f)
�(n, f, g) (see text) primitive recursion nrec(n, f, g)
if(P, f, g) if P thenf elseg conditional function if(P, f, g)

Table 2: Operators of the function algebra.

(f ◦ g) ◦ h ≡ f ◦ (g ◦ h) Associativity of composition
〈f ◦ h, g ◦ h〉 ≡ 〈f, g〉 ◦ h Distributivity of composition and cartesian composi-

tion
(f ◦ h× g ◦ h) ≡ (f × g) ◦ h Distributivity of composition and cartesian product

[⊕,⊗](f ◦ g) ≡ [⊕,�](f) ◦ [�,⊗](g) Associativity of homomorphism
if(P, f ◦ g, h ◦ g) ≡ if(P, f, h) ◦ g Distributivity of “if”

if(P, g ◦ f, g ◦ h) ≡ g ◦ if(P, f, h) ◦ g Distributivity of “if”
〈〈f, g〉, g〉 ≡ 〈f × id, π2〉 ◦ 〈id, g〉 Duplicate elimination in the composition

Table 3: Unconditional rewrite rules. In the homomorphism associativity,� is any collection monoid such that⊕ � � and
� � ⊗ (see [3]).

A functional specification is composed of four blocks:
a declarationblock, adefinitionblock, aninferenceblock,
and arewriting block. The declaration block contains the
signatures of the functions that are implicated in the rewrit-
ing; the definition block contains the definitions of quan-
tities and functions used in the body of the specification
(a sort of “macro” block, akin to a bunch of C language
“#define” statements); the inference block contains logical
propositions and inference rules (in a Prolog-style notation)
about function properties; the rewriting block contains the
actual rewriting rules. Consider the following fragment of
specification:

declare:
colorsim : image, string, color -> float;
label : region -> string;
sim : histogram, color -> float;
area : image, string -> float;
hcount : histogram -> float;
cut : histogram, poly -> histogram;
gethist : image -> histogram;
poly : region -> polygon;
parea : polygon -> float;

let
s = flatten @

\(y, z).([set, set]
(\x.((eq @ (id, label)))

(x, y)(z)));
in

inference:
the inference block is empty
in this case

rewrite:
colorsim = sim @ cut @

comb(gethist@proj(1), poly @ s);
area = count @ cut @

comb(gethist@proj(1), poly @ s);

area = parea @ polygon @ s;
end.

The definition of the function�s is complicate but, essen-
tially, s takes the set of regions of an image and a string,
and returns the region in the set whose label matches the
string, if any. Note the syntax\x.e for λ-expressions. The
rules section expands two functions defined for the image
data type into their constituents. The function�proj(1) is the
projectionπ1, and is defined asproj(1)(x, y) = x .

Expanding these functions in their constituents high-
lighted the fact that some of them have operations in com-
mon, a fact that can be put to good use in query rewriting.
The specification also tells us that the function�area can be
computed in two different ways. The choice of which ex-
pansion should be used is left to the optimizer, and depends
on the complete expression of the query of which the func-
tion is part.

The optimization of the example in the previous section
requires a little more attention. The fact thatcount(A)
doesn’t change if we apply a functionf to all the elements
of A is true if A is a bag, but not necessarily ifA is a set.
Let A = {1,−1}, andf(x) = x2, then the property would
give us

2 = count({1,−1}) = count({f(1), f(−1)}) =
count({1}) = 1 (4)

The property can be proven if the functionf is injective or
if the monoid that generates the collection is not idempo-
tent (see [3], where this example is generalized to a whole
class of functions of whichcount is an example). The
functional specification for this property ofcount is the
following:

declare:
count : M -> int;
label : region -> string;
area : image, string -> float;

inference:
is_inj(label);
is_inj(comp(F,G)) :- is_inj(F);
is_inj(comp(F,G)) :- is_inj(G);
is_inj((F, G)) :- is_inj(F), is_inj(G);
idemp(set);

rewrite:
(not (idemp(M)) or is_inj(F)) ::-

count = count @ [M,M](F)
end.

The inference block here declares that the function “la-
bel” is injective and, in addition, states some rules of inje-
civity, such as the fact that〈f, g〉 is injective if eitherf or
g is, and thatf × g is injective is bothf andg are. Finally,
the rule states that if the monoid to which count is applied
(the variableM) is not idempotent, or if the functionF is in-
jective, thencount can be composed with an application
of F to each element of a structure. Note the symbol::-
which indicates a conditional rule: the rule on the left hand
side can be invoked only if the condition on the right hand
side is verified.

4 The Demo

The demo will show a working example of the functional
rewriting system outlined in this paper, mainly using the
image data type example to which we made reference here.
For the purpose of the demonstration, the query rewriter
will be connected to a database containing images in the
required representation.

The system allows the user to register and update func-
tional descriptions and uses them to re-write queries posed
in SQL and using the functions pertinent to the data model.
A specification of the cost of each function, not considered
here for the sake of brevity is also part of the system, and
is used for cost-based optimization.

5 Acknowledgements

The work presented in this paper was done under the aus-
pices and with the funding of NIH project NCRR RR08
605,Biomedical Imaging Research Network, which the au-
thors gratefully acknowledge.

References

[1] M. Stonebraker and L. A. Rowe, “The design of Post-
gres,” inACM Conf. on SIGMOD, pp. 340–355, June
1986.

[2] P. Seshadri, M. Livny, and R. Ramakrishnan, “E-
ADTs: Turbo-charging complex data,”Data Engineer-
ing Bulletin, vol. 19, no. 4, pp. 11–18, 1996.

[3] S. Santini and A. Gupta, “Function rewriting for query
optimization,” inProceedings of the 29th VLDB Con-
ference (submitted), 2003.

[4] L. Fegaras and D. Maier, “Towards an effective cal-
culus for object query languages,” inProceedings of
SIGMOD ’95, San Jose, pp. 47–58, 1995.

[5] P. Buneman, S. Naqvi, V. Tannen, and L. Wong, “Pron-
ciples of programming with complex objects and col-
lection types,”Theoretical Computer Science, vol. 149,
no. 1, pp. 3–48, 1995.

