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ABSTRACT
Motivation:
As in many other fields of science, computational methods in molecular biology need to 
intersperse information access and algorithm execution in a computational workflow. 
Users often find difficulties when transferring data between data sources and 
applications. In most cases there is no standard solution for workflow design and 
execution and tailored scripting mechanisms are implemented in a case by case basis.
Results:
In this paper we present a general purpose “programmable integrator” that can access 
information from a variety of sources in a coordinated manner. Its usefulness in 
complex bioinformatics applications is claimed and supported by some application 
examples.
Availability:
Tools are freely available to non-profit educations and research institutions. Usage by 
commercial organizations requires a license agreement. Contact: gupta@sdsc.edu
Software requirements: Java v1.3 (http://java.sun.com), Xerces XML Parser 
(http://xml.apache.org/xerces-j), Kweelt implementation of XQuery 
(http://kweelt.sourceforge.net/). 



INTRODUCTION

Bioinformatics involves the use and transformation of great amounts of data. To 
accomplish a given task, different computational tools are used over different data 
elements in a particular cascade of computational steps. Difficulties in designing and 
running a study arise when data are of heterogeneous nature and distributed and when 
the tools available to the scientist provide their own peculiar input/output mechanisms, 
often incompatible with each other. As the survey on bioinformatics tasks performed by
(Stevens et al. 2001) highlighted, moving data between repositories and analysis tools is 
of great importance when building complex queries.

In order to assist the researchers in building and managing computational processes, 
several researchers investigated the use of workflows (Ailamaki et al., 1998; Ludäscher
et al., 2003). Standard Workflow Management Systems (WFMSs) are designed for the 
definition, execution and monitoring of complex processes in fairly stable environments 
(such as industry and business applications). These systems are process-oriented with a 
transactional focal point. In contrast, most applications in computational biology focus 
their attention on the information being processed, that is, they are data-oriented 
(Ailamaki et al., 1998). As they are discovery driven, they demand both powerful and 
expressive workflow definition languages, as well as rich means of data access and 
integration.

In this work we introduce the use of a procedural programmable integrator suitable for 
the creation of bioinformatics workflows. Our integrator allows the definition and 
execution of a cascade of data access, querying/filtering and algorithm invocation 
events. This integrator is currently based on a few mature techniques allowing
distributed access to most resources available in the Molecular Biology community. The 
use of emerging accessing mechanisms, such as web services and grid-based services, 
recently introduced in bioinformatics, e.g. BioMOBY and MyGrid projects (Stein et al., 
2003), is under evaluation.

Our procedural programmable integrator includes the essential functionality for the 
definition and implementation of executable workflows, and has been designed as part 
of larger computer infrastructure aimed at the support of scientific workflows 
(Ludäscher et al., 2003). In this global infrastructure, an executable workflow, which is 
now directly written by a workflow designer, could also be automatically created by a
workflow compiler from an abstract workflow. This means that, when fully integrated 
into the workflow infrastructure, a scientist could use the appropriate high-level design 
tool to create an abstract workflow using domain language and concepts. Since it might 
seem that a high-level design would completely hide away the details of an executable 
workflow, we show the need for making parts of this workflow explicit through two 
examples in computational biology.

SYSTEM AND METHODS

PLAN – a Language for a Programmable Integrator
PLAN is a simple XML-based language for the definition of executable workflows that 
simplifies data search and analysis by providing a uniform XML view on both data 
sources and analytical applications. The use of internal XML data structures is very 
reasonable, since an increasing number of data providers in the molecular biology 



domain offer the possibility of downloading information in XML format. Furthermore, 
many programs in the field also provide input/output XML-based mechanisms. In the 
case in which the data are not provided in XML format, a wrapper mechanism should be 
implemented to provide the necessary translation.

System architecture
The main strength of PLAN is to significantly reduce the complexity of information 
integration from multiple sources. To do so, PLAN combines a declarative query 
language with the additional power of a procedural instruction set using a uniform and 
easy to manipulate XML format. The overall system architecture is shown in Figure 1. 
We briefly describe the main components of our approach:

• Data source registration:
Data sources (web pages, local files, applications or relational databases) are registered 
in PLAN using the resource catalogue. This catalogue contains information relevant to 
each data source such as type, base URL, path information, parameters needed and 
wrapper assigned to it. Data sources are considered to be distinct if they have different 
invocations and/or provide structurally different content (e.g. access to a Swiss-Prot 
entry and a hit list page resulting from a search performed on the Swiss-Prot in the
Expasy (www.expasy.org) server are considered two distinct data sources). For a 
relational database, it contains information about the database URL, tables, fields, types 
and so forth to ensure that a query can be issued against it.

• Query declaration:
PLAN uses XQuery (XQuery, 2003) to support the execution of declarative queries for 
XML data . Internally PLAN provides an XML view on any data source, therefore 
queries and filters are written by the programmer using this query language. In this way, 
the system is not limited to filtering out operations on data but it allows the declaration 
and execution of complex queries including aggregate operations on data elements. 
PLAN query language can be “extended” through the implementation of User Defined 
Functions and registration into the PLAN system (equivalent to PL/SQL routines in 
Relational Database).
In the particular case of relational data sources XQuery searches are automatically 
translated to SQL statements (by to SQL processing unit) and executed on the 
corresponding source RDBMS. 
 
• Wrapping non-XML sources:
A generic wrapper utility (Gupta et al. 2003) automatically translates resulting data 
from relational database searches into XML format (to XML processing unit).
In case the data source is neither XML nor relational, an external wrapper is used to 
convert the data (HTML, raw text, etc…) to XML format. Transformation of web pages 
and local files is based on the content and structure of the file. If two sites/files provide 
structurally different contents they require the implementation of two wrapping 
mechanisms. For the work described in this paper, we used the Minerva wrapper toolkit 
as a freeware technology for accessing and transforming web pages (Crescenzy and
Mecca, 1998). Nevertheless, the choice of a particular technology to wrap external 
information sources does not affect either the PLAN language or the PLAN execution 
model.
No wrapper is needed for those data sources providing information in XML format.



• Query execution:
The execution of a PLAN program is done by a stack machine where data to be 
accessed are pushed to the execution stack by its unique access link (or access 
instruction). Once the stack is constructed, it is traversed in order to access the actual 
data one by one. The wrapper selector chooses the corresponding wrapper from the 
resource catalogue and makes the appropriate wrapper call (if any). Data are retrieved 
and if needed, converted to XML by the wrapper. This is automatically done during run 
time.
Retrieved data are placed in the global buffer. Now, a further query can be executed on 
the buffer resulting in a new data structure that is name tagged and put into the global 
data table. Unlike the resource catalogue, which is a permanent data structure, the 
execution stack, global buffer and global data table are virtual XML data structures. 
“Virtual” means that they exist while the PLAN program is running.
Final results (XML output) can be saved locally on an XML document by the XML 
writer.

• Error handling
PLAN also provides some error handling mechanisms. To handle exceptions due to data 
source unavailability and data source policies, the user can use “delay” and “trial” 
attributes in a particular access. If data is still not available, PLAN just bypasses that 
particular data access and reports the unresolved unique access link (this allows the 
sequential retrieval of a set of entries from a web site, even if some of them are 
corrupted). Finally, some of the error handling on data format might be pushed to the 
wrappers (e.g. Exception Handling mechanisms provided by the Minerva Wrapper 
Generator).

PLAN at work
Creation and execution of a workflow using PLAN requires:

(1) Declaration of new data sources that are not already registered in the resource 
catalogue. If they are non-XML/non-relational appropriate wrappers should be 
implemented.

(2) Definition of the process workflow using PLAN syntax and commands.
(3) Execution of the workflow

The set of commands provided by PLAN can be grouped into three categories: (i) 
memory management, (ii) filtering/querying and (iii) input/output procedures. In the 
simplest case, a workflow in the PLAN language involves:

1) Construct the unique access link to access data in the data source.
2) Launch an HTTP request, a program invocation or relational query to retrieve 

data and convert it into XML. The last task is transparent to the user since the 
wrapper module for that particular source will perform the translation (if 
needed).

3) Allocate a name for the buffer where information will be internally stored.
4) Query the resulting XML document in order to filter out interesting information. 
5) Present results back to the user by writing to an XML file.

We explain the PLAN language through a simple workflow: “Retrieve those sequences 
in Swiss-Prot corresponding to proteins which contain the InterPro motif IPR001478”. 
In this particular example data was not available in XML format, therefore we used two 
wrappers: one for the Swiss-Prot entry format and other for the InterPro site which 



provides Swiss-Prot matches of a given InterPro entry. The basic plan to execute this 
workflow is:

F

Get all SwissProt entries from InterPro matching IPR001478
For each SwissProt entry

get sequence information from SwissProt

The first step in executing this request is to construct an URL and send an HTTP
request to the InterPro site, get the matches from the site and store the results in the 
global data table to be used in the following part of the query. In PLAN, this is specified 
as:

..<QUERY>
     <RESULT>
        LET $x := set("","ipr","IPR001478"),
            $x := set($x,"display","n"),
            $x := set($x,"dmax","20000"),
            $y :=  constructURL("GET","http://www.ebi.ac.uk/interpro/ISpy",$x)
        RETURN $y
     </RESULT>
  </QUERY>
<TRAVERSE>POP</TRAVERSE>

  <QUERY>
     <RESULT>
        <DATA NAME="InterProMatches" TYPE="Add">
           RETURN stream()
        </DATA>
     </RESULT>
  </QUERY>

The first <QUERY> uses the internal variables $x and $y to build the URL with the 
proper parameters in order to get the desired data. The built hyperlinks (or Xlinks) are 
identified, parsed and checked against the resources catalogue to verify the resource 
entry and the wrapper class to be executed for this link. Finally, they are pushed to the 
execution stack with all related information attached to it.

<TRAVERSE> obtains each link from the execution stack, traverses it, gets the data 
from the source and converts it into XML if needed. Two options are available for this 
statement: either links are removed from the stack once traversed (POP) like in the 
example, or keeping the link in the stack (PEEK). The main reason to keep a link in the 
stack is that more than a <QUERY> can be sequentially applied to the data source in the 
stack.

A second <QUERY> is used to further process data: the <DATA> operation builds a 
new entry in the global data table by adding the result data into the structure called 
“InterProMatches”. In this case the entire data stream is saved by the RETURN 
construct.

To continue with the example workflow, we need now to get sequence data from Swiss-
Prot. The corresponding pseudo-code is:

For each Swiss-Prot entry in “InterProMatches”
construct link to Swiss-Prot



For each link in stack
traverse by popping
retrieve Swiss-Prot sequence
add to “spwSeq” XML data structure

This is done in PLAN by first bringing the results of the virtual structure 
“InterProMatches” (stored previously in the global data table) to the global buffer as 
the working register using:
<XMLBUFFER NAME="InterproMatches" />

Next, we need to fetch data from Swiss-Prot. In order to do so, we should first create the 
corresponding Xlinks to Swiss-Prot data with a similar query statement to the first 
<QUERY> above (code not shown). Links to Swiss-Prot constructed are located in the 
execution stack. 
Now we can traverse each link in the execution stack to get the corresponding Swiss-
Prot entry and select the information of interest in the RETURN statement (in this 
particular case we only want the sequence data, corresponding to the <seq> tag
provided by the Swiss-Prot wrapper).

..<WHILE>
     <CONDITION>
        <STACK>
           <CONDITION>NONEMPTY</CONDITION>
        </STACK>

</CONDITION>
     <DO>
        <TRAVERSE>POP</TRAVERSE>
        <QUERY>

<RESULT>
              <DATA NAME="spwSeq" TYPE="Add">
                 FOR $doc in stream () 
                 RETURN (<swp_entry> $doc/seq </swp_entry>)
              </DATA>
           </RESULT>
        </QUERY>
     </DO>
  </WHILE>

The WHILE-DO construct has exactly the same semantics as in any standard procedural 
language. The termination condition for the while construct is to check if the stack of 
links is not empty. Since PLAN is a stack-based language, this check is performed 
explicitly. 
Finally, the results are returned to the user by writing out a result file.

  <CONSTRUCT>
     <DATA NAME="spwSeq" />
  </CONSTRUCT>
  <DELETE FILE="./wf_example.xml" />    
  <PRINTOUT FILE="./wf_example.xml" />

The <CONSTRUCT> element gathers all results in the virtual XML sources and puts 
together a composite XML document named ‘spwSeq’ in the global data table that is 
finally written in a file.

Besides web sources as illustrated in this example, PLAN can also access relational 
databases and local programs. For a relational source, a <RELATIONAL_QUERY>
construct is used. Local programs can be transparently integrated into the engine so the 



system will “see” them as any other web or relational source. To do so, we have 
developed a software library that provides an interface to request the execution of a 
particular program. Externally, the user would make an information request in the same 
way as for “static” sources. Internally, the engine will query the wrapper catalogue and 
recognize this request as a local execution request so it will perform a background 
execution of the requested program instead of an HTTP request. After the execution is 
completed, results will be retrieved by the engine in XML format.

Concatenation of workflows is straightforward in PLAN, as results are always stored in 
the global data table and can be further invocated as working registers (streams) in the 
global buffer using the <XMLBUFFER /> element.

RESULTS

Motivating examples
We will argue in favour of the usefulness of a programmable integrator like PLAN by
showing how two typical tasks performed in bioinformatics and computational biology 
applications can be implemented. The first task illustrates a classic information 
extraction that requires the integration of several data sources and data types (this is the 
case of sequence and structural data), while the second, involving more complex 
computations and relationships among data and searching criteria, demonstrates
complex searches and filter operations on biological data.

Example A: Transfer of annotations between two biological domains: from sequence to 
structure.
The first workflow is designed to study the structure of scaffold proteins and their 
interacting domains, and will be illustrated by a search of information about PDZ 
domain containing proteins. PDZ domains are modular protein interaction domains that 
bind in a sequence-specific fashion to short C-terminal peptides or internal peptides that 
fold in a beta-finger (Shen and Sala, 2001). They are frequently found in multiple 
copies or associated with other protein-binding motifs in multidomain scaffold proteins. 
PDZ containing proteins are typically involved in the assembly of macromolecular 
complexes that perform localized signalling functions at particular cellular locations. 
They are widespread and show considerable sequence variation.
A wide picture of the structural characterization of PDZ domains can be obtained by 
searching and integrating information from different data sources, such as InterPro 
(Apwailer et al. 2000) containing information on protein sequences having such 
domains, Swiss-Prot and TrEMBL (Bairoch and Apwailer, 2000) that contain the actual 
protein sequences and, finally, PDB (Berman et al., 2000) and derived databases e.g. 
CATH (Orengo et al., 1997) that contain structural information.
This workflow is an example of how features of different data types can be transformed 
and mapped using PLAN, once the appropriate relationship among data has been 
established. In this case, we wanted to transfer annotations on a protein sequence data 
(in Swiss-Prot or TrEMBL through the InterPro) to atomic coordinates (in PDB) by 
performing a sequence alignment using BLAST (Altschul et al., 1997). The actual 
biological question that we are addressing in the search is to find all solved structures of 
PDZ domains.

When building links between two different data sources in a given workflow, it is 
essential that the user have full control over all relevant parameters of the association 



being built between the two different data types, as it is allowed in PLAN by means of a 
declarative query language like XQuery. In this example this statement can be 
exemplified by the fact that just providing all structures in PDB corresponding to PDZ 
containing proteins in Swiss-Prot/TrEMBL doesn’t bring the correct answer to our 
question (see Figure 2). Only those PDB structures that contain the full polypeptide 
segment of a PDZ domain should be supplied. This requirement can be fully evaluated 
using PLAN by making a comparison of the amino acid ranges in the InterPro matches 
(that correspond to a range in the BLAST query sequence), and the corresponding 
positions in the aligned sequences in the PDB (the BLAST hit sequences) in the 
filtering step. From a total of 1376 matches in Swiss-Prot/TrEMBL corresponding to the 
PDZ/DHR/GLGF domain in InterPro (IPR001478), 44 structures are found in the PDB 
(using a BLASTp search mechanism and 90% identity threshold). The transfer of the 
amino acid segments of the PDZ domain from the query sequence to the hit sequence 
during the search alignment, filtering out those structures not containing the PDZ 
domain, results in the true 27 matching structures (see Table 1).

The information that we obtain by this process would provide grounds to state that all 
PDZ domains have similar architectures, that is to say, their overall fold approximates a 
six-strand beta-sandwich flanked by two alpha-helices (Shen and Sala, 2001). This 
information is highlighted with our system when performing an additional search on the 
CATH database: of the 27 structures corresponding to the PDZ domain, 13 are 
classified in CATH. All of them under code 2.30.42.10 , that corresponds to ‘Mainly 
Beta’ class, ‘Roll’ architecture, ‘Pdz3 domain’ topology and ‘Signal transduction’ 
homologous superfamily. Of course, this is an example with only one specific domain 
illustrating the very rich information that can be obtained by integrating with PLAN, 
although any other sequence domain can be analysed as well.

Example B: conservation of residues at protein-protein interfaces. The case of 
homodimeric structures
The study was conducted by Valdar and Thornton, 2001 to assess the conservation of 
residues at protein-protein interfaces compared with other residues on the protein 
surface. To carry out this work the authors chose a set of solved protein structures, from 
which a group of functionally equivalent homologues were identified along with a 
multiple alignment. The search criterion established by Valdar and Thornton for the 
creation of this first data set was the following:
• the protomer to be studied must form a stable, symmetric complex with one other 

protomer to which it is identical (or nearly identical) such as the oligomer is 
homodimeric and the conservation of only one chain need to be considered;

• the full wild-type complex must be available in PDB or PQS (Henrick and 
Thornton, 1998);

• Among all the structures available for the complex, the structure chosen must have 
the best combination of the following properties:

o high resolution, inclusion of any bound cofactors that occur naturally,
o if applicable, the inclusion of a ligand similar in size and shape to that of the 

natural substrate.
• to enable the robust identification of a diverse set of homologues, the promoter 

should be represented in CATH
• the promoter sequence must have non-fragment homologues in the Swiss-Prot that 

are numerous (>10) and diverse (<70% mean pairwise sequence identity) and, as 
judged by their annotation, share its function and multimeric state



Now, we are going to show how this search can be automatically performed using 
PLAN. The requirements can be translated into a sequence of steps of information 
access and post-processing as given in Figure 3. We point out the repeated occurrence 
of search-collect-filter patterns in this workflow and that, in Step 3, grouping structures 
by protein has the standard group-by semantics in database systems – thus, for every 
value of protein, we need to collect the structures that belong to the protein. 

Valdar and Thornton identified a total of six homodimer families. We have 
implemented, using PLAN, a complete workflow search including those requirements 
of the authors (see figure 3). The design of the workflow aims at minimizing the amount 
of data to be accessed and processed, maximizing the overall performance.

• Step 1: The oligomer is homodimeric
To find structures that meet the first criterion a search is done on the Protein Quaternary 
Structure service of the Macromolecular Structure Database at the EBI 
(www.ebi.ac.uk/msd) with the following parameters: quaternary type = ‘dimeric’, homo 
or hetero = ‘homo’ and mean delta ASA per chain = ‘greater than 400 Å2’ 
(according to the PQS methods, values below this cutoff may indicate that PQS file 
describes a significant crystal packing arrangement rather than an oligomeric assembly)
A total of 5659 structures where found.
• Step 2: The protomer should be available in CATH
The authors of the study used the CATH’s Homologous Superfamilies to identify a 
robust set of homologues. For all the homodimeric wild-type structures in the list so far, 
a filtering is performed to get only those available in the CATH classification. From the 
first set of homodimeric structures, 3406 are already classified within the CATH 
database.
• Step 3: Group structures corresponding to the same protein
Further processing and filtering of the data should be done on the basis of structures 
corresponding to the same protein. In order to carefully identify the biological content 
of the structures, a BLASTp search should be therefore done against a non-redundant 
sequence database (Swiss-Prot in our case) using the sequence of the corresponding 
PDB/PQS hits as query.
EC numbers corresponding to enzyme entries in Swiss-Prot are retrieved for further use. 
BLASTp searches against Swiss-Prot are also useful for the evaluation of the following 
requirements:
• Step 3a: Proteins should have numerous distant homologues
The evaluation of the number of distant homologues for each protein sequence obtained 
in step 4 is being done by means of a BLASTp search against Swiss-Prot and counting 
of the alignments with an identity between 30% and 70%, with an alignment length 
greater than 100 amino acids.
• Step 3b: Full wild-type complex must be available
The intended analysis of the dataset requires that atomic coordinates should correspond 
to wild-type proteins for all the structures of step1. Mutants are interpreted as those 
PDB chains with less than a 100% identity with the first hit in the BLASTp search 
against the Swiss-Prot. A further search is done in PDB to filter out structures annotated 
as Fragments in the PDB.
Step 3 reduced the number of structures to 973, corresponding to 335 unique sequences 
in the Swiss-Prot. Information of the multimeric state (CC -!- SUBUNIT) of Swiss-Prot 
matches is evaluated for cross-validation. The number of sequences annotated as 
“HOMODIMER” in Swiss-Prot reduces the set to 185 sequences.



• Step 4: Homologues should share multimeric state and function
Although the authors required homologues to share both multimeric state and function, 
we have relaxed this requirement due to the difficulty of evaluating an agreed “similar” 
relationship in the functional domain. From the set of 185 sequences so far, only 78 
have more than 10 distant homologues in the Swiss-Prot (30-70% identity) which are 
also annotated as HOMODIMER.
• Step 5: Search natural cofactor and substrate
A search is performed in ENZYME (Bairoch, 2000) to find cofactors and substrates for 
each of the distinct EC numbers.
• Step 6: Final selection
For each enzyme protein, the corresponding PDB entries are searched to retrieve 
ligands. The structure chosen will be the one with the highest resolution; ligand 
corresponding to natural cofactor; ligand similar to natural substrate.

The search performed provided all the families identified by Valdar and Thornton 
(Table 2a) plus a number of new families (Table 2b). The additional number of families 
identified might correspond to the greater number of data in the PDB, CATH and 
Swiss-Prot databases from the time the original study was performed in 2001. Although 
the requirements of the authors have been relaxed in the current workflow 
implementation, a manual check has been performed on homologue proteins by visual 
inspection of the Swiss-Prot ID and corresponding EC numbers.

This example illustrates how a complex search can be automated and some of the 
virtues arising from this automation. In particular, the capability to perform the search 
with new releases of the different databases makes it possible to keep gathering new 
information as more sequences and structures are deposited.

DISCUSSION AND CONCLUSIONS

Scientific workflow infrastructures demand particular means of data access, analysis 
and integration, as well as powerful and flexible workflow definition languages. 
General purpose programmable integrators, such us PLAN, are very valuable tools to 
control information fetching, filtering and result construction in a workflow engine 
designed for performing typical tasks in bioinformatics and computational biology.

PLAN is highly flexible due to its modular design and programmable interface. It is
designed to easily handle heterogeneous data sources (facilitated by the use of the 
resource catalogue and wrapping mechanisms for non-XML data sources), while 
providing powerful mechanisms for data integration and filtering (through the use of an 
internal XML data structure, a declarative query language and a procedural instruction 
set). Information can be kept in its original location and accessed only during run time. 
Only a resource catalogue defining access mechanisms and properties of the data is 
required. PLAN can be easily extended allowing the incorporation of additional data 
sources by registration to the catalogue. Available sources in the catalogue can
seamlessly be used together in a computational workflow. The use of a declarative 
query language allows filtering operations on data, as well as any other complex queries 
provided by XQuery. Custom user defined functions can be easily added to be used in 
the query language.



Current limitations of the system are due to the distributed nature of the data sources. 
First, if a data source is not available it cannot be accessed. Implementing mechanisms 
for handling of alternative locations for the same data could solve this limitation. 
Second, non-XML and non-relational data sources need the design and implementation 
of wrappers. Although this requires an additional programming effort today, the number 
of such sources will be decreased in the near future as more data providers and 
applications in molecular biology supply data in XML format. Finally, the current 
system doesn’t provide any mechanism to automatically handle changes in the data 
schema/format of the registered sources, therefore corresponding updates in the 
wrappers and already designed workflows should be manually performed.

Executable workflow engines like PLAN will be used in their full extent when 
combined with higher level languages defining abstract workflows, as described in 
(Ludäscher, 2003). Nevertheless, we have shown that there is a number of
bioinformatics applications that demand the explicit definition of low-level procedures 
(exact procedure of retrieving and filtering a data object) even if embedded in high-level 
languages. 
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Figure 1: PLAN system architecture (oval shapes represent processing units and 
rectangles represent data structures). Data sources are registered in the resource 
catalogue. Data access/computation instructions are handled in the execution stack. 
Retrieved data is temporary stored in the global buffer for further filtering/querying. 
Resulting data from each access/computation step are managed in the global data table. 
Data transfer between consecutive steps in a workflow is performed by invocation of 
the desired named global data table structures into the global buffer.



Figure 2: Transfer of sequence signature (PDZ domain) found in Swiss-Prot entry 
O14936 to structures in the PDB through a sequence alignment. It shows how this 
process can be controlled by correct filtering of BLAST output parameters, such as 
enabled by PLAN. a) A true positive hit in PDB is found when the sequence signature is 
within the limits of amino acid range being aligned. b) False positive hit: although 
BLAST has found a structure in PDB, it doesn’t contain the PDZ domain.



Figure 3: Conceptual workflow corresponding to the process of finding the 
representative data set for the study performed by Valdar and Thornton, 2001: data 
sources (databases and computations), operations (creation of collections and filtering) 
and description of criteria are included.



Table 1: PDZ domain containing structures in PDB retrieved by the corresponding 
workflow written with PLAN

PDB chain Organism Method SwissProt/TrEMBL
1kwa A,B,C,D Homo sapiens X ray (1.9) O14936
1b8q A
1qav B
1qau A

Rattus norvegicus NMR
X-ray (1.9)
X-ray (1.2)

P29476

1lcy A,B,C Homo sapiens X-ray (2.0) O43464
1ky9 A,B,C,D,E,F Escherichia coli X-ray (2.8) P09376
1bfe A,B
1be9 A,C,D,E,F,G
1qlc A

Rattus norvegicus X-ray (2.3)
X-ray (1.8)
NMR

P31016

1kef A Homo sapiens NMR P78352
1pdr A,B,C,D,E,F Homo sapiens X-ray (2.8) Q12959
3pdz A
1d5g A

Homo sapiens NMR
NMR

Q12923

1gm1 A Mus musculus NMR Q64512
2pdz A Mus musculus NMR Q61234
1i16 A Homo sapiens NMR Q14005
1ihj A,B Drosophila melanogaster X-ray (1.8) Q24008
1fcf A
1fc9 A
1fc7 A
1fc6 A

Scenedesmus obliquus X-ray (2.19
X-ray (1.9)
X-ray (2.0)
X-ray (1.8)

O04073

1g9o A
1i92 A
1gq4 A
1gq5 A

Homo sapiens X-ray (1.5)
X-ray (1.7)
X-ray (1.9)
X-ray (2.2)

O14745

1htj F Homo sapiens X-ray (2.2) O15085
1i16 Homo sapiens NMR Q14005



Table 2a: Families identified by Valdar & Thornton:

Description Enzyme Commission Number
Superoxide dismutase. 1.15.1.1
Glutathione transferase. 2.5.1.18
Alkaline phosphatase. 3.1.3.1
Phosphopyruvate hydratase. 4.2.1.11
Triosephosphate isomerase. 5.3.1.1
Subtilism inhibitor (SSI type) n.a.

Table 2b: Additional families identified with the corresponding workflow written with 
PLAN

Description Enzyme Commission Number
Malate dehydrogenase 1.1.1.37
Malate dehydrogenase (NADP+). 1.1.1.82
3-isopropylmalate dehydrogenase 1.1.1.85
Trypanothione-disulfide reductase. 1.8.1.12
Dihydrolipoamide dehydrogenase. 1.8.1.4
Glutathione-disulfide reductase. 1.8.1.7
Thioredoxin-disulfide reductase. 1.8.1.9
Transketolase. 2.2.1.1
Orotate phosphoribosyltransferase. 2.4.2.10
Uracil phosphoribosyltransferase 2.4.2.9
Dihydropteroate synthase 2.5.1.15
Ribosylhomocysteinase 3.2.1.148
Orotidine-5'-phosphate decarboxylase 4.1.1.23
Citrate (si)-synthase. 4.1.3.7
UDP-glucose 4-epimerase 5.1.3.2
Tyrosine--tRNA ligase. 6.1.1.1
Histidine--tRNA ligase. 6.1.1.21
Threonine--tRNA ligase. 6.1.1.3
Interferon gamma (IFN-gamma) n.a.
Transforming growth factor beta 2 (TGF-beta 2) n.a.
Transforming growth factor beta 3 (TGF-beta 3) n.a.


