
Model-Based Mediation with Domain Maps

Bertram Lud�ascher? Amarnath Gupta? Maryann E. Martonez

?San Diego Supercomputer Center, fludaesch,guptag@sdsc.edu
zDepartment of Neurosciences, mmartone@ucsd.edu

University of California San Diego

Abstract

We propose an extension to current view-based mediator systems called model-based
mediation, in which views are de�ned and executed at the level of conceptual models
(CMs) rather than at the structural level. Structural integration and lifting of data to the
conceptual level is \pushed down" from the mediator to wrappers which in our system
export classes, associations, constraints, and query capabilities of a source. Another novel
feature of our architecture is the use of domain maps, semantic nets of concepts and
relationships that are used to mediate across sources from multiple worlds (i.e., whose
data are related in indirect and often complex ways). As part of registering a source's
CM with the mediator, the wrapper creates a \semantic index" of its data into the domain
map. We show that these indexes not only semantically correlate the multiple worlds data
and thereby support the de�nition of the integrated CM, but that they are also useful
during query processing, for example, to select relevant sources. A �rst prototype of the
system has been implemented for a complex Neuroscience mediation problem.

1 Introduction

Mediator systems federate and integrate data from disparate sources in order to elicit in-
formation that the individual sources cannot provide independently. Currently, the \stan-
dard" mediator architecture employs wrappers that translate heterogenous source data into
a common (often semistructured) data model like XML. A \mediation engineer" provides
an integrated view de�nition (IVD) on the wrapped XML sources. In such a system, an
IVD is ideally expressed in a declarative query language for XML or semistructured data.
When developing the IVD, an XML query language provides the mediation engineer only
with a tree-structured model of the source, i.e., the names and possible nesting structure of
XML elements as de�ned by an XML DTD, but gives no hint on semantic relationships, class
structures, not to mention application domain speci�c constraints.

We argue that such a mediator architecture based solely on an XML-like semistructured
data model, while very powerful and useful in simple \one world scenarios" (say comparison
shopping with amazon.com and barnesandnoble.com), is not adequate when mediating across
complex sources whose data comes from seemingly disjoint \worlds":

Example 1 (Two Neuroscience Worlds) Consider two Neuroscience laboratories1 that
perform experiments on two di�erent brain regions. The �rst laboratory, synapse, studies
dendritic spines of pyramidal cells in the hippocampus. The primary schema elements are

1see synapses.bu.edu (synapse) and www-ncmir.ucsd.edu (ncmir)

1

NEURON

SPINY_NEURON

isa

COMPARTMENT

has

PYRAMIDAL_CELL

isa

SPINE

has

PURKINJE_CELL

isa

DENDRITE

isa

AXON

isa

SOMA

isa

BRANCH(level)

has

has

SHAFT

has

ION_REGULATING_COMPONENT

isa

ION_BINDING_PROTEIN

contains

ION_ACTIVITY(ion_name, activity_name)

regulates

NEUROTRANSMISSION(chemical)

subprocess

controls

PROTEIN

isa

AXON, DENDRITE, SOMA @ 9isa.COMPARTMENT
ION BINDING PROTEIN @ 9isa.PROTEIN
ION REGULATING COMPONENT @ 9isa.SPINE
PURKINJE CELL, PYRAMIDAL CELL @ 9isa.SPINY NEURON
SPINY NEURON @ 9 isa.NEURON

BRANCH(...) @ 9has.fSHAFT,SPINEg
DENDRITE @ 9has.BRANCH(...)
ION ACTIVITY(...) @ 9subprocess.NEUROTRANSMISSION(...)
ION BINDING PROTEIN @ 9controls.ION ACTIVITY(...)
ION REGULATING COMPONENT @ 9regulates.ION ACTIVITY(...)
NEURON @ 9has.COMPARTMENT
SPINE @ 9contains.ION BINDING PROTEIN
SPINY NEURON @ 9has.SPINE

Figure 1: A domain map of additional knowledge for linking synapse and ncmir

thus the anatomical entites that are reconstructed from 3-dimensional serial-sections. For
each entity (such as spines, post-synaptic density, shafts and dendrites), researchers make a
number of measurements, and study how these measurements change across age and species
under several experimental conditions.

In contrast, the ncmir laboratory studies the Purkinje Cells of the cerebellum, inspect-
ing the branching patterns from the dendrites of �lled neurons, and localization of various
proteins in neuron compartments. The schema used by this group consists of a number of
measurements of the dendrite branches (such as diameter of a segment, thickness of branching
points, number of branches at every split-level of the dendrites) and the amount of di�erent
proteins found in each of these subdivisions. Let us assume each of the two schemas has a
class C having a location attribute which can have a value like "Pyramidal Cell dendrite" and
"Purkinje Cell", respectively. 2

How are the schemas of synapse and ncmir related? Evidently they carry distinctly
di�erent information and do not even enter the purview of the schema conicts usually studied
in databases [KS96]. To the scientist however, they are related because of the following reason:
Release of calcium from spiny dendrites occurs as a result of neurotransmission and results
in changes in spine morphology (sizes and shapes obtained from synapse). Propagation
of calcium signals throughout a neuron depends upon the morphology of the dendrites, the
distribution of calcium stores in a neuron and the distribution of calcium binding proteins,
whose subcellular distribution for Purkinje cells are measured by ncmir.

Thus, a researcher who wanted to model the e�ects of neurotransmission in hippocampal
spines would get structural information on hippocampal spines from synapse and information
about the types of calcium binding proteins found in spines from ncmir. Note that in order
to connect the two sources, we need, independent of the observed experimental source data,
additional domain knowledge like the following:

Pyramidal cells and Purkinje cells have dendrites that have higher-order branches that contain

spines. Spiny dendrites are ion (calcium) regulating instruments. Spines have ion (calcium) binding

proteins. Neurotransmission involves ionic (calcium) activity (release). Ion-binding proteins control

ion (calcium) activity (propagation) in a cell. Ion-regulating components of cells a�ect ionic (calcium)

activity (release).

Figure 1 shows a representation of such knowledge in the form of a domain map (left), a
kind of semantic net that is used for de�ning and executing IVDs at the mediator; its logical
semantics is shown on the right (cf. De�nition 1). The above example from a real-world inte-
gration scenario illustrates a fundamental di�erence in the nature of information integration
as studied in most of the database literature and as necessary for scienti�c data manage-
ment. In the latter, seemingly unconnected schema can be semantically close when situated

2

Figure 2: Architecture of a model-based mediator

in the scienti�c context, which in this case is the neuroanatomy and neurophysiological setting
described above. We call this mediation across multiple worlds.

In this paper we develop a novel model-based mediator architecture for such mediation
scenarios, de�ne its formal framework, and sketch query processing in our system prototype.

The outline and main contributions are as follows: Section 2 presents the overall archi-
tecture: schema de�nition and data access of sources is lifted from the structural to the
conceptual level, thereby facilitating the mediation engineer's task of developing IVDs. The
architecture is independent of a speci�c formalism for conceptual models (CMs) due to a
special CM plug-in mechanism, which is based on the underlying XML transport syntax and
a generic meta-model for CMs (Section 3). Mediation across multiple worlds is facilitated
by incorporating an expert knowledge base called domain map (DM) at the mediator. DMs
are related to semantic nets and ontologies, but (i) have a formal semantics, (ii) are more
powerful due to rule-based extensions, and (iii) can be \executed" during query execution of
IVDs (Section 5). Section 6 concludes with a discussion on related work.

2 Model-Based Mediation Architecture

Figure 2 depicts a system architecture for model-based mediation: As is standard for me-
diator architectures, di�erences in the sources' data models are resolved by wrappers that
translate the raw data into a common generic data format (XML) on which current mediator
systems would directly de�ne the integrated views using an XML query language [LPV00].
We extend this architecture by lifting exported source data from the level of uninterpreted,
semistructured data in XML syntax to the semantically rich level of conceptual models with

domain knowledge (CMs). In this way, the mediator's complex task of de�ning integrated
views over heterogeneous sources becomes more manageable since class hierarchies, object
structure, properties of relationships (relational constraints, cardinalities, ...), and in partic-
ular domain speci�c constraints of sources all become accessible for view de�nition at the
mediator. The mediator's view de�nition language in such a model-based architecture is

3

not only a semistructured query language (like Lorel, YATL, XML-QL, Quilt, ...), but also
a declarative, query language for conceptual models that can express complex schema and

instance level transformations and check logical constraints.
Rather than reinventing yet another variant of conceptual models, we use a simple, generic

conceptual model GCM2 at the mediator level. The wrappers can export their \CM-lifted"
source data either directly in GCM, or in any standard CM formalism like (E)ER, UML,
OMR, RDF, etc. for which a CM-to-GCM plug-in has been provided. Syntactically all
information (queries, CM signatures and data, mediator/wrapper dialogues, etc.) goes \over
the wire" in XML syntax. Therefore the mediator also includes an XML sublanguage for
translating between XML and the mediator's local GCM representation making the system
completely independent of the chosen XML syntax for exchanging CMs. The KIND mediator
prototype (Section 5) is based on an object-oriented logic programming system for realizing
practically all of the above tasks.

The Mediator System at Work. At runtime, a wrapped source S can join the mediated
system by registering its conceptual model CM(S) with the mediator M . This requires
that S sends the mediator descriptions of the exported class schemas, relationship schemas,
and semantic rules that are evaluable at the mediator (e.g., for de�ning virtual classes and
relationships, CM-speci�c constraints, or arbitrary domain-speci�c constraints). Apart from
this schema level information, S also transmits a description of its query capabilities to M ,
which is a (usually very limited) CM query language that can be seen as the \logical API"
for retrieving actual object instances of CM(S). The query capability descriptions minimally
specify means (e.g., primary keys) for browsing through all instances of exported classes and
relations, and optionally declare further capabilities as binding patterns or query templates

which allow the mediator to optimize query evaluation by \pushing down" subqueries and
computations to the wrapper.

The exported objects of a CM(S) can have special anchor and context attributes3 that
provide the \semantic coordinates" of the data in the mediator's domain map DM(M). Recall
from the introduction that although the mediator M \sees" all source data at the conceptual
level CM(Si), for multiple world scenarios, there is typically little or no overlap in the concepts
of CM(Si). The role of the domain map DM(M) is thus to provide a declarative means for
specifying additional knowledge that is not present in the sources but that can be used (like
a road map) to navigate through and interrelate the multiple source worlds.

CM Plug-In Mechanism. One goal of our model-based mediation architecture is to make
the mediator independent of a source's current or future choice of CM formalism for commu-
nicating conceptual-level schema and data.

As a �rst step, we require that sources export all CM information (i.e., at the schema
and instance level) in XML. For example, CMs formalized in XML Schema or RDF Schema
come directly in XML syntax.4 For other formalisms like (E)ER, ORM, UML class diagrams
etc. XML exchange formats are available or can be easily de�ned. For each such format the
mediator system needs to have a speci�c system component and interface, including say an
XMI-API for handling UML models expressed in XMI [XMI99].

2Strictly speaking, GCM is a meta-model for CMs.
3or methods, i.e., derived attributes which are computed on demand at the mediator.
4see www.w3.org/TR/xmlschema-{0,1,2} and www.w3.org/TR/rdf-schema/

4

A second and crucial step for the plug-in mechanism is to devise a meta-model called GCM
(Generic Conceptual Model) that is universal in the sense that any conceivable CM formalism
can be expressed in it. Now the crux of the plug-in mechanism is that the mediator no longer
needs one module for each CM formalism. Instead a new CM formalism say UXF [SY98]
is added to the system by simply plugging an UXF-2-GCM translator into the mediator.
Essentially such a translator is nothing more than a complex XML query expression that a

source sends once to the mediator when a new CM is introduced. For example, a UXF-2-GCM
translator is an XML query that maps XML documents conforming to the UXF DTD to their
equivalent GCM representations thereby providing the desired GCM view on UXF. Hence, in
this architecture the mediator needs only a single GCM engine for handling arbitrary CMs.

3 Formal Framework

Our requirements for the generic conceptual (meta-)model GCM are derived from the follow-
ing typical features of conceptual models: Elements of the domain, called objects (or entities)
are organized into classes (entity types), based on similarity or common features. The avail-
able methods (attributes, slots) and their result types determine the structure of the objects
of a class. Classes can be organized hierarchically via a subclass relation. The latter induces
a notion of inheritance, for example, structural and value inheritance (instances of a class
inherit their \slot structure" and possibly some default values from the direct superclass5),
but also behavior (via derived or computed methods) may be inherited as in OOP. Objects
can participate in relationships (or associations) which can be further constrained to be ag-
gregations, compositions, or other whole/part relationships with a speci�c semantics [Ode94].
Additional semantics of relations can also be expressed using cardinality constraints, value
constraints, functional dependencies, etc. Finally, arbitrary non-structural domain-speci�c

constraints are often expressed in a more or less formal constraint language like OCL (UML's
object constraint language). From the above, we derive the following minimal requirements
for the GCM.

GCM Core Expressions. The GCM should allow the following atomic schema- and
instance-level declarations:

� instance(X;C) specifying that the object named X is an instance of class C (INST)

� subclass(C1; C2) specifying that C1 is a (subclass of) C2, i.e., instances of C1 are also
instances of C2

6 (SUB)

� method(C;M;CM) specifying that method M is applicable to objects in C yielding (zero
or more) objects in CM . A concrete instance (method result) can be denoted similarly,
say for instance(x;C); instance(y;CM) as methodinst(x;M; y) (METH)

� relation(R;A1=C1; : : : ; An=Cn) specifying an n-ary relationship between objects of classes
C1; : : : ; Cn. The corresponding association roles A1; : : : ; An facilitate a tuple-calculus
notation: for i = 1; : : : ; n the term R:Ai denotes the Xi for which there is an instance:
relationinst(R;A1=X1; : : : ; An=Xn) in R. (REL)

5A multiple inheriance problem can arise if a class has several direct superclasses.
6sometimes C1, C2 are called specializations or generalizations of each other

5

Note that (SUB) means that subclass is reexive and transitive. Often antisymmetry is also
assumed, implying that subclass is a partial order, which prevents cycles in the class hierarchy.

GCM Extension Mechanism: Logic Rules. The actual syntactic and semantic exten-
sion mechanism of GCM is given by a suitable language for logic rules, i.e.,

� a syntax for rules in the style \head if body" deriving new information (=head) provided
body is true, and (RULES)

� an associated logical semantics. (SEM)

The form of the rule head determines what is being de�ned, e.g., new instance or schema
information for objects, classes, and relationships using the core expressions above. Certain
logic rules, called integrity constraints do not derive \regular object information" but check
the consistency of a CM instance. We express a logic integrity constraint ' that should hold
for all instances of a CM as a denial := :'. Hence if can be derived then the CM
instance violates ' and an inconsistency is detected. We extend this basic functionality of
boolean denials by requiring, that when a violation is detected

� a denial can add a failure witness w to a distinguished inconsistency class ic. (IC)

Example 2 shows how such witness objects are inserted into ic.

GCM Expressiveness. There are several candidate formalisms that satisfy the above
GCM requirements. For example one may just use �rst-order calculus FO or some Datalog
variant for specifying extensions to the GCM core part. Indeed FO can already express all
common constraints for relational models including key constraints, inclusion dependencies,
aggregation and cardinality constraints etc. However, CMs often contain \inductive" prop-
erties and constraints like an inheritance semantics that relates the meaning of \subclass" to
that of \instance", or a closure property for certain whole/part relationships. Such proper-
ties are not expressible by FO formulas but in appropriate extensions of FO with �xpoint
operators like FO(LFP) or Datalog. Therefore our �nal requirement is that

� GCM expressiveness should extend FO and include inductive properties. (EXPR)

For example, if we pick FO(LFP) as the GCM rule language, we know that all PTIME
properties can be computed on �nite ordered instances of a CM. However, FO(LFP) and
similar �xpoint logics from �nite model theory do not have an intuitive, declarative semantics,
hence are not adequate as a speci�cation language for CMs. A declarative rule language
with an intuitive semantics that expresses precisely FO(LFP) is Datalog with well-founded
negation.

F-Logic as GCM

As the concrete GCM for the formalization and implementation of our model-based mediator
system, we use F-Logic (short: FL) [KLW95], an object-oriented extension of well-founded
Datalog. The choice of FL is partly for convenience, since FL natively contains all of the above-
mentioned GCM concepts (and several others) due to its roots in knowledge representation
and deductive, object-oriented databases. Hence with FL we get a GCM formalism \for free"

6

GCM expression FL expression FL axioms

instance(X;C) X :C : : :
subclass(C1; C2) C1 ::C2 C ::C :{C : class

method(C;M;CM) C[M))CM] C1 ::C2 :{C1 ::C3; C3 ::C2
methodinst(X;M; Y) X[M!!Y] X :C2 :{X :C1; C1 ::C2

relation(R;A1=C1; : : : ; An=Cn) R[A1)C1; : : : ;An)Cn] : : :
relationinst(R;A1=X1; : : : ; An=Xn) r(X1; : : : ; Xn) :R[A1!X1; : : : ;An!Xn] : : :

Table 1: F-logic fragment for the generic conceptual model GCM

and avoid indirect Datalog encodings at the user level. In particular, the exible, higher-
order FL syntax turns out to be extremly useful in the real system.7 Last but not least, FL
implementations like Flora [YK00] and Florid [FLO] are readily available and have been
successfully used in related areas like querying of semistructured data [LHL+98], mediation
of Web sources [MHLL99], and in an earlier version of our Neuroscience mediator [GLM00].

As the GCM, we use a fragment of FL that can \host" all standard CM formalisms as
\logic plug-ins". Table 1 shows the equivalent FL syntax for the GCM core expressions and
a minimial set of FL axioms specifying the reexive and transitive closure of \ :: ", and the
upward propagation of \ : " wrt. \ :: ". As the GCM extension mechanism we use FL rules
with well-founded negation semantics, i.e., expressions of the form head :{ body where head is
an FL atom that becomes true if body, a conjunction of FL atoms or negated atoms, is true.
Recall that the GCM and its FL incarnation only specify a minimal core model, but additional
constraints can be easily added using logic rules: For example, assume the CM requires that
the subclass relation \ :: " or any other relation R is a partial order. The following example
illustrates how this is formalized.

Example 2 (IC Checking of Inductive Properties) The following integrity constraints
test whether a binary relation R is a partial order on a class C: rule (1) �nds all X in C for
which R is not reexive. Similarly, (2) reports missing transitive edges, and (3) derives node
object pairs that violate R's antisymmetry on C. Thus, R is a partial order on C i� (1{3) do
not insert a failure witness into ic:

(1) wrc(C,R,X) : ic :{ X :C, not R(X,X) .
(2) wtc(C,R,X,Z,Y) : ic :{X,Y,Z :C, R(X,Z), R(Z,Y), not R(X,Y) .
(3) was(C,R,X,Y) : ic :{X :C, R(X,Y), R(Y,X), X6=Y .

If we assign \ :: " and the meta-class \class" (holding all class names) to the relation variable
R and class variable C respectively, the above rules test whether \ :: " is indeed a partial
order. This example also shows the power of schema reasoning in FL. 2

Example 3 (Cardinality Constraints) In real-life applications, aggregation and cardinal-
ity constraints are ubiquitous. Consider the GCM declaration relation(R;A=C1; B=C2) and
assume the CM at hand speci�es that the cardinalities of roles A and B satisfy the conditions
cardA(N) := (N = 1) and cardB(N) := (N � 2). Applied to has(neuron,axon) this says
that a neuron can have � 2 axons and an axon is contained in exactly one neuron. This can
be expressed as follows:

7for schema-level deductions, XPath queries, rule maintenance (e.g., when object parameters are dropped
or added, the \variable-arity" frame notation is more robust wrt. the changes), etc.

7

w6=1(R,VB,N) : ic :{N = countfVA[VB]; R(VA,VB)g, not N=1.
w>2(R,VA,N) : ic :{N = countfVB[VA]; :R[A!VA; B!VB]g, not N � 2.

The body of the �rst rule counts for each value VB of B the number N of values VA. If N 6= 1
a cardinality violation is detected and the witness w 6=1 gives the violating triple R;VB; N .
The second rule illustrates a di�erent FL syntax for tuple objects and checks N � 2 for B by
grouping on VA. 2

4 Model-Based Mediation with Domain Maps

Domain maps (DMs) formalize expert knowledge that is needed to mediate across multiple
world scenarios. In our architecture, DMs are special conceptual models whose classes we call
concepts. Concepts provide the semantic anchor points from which sources can \hang o�"
their data. Concepts can be linked via binary relations called roles. Intuitively, a labeled edge
C

r
! D of a DM means that if c 2 C then there is some d 2 D such that r(c; d) holds. For

example, spiny neuron
has
! spine means that every spiny neuron must have some spine. This

can be formalized in description logic by the statement spiny neuron @ 9has.spine [CLN98]
(see Figure 1 for a DM map and its description logic equivalent).

In principle, a DM can make use of the full expressive power underlying the GCM, i.e.,
concepts and roles could be de�ned via rules and not just as atomic facts. This results in a
very expressive formalism and is sometimes useful in the de�nition or execution of mediated
views (cf. Section 5). On the other hand, expressiveness is paid for with complexity and it
is easy to see that the requirement (EXPR) above can make certain reasoning tasks about
concepts undecidable:

Proposition 1

Subsumption and satis�ability are undecidable for unrestricted GCM domain maps. 2

Here, subsumption means to decide whether membership in a concept class C implies
membership in another class D, for all logic interpretations (i.e., instances of the DM) I that
satisfy a given domain map DM. Satis�ability is the question whether such an I exists.

However, note that in a mediator system some speci�c DM is given which is used for
navigating the multiple worlds domain and for de�ning and executing integrated views. Thus
reasoning about the DM may be required only to a limited extent. Also real-life DMs often
do not require the full expressive power of GCM in which case subsumption and satis�ability
can be decided. Indeed, consider the anatom domain map in Figure 4 which is used in our
mediator prototype. Using standard deduction techniques one can show:

Proposition 2 anatom is satis�able. 2

The formal semantics of DMs like anatom is de�ned as follows.

De�nition 1 (Semantics of Domain Maps) Let C and R be �nite sets of concepts and
roles, respectively. A domain map DM � C �R � C is an edge-labeled digraph over C and
R. The semantics of an edge e = (C

r
! D) 2 DM is de�ned by

� 8x (C(x)! 9y (D(y) ^ r(x; y)) SEM(e)

The semantics of DM is the conjunction of all SEM(e), for e 2 DM. 2

8

neostriatum

medium_spiny_neuron

has

substantia_nigra_pr

projects_to

substantia_nigra_pc

projects_to

globus_pallidus_external

projects_to

globus_pallidus_internal

projects_to

GABA

expresses

Dopamine

expresses

Substance P

expresses

neuron

spiny_neuron

isa

compartment

has

isa

dendrite

isa

axon

isa

soma

isa

neurotransmitter

isa isaisa

neostriatum

medium_spiny_neuron

has

substantia_nigra_pr

projects_to

substantia_nigra_pc

projects_to

globus_pallidus_external

projects_to

globus_pallidus_internal

projects_to GABA

expresses

Dopamine

expresses

Substance P

expresses

neuron

spiny_neuron

isa

compartment

has

isa

dendrite

isa

axon

isa

soma

isa

neurotransmitter

isa isa isa

NEURON_S

isa

projects_to

DENDRITE_S

has

isaexpresses

Figure 3: Domain map before (left) and after (right) registering source data

The equivalent of the FO sentence SEM(e) in FL and DL (description logic) are:

� 9Y (Y :D; r(X;Y)) :{ X:C . FL(e)

� C @ 9r:D DL(e)

There are two quite di�erent ways in which we could \execute" the axiom FL(e) at the
mediator, i.e., as an integrity constraint or as an assertion. The translation of FL(e) as an
integrity constraint is

wC;r;D(X) : ic :{ X :C, not (Y :D, r(X,Y))

and tests whether the mediator's object base contains for each X :C a corresponding Y :D;
otherwise a violation is reported. Such an integrity constraint is useful when the mediated
object base is required to be complete wrt. C

r
! D.

The other, more frequent case is to view FL(e) as an assertion that in the real world (but
not necessarily in the object base) the corresponding target object y exists. The following
assertion creates a virtual placeholder object fC;r;D(x) if the object base does not contain y:

Y :D, r(X,Y) :{ X :C, not (Z :D, r(X, Z)), Y = fC;r;D(X) .

Registering Source Data

When a source S registers with the mediator M , it can \anchor" the objects of CM(S) by
sending the equivalent of the following FL expressions to M :

o[anchor!!fc1; : : : ; cng; context!!fr1(d1; e1); : : : ; rk(dk; ek)g] .

This expression declares that the object o 2 CM(S) should be anchored simultaneously at the
concepts c1; : : : ; cn of the mediator's DM. The object o's context map o.context is a connected
subgraph of C � R � C and can be used to register additional knowledge about o with the
mediator. This asserts the following new information at the mediator's domain map:

o : subc(c1; : : : ; cn) : concept(S). subc(c1; : : : ; cn) :: c1. : : : subc(c1; : : : ; cn) :: cn.

r1(d1; e1) : role(S). : : : rk(dk ; ek) : role(S).

This creates a new concept class subc and makes it a subclass of all concepts c1; : : : ; cn.
The source object o becomes and instance of the new concept. Additionally, o's context map
o.context is added to the mediators DM. Observe that by parameterizing with S, the mediator
can keep track of which source has inserted a particular new concept or context into DM.

Example 4 (Anchoring Source Data) Figure 3 shows a part of the mediators domain
map, before and after registering two classes of source data, \neuron(S)" and \dendrite(S)".

2

9

Integrated View De�nition Using Domain Maps

In Example 1, the two sources could be related simply because their data was anchored
at concepts that were linked via relationships in the domain map. This is an example of
a loose federation of correlated data where no new integrated objects are computed at the
mediator. Instead, the integrated view is just a union view on the sources but | due to the
model-based architecture | with the advantage that data can be navigated an correlated
at the conceptual level using a domain map. The following example goes beyond this loose
federation and extends the global-as-view integration paradigm to de�ne integrated views not
only over classes from information sources, but over a combination of information sources and
the domain map:

Example 5 (Integration with DMs) The following is part of our CM declarations for the
senselab source that provides neurotransmission data:8

neuron[name)string; compartments))compartment; organism)string].
neurotransmitter[name)string; chemical type)string; role)string].
neurotransmission[transmitting neuron)neuron; receiving neuron)neuron;

neurotransmitter)neurotransmitter].

The ncmir source has data about protein distributions:

protein[name)string; isoform)string; antibody)string; raised in)animal].
animal[genus)string; species)string].
protein amount[protein)protein; neuron)string; regions))region; amount)oat].
region[region number)integer; compartment)string; fraction)oat].

The intuitive idea is that a confocal microscope image is broken down into regions. Each
region may have a number of compartments. Proteins are measured per region instead of per
compartment (since it is very hard to isolate each compartment when the dendrites are very
narrow). The protein amount is thus assessed by the estimated fraction occupied by each
compartment. 2

The integrated view de�nition IVD uses the anatom domain map whose base relations
isa and has a are depicted on the left of Figure 4. In order for the subsequent computation on
the IVD to be correct, we have to infer from the base relations, for example, that \Purkinje
cells have axons", since axons are compartments of neurons, and Purkinje cells are neurons.
This is accomplished by applying certain graph operations on the domain map DM. In this
case, we need to derive the deductive closure \has a star" of \has a" wrt. \isa":

tc(R)(X,Y) :{R(X,Y).
tc(R)(X,Y) :{ tc(R)(X,Z), tc(R)(Z,Y).

has a star(X,Y) :{ dc(has a)(X,Y).

dc(R)(X,Y) :{ tc(isa)(X,Z), R(Z,Y).
dc(R)(X,Y) :{ R(X,Z), tc(isa)(Z,Y).

The �rst pair of rules de�nes the transitive closure tc(R) for any binary relation R. The
second pair de�nes the deductive closure dc(R) of a relation R wrt. the transitive closure
of isa. Intuitively, R links are propagated up and down the isa chains. The last rule de-
rives a new relation \has a star" that contains all inferable direct \has a" links. Note that
\has a star" itself is not transitive (Figure 4). Indeed, it would be wasteful to compute the
much larger tc(has a star) when evaluating the IVD since a recursive traversal of the direct
links is su�cient.

8senselab.med.yale.edu

10

axon

purkinje_cell_axon
isa

bergmann_glia bergmann_soma
hasbrain

diencephalon
has

mesencephalon

has

nerve_cell

has

rhombencephalon

has

telencephalonhas

soma

has

glia
isa

neuron

isa

cerebellum

has

cell

cytoplasm

has

cytoskeleton
has

eukaryotic_cellisa

plasma_membrane

has

intermediate_filamentsisa

microfilaments

isa

microtubules

isa
isa

nucleus

has

organelle
has

cerebellar_cortex

flocculus
has

hemisphere
has

parafloccular_lobes
has

vermis

has

granule_cell_layer

has

molecular_layer

has

purkinje_cell_layer

has

has

has

has

has

has

has

has

has

has

has

deep_cerebellar_nuclei
has

dentate_nucleus
has

emboliform_nucleushas

fastigal_nucleus

has

globus_nucleus

has

cns

has

spinal_cord

has

has

compartment

isa

dendrite

isa

isa

has

aspiny_dendriteisa

main_branches
has

shafthas

spiny_branchlet
has

spiny_dendrite
isa

isa

has

purkinje_cell_soma

isa

has

branching_point
has

mitochondria

has

multivesicular_body

has

smooth_endoplasmic_reticulumhas

has
spine

has

purkinje_cell_dendrite

isa

has

golgi_apparatus

isa

lysosome
isa

isa

isa

rough_endoplasmic_reticulum

isa

isa

has

glomerulus
has

golgi_cell

has

granule_cell
has

lugaro_cell

has

inner_thirdhas

stellate_cell

has

middle_third
has

outer_third
has

has

has

has

pinceau
has

isa

astrocyte
isa

oligodendrocyte

isa

basket_cell

has

neuropil

has

has

interneuron

has

has

isa

isa

isa

isa

brush_cell
isa

isa

has

has

has

has

pial_surface
has

has

isa

post_synaptic_density
has

projection_neuron

isa

synaptic_vesiclehas

nervous_system

has

pns

has

purkinje_cell

isa

has

has

has

has

aspiny_dendrite

main_branches

microtubules shaft

spiny_branchlet

branching_point

organelle

mitochondria

multivesicular_body

smooth_endoplasmic_reticulumspine

astrocyte

cytoplasm

cytoskeleton

nucleus

plasma_membrane

soma

basket_cell

axon

compartment

dendrite

post_synaptic_density

synaptic_vesicle

bergmann_glia

bergmann_soma

brain

cell

diencephalon

eukaryotic_cellmesencephalon

nerve_cell

rhombencephalon

telencephalon

cerebellum
brush_cell

cerebellar_cortex

flocculus

hemisphere

parafloccular_lobes

vermis

granule_cell_layer

molecular_layer

purkinje_cell_layer

deep_cerebellar_nuclei dentate_nucleus

emboliform_nucleus

fastigal_nucleus

globus_nucleus

cns

spinal_cord

golgi_cell

granule_cell

glomerulus

interneuron

lugaro_cell

neuron

purkinje_cell_axon

inner_third

middle_third

outer_third

stellate_cell

glia

purkinje_cell_soma

pinceau

neuropil

purkinje_cell_dendrite

spiny_dendrite

pial_surface

nervous_system

pns

oligodendrocyte

projection_neuron

purkinje_cell

Figure 4: anatom domain map; left : isa [has a (shades indicate absence or (in)direct presence of
data; right : has a star, the deductive-closure of isa and has a)

Example 5 (Cont'd) Using all of the above we can construct the IVD for the mediated
class protein distribution and populate it in the following manner:

protein distribution[protein name)string; ion bound)string; distribution root)string;
distribution)distribution].

distribution[anatomic structure)string; protein amount)oat; distribution)distribution].

D : protein distribution[protein name!Y; animal!Z; distribution root!P; distribution!D] :{

'NCMIR'.protein.name=Y,
'SENSELAB'.neuron.organism=Z,
contains('ANATOM'.nervous system.has a star, P),
compute aggregate(Y,'NCMIR'.protein amount.amount,has a star,P,D).

The function compute aggregate recursively traverses a binary relation R (here: has a star)
starting from node P , and computes the aggregate of the speci�ed attribute at each level of the
relation R. The result for the computation for P="cerebellum", Z="rat", and Y="Ryanodine

Receptor" can be seen in the system snapshot in Figure 5.

5 Query Processing in the KIND Mediator Prototype

A prototypical implementation of the model-based mediator architecture calledKind9 [LGM00]
has been developed, based on the Flora system [YK00] as the deductive engine. The de-
velopment of the architecture and the system was driven by the need to mediate real data
coming from largely disjoint Neuroscience \worlds". The following example is taken from this
mediation scenario and illustrates how generic operations on the domain map are useful to
formulate and execute complex queries at the mediator.

Consider the classes protein distribution and distribution from above and the class neuro-

transmission:

neurotransmission[organism)string; transmitting neuron)string; transmitting compartment)string;
receiving neuron)string; receiving compartment)string; neurotransmitter)string].

9
Knowledge-based Integration of Neuroscience Data, www.npaci.edu/DICE/Neuro/kind01.html

11

Based on these mediated classes, we can now answer a query like:

\What is the distribution of those calcium-binding proteins that are found in neu-

rons that receive signals from parallel �bers in rat brains?"

In terms of the given views, this user query can be written as

answer(P, D) :{

neurotransmission[organism!'rat'; transmitting compartment!'parallel �ber';
receiving neuron!X; receiving compartment!Y],

D : protein distribution[protein name!P; ion bound!!fcalciumg; distribution root!].

This is a typical query of a scientist who studies neurotransmission (and produces the data of
senselab above), and needs information gathered by groups that study protein localization

(like ncmir). Note that the user does not specify the distribution root, forcing the mediator to
provide a \reasonable" root for the neuron-compartment pairs that satisfy the �rst condition.
The following are the main steps of the query plan:

1. push selections ('rat', 'parallel �ber') to senselab and get bindings for X and Y

2. using the domain map DM(M), select sources that have data anchored for the neu-
ron/compartment pairs X,Y from step (1); in our case, only ncmir is returned

3. push selections given by the X,Y locations to ncmir, and retrieve only proteins P that
are found in X,Y

Now we need to compute the actual distribution of each protein P from ncmir at the mediator.
But to do this using the view de�ned earlier, we �rst must determine which brain region of
the neuron should serve as the root of the distribution. This is accomplished by computing
the least upper bound (lub) of locations in the domain map.

4. with the lub as the root node, compute the view protein distribution at the mediator
as described before. Note that this involves a downward closure along the has a star

relation.

The last two operations �lter out a segment in the domain map as the \region of corre-
spondence" between the two information sources, and demonstrate how graph operations on
the domain map can be actively used to compute conceptual mappings between sources.

6 Discussion and Conclusions

We have presented a novel mediator architecture for complex multiple world scenarios, which
require additional knowledge in order to federate or integrate across the data. The additional
domain knowledge is made available to the mediator in the form of a high-level domain map

acting as a \semantic coordinate system" that can be used by sources to situate their data in
the global context. The complexity of scienti�c domains like the Neurosciences also requires
that view de�nitions are expressed at the semantically rich conceptual level and not just at
the level of semistructured data (XML) as in current mediator systems. Our architecture is
\immune" to the formalism for conceptual models as used by the sources due to a plug-in
mechanism that maps other CMs, expressed in XML syntax, via complex XML queries, to
a generic conceptual model GCM. A prototype has been implemented using an underlying

12

Figure 5: Snapshot of the KIND mediator prototype; left : meditor shell for issuing ad-hoc queries
against CM(M); right : generated subgraph of anatom having the requested result data; clicking on
a (diamond) result node retrieves the actual result data (center)

F-logic engine for evaluating queries and views in the GCM, graph operations on the domain
map (e.g., lub and deductive closures), and even I/O operations like XML transformations
(as needed for CM plug-ins) and generation of DM graphs for the user interface [LGM00].

RelatedWork. [CDGL+98] present an architecture that uses conceptual models to support
information integration. While we use an FL version of GCM, they employ a description logic
calledDLR to formalize ER diagrams and other CMs. Note that the focus in description logics
is on reasoning about CMs at the schema level and not on deriving new information about
a populated instance of a CM as in our case. Therefore description logics are designed such
that problems like satis�ability, subsumption, and equivalence of concepts remain decidable
at the schema level. Since already FL without object creation (i.e., function symbols) can
express all FO queries, reasoning about CMs in our GCM model is undecidable in general.
However, in our architecture we use only a limited amount of reasoning about CMs and the
focus is on execution (evaluation) of logic rules on given object instances of CMs, i.e., a much
more tractable problem. Moreover, in real application scenarios like our Neuroscience domain,
restricted and decidable fragments like the anatom domain map are often su�cient.

[FRV96] present a method for rewriting and decomposing queries in a cooperative infor-
mation system using \semantic knowledge". However, their work does not deal at all with
mediation at the conceptual level, or the use of domain knowledge to mediate across multiple
world scenarios. Rather \semantic knowledge" in their setting means OQL rewrite rules of
the form Q1 ; Q2 that can be applied for query reformulation.

A system architecture developed by experts from the Neuroscience domain is described
in [NLC+99]. Like many generic models, their EAV/CR model is based on a ternary entity-
attribute-value representation, extended with classes and relationships. However their ap-
proach deals with the \data part" of integration only. In particular, there is no suitable
declarative rule language for de�ning complex integrated views or queries.

13

The importance of semantics in information exchange is also witnessed by the recent
interest in XML Schema and RDF. Indeed RDF, when used with a rule language like F-logic
can be used as GCM (and so could XML Schema, but XML Schema is quite \heavy-weight"
compared with the lean and elegant approach possible with RDF+rules).

At least two decades of prior research exists in the general area of information integration.
Sheth, in a recent overview [She98], classi�ed information integration research into three
generations. In our architecture, similar to second generation approaches like TSIMMIS
[GMPQ+97], integrated views are de�ned using the so-called global-as-view (GAV) approach,
in which an integrated view de�nition IVD of the global view is de�ned in terms of local
views on the sources. However, our system speci�es (and executes!) IVDs at the level of
conceptual models exported by the sources and thus falls into the category of third generation
approaches which focus on semantic integration. Moreover, unlike other GAV systems our
use of a domain map allows us to de�ne global views on the sources in conjunction with the
map. This knowledge-based mediation allows us to construct views over data that could not
have been joined directly.

Since domain maps correspond to edge-labeled graphs, our global views involve complex

recursive operations. On the other hand, local-as-view (LAV) approaches like SIMS [SIM98]
de�ne each local source as a view on the more pervasive global schema. For answering a user
query on the global schema, an inverse operation is used to map the query to appropriate
local schemata. Often, such inverse operations may not, and in the case of our complex,
recursive views, do not exist.

COIN [GBMS99] performs integration by creating a domain model as a universe of prim-
itive and semantic types, where a semantic type can take a di�erent value in every context
that uses it. The system allows the mapping of source-speci�c values to the same semantic
type and permits axioms that convert between value domains for the same semantic type.
Thus COIN's notion of domain knowledge or ontology e�ectively resolves attribute domain

conicts, and does not address the problem of mediating semantically distinct schema by any
schema-based integration operation.

References

[CDGL+98] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Information
Integration: Conceptual Modeling and Reasoning Support. In Intl. Conference on Co-
operative Information Systems (CoopIS), pp. 280{291, 1998.

[CLN98] D. Calvanese, M. Lenzerini, and D. Nardi. Description Logics for Conceptual Data
Modeling. In J. Chomicki and G. Saake, editors, Logics for Databases and Information
Systems, pp. 229{263. Kluwer Academic Publisher, 1998.

[FLO] Florid Homepage. www.informatik.uni-freiburg.de/~dbis/florid/.

[FRV96] D. Florescu, L. Rashid, and P. Valduriez. A Methodology for Query Reformulation in
CIS Using Semantic Knowledge. Intl. Journal of Cooperative Information Systems, 5(4),
1996.

[GBMS99] C. H. Goh, S. Bressan, S. E. Madnick, and M. D. Siegel. Context Interchange: New Fea-
tures and Formalisms for the Intelligent Integration of Information. ACM Transactions
on Information Systems (TOIS), 17(3):279{293, 1999.

[GLM00] A. Gupta, B. Lud�ascher, and M. E. Martone. Knowledge-Based Integration of Neuro-
science Data Sources. In 12th Intl. Conference on Scienti�c and Statistical Database
Management (SSDBM), Berlin, Germany, July 2000. IEEE Computer Society.

14

[GMPQ+97] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman,
V. Vassalos, and J. Widom. The TSIMMIS Approach to Mediation: Data Models and
Languages. Journal of Intelligent Information Systems, 8(2), 1997.

[KLW95] M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented and Frame-
Based Languages. Journal of the ACM, 42(4):741{843, July 1995.

[KS96] V. Kashyap and A. Sheth. Semantic and Schematic Similarities between Database Ob-
jects: A Context-based Approach. VLDB Journal, 5(4):276{304, 1996.

[LGM00] B. Lud�ascher, A. Gupta, and M. E. Martone. A Mediator System for Model-Based
Information Integration. In 26th Conf. on Very Large Data Bases (VLDB), Cairo, Egypt,
2000. Morgan Kaufmann. demonstration.

[LHL+98] B. Lud�ascher, R. Himmer�oder, G. Lausen, W. May, and C. Schlepphorst. Managing
Semistructured Data with FLORID: A Deductive Object-Oriented Perspective. Infor-
mation Systems, 23(8):589{613, 1998.

[LPV00] B. Lud�ascher, Y. Papakonstantinou, and P. Velikhov. Navigation-Driven Evaluation of
Virtual Mediated Views. In Intl. Conference on Extending Database Technology (EDBT),
LNCS 1777, Konstanz, Germany, 2000. Springer.

[MHLL99] W. May, R. Himmer�oder, G. Lausen, and B. Lud�ascher. A Uni�ed Framework for
Wrapping, Mediating and Restructuring Information from the Web. In Intl. Workshop
on the World-Wide Web and Conceptual Modeling (WWWCM'99), LNCS 1727, Paris,
France, 1999. Springer.

[NLC+99] P. M. Nadkarni, L. M. L, R. Chen, E. Skoufos, G. Shepherd, and P. Miller. Organization
of Heterogeneous Scienti�c Data Using the EAV/CR Representation. Journal of the
American Medical Informatics Association, 6(6):478{493, 1999.

[Ode94] J. J. Odell. Six Di�erent Kinds of Composition. Journal of Object-Oriented Programming,
5(8), 1994.

[She98] A. Sheth. Changing Focus on Interoperability in Information Systems: From Sys-
tem, Syntax, Structure to Semantics. In M. Goodchild, M. Egenhofer, R. Fegeas, and
C. Kottman, editors, Interoperating Geographic Information Systems. Kluwer, 1998.

[SIM98] SIMS Homepage. www.isi.edu/sims/, 1998.

[SY98] J. Suzuki and Y. Yamamoto. Making UML Models Interoperable with UXF. In Intl.
Workshop �UML'98�: Beyond the Notation, LNCS 1618, Mulhouse, France, 1998.

[XMI99] OMG XML Metadata Interchange (XMI). www.omg.org/cgi-bin/doc?ad/99-10-02,
1999.

[YK00] G. Yang and M. Kifer. FLORA: Implementing an E�cient DOOD System Using a
Tabling Logic Engine. In 6th International Conference on Rules and Objects in Databases
(DOOD), 2000.

15

