
Performance Characteristics of the
Miyabi-G System with NVIDIA GH200

Grace-Hopper Superchip
Toshihiro Hanawa

JCAHPC /
Information Technology Center, The University of Tokyo

Norihisa Fujita Taisuke Boku
JCAHPC /

Center for Computational Sciences, University of Tsukuba

July 21, 2025 "Opportunities, benefits and challenges of sharing
memory between CPUs and GPUs" workshop in PEARC'25 1

JCAHPC
http://jcahpc.jp/eng/index.html

2

• Joint Center for Advanced High Performance
Computing, since 2013
• University of Tsukuba & University of Tokyo

• Budgets of 2 Centers are combined
• Promotion on Computational Science,

Design/Procurement/Operation of Large-scale Systems
• Oakforest-PACS (OFP), 1st System of JCAHPC
• 8,208 Intel Xeon Phi, 25 PF, Fujitsu
• Top 500 (#6 (Nov.2016), #1 in Japan)

• Retired in the end of March 2022 (#39 (Nov.2021))
• National Flagship System (in fact) in FY.2019/2020
• Between K and Fugaku

July 21, 2025 "Opportunities, benefits and challenges of sharing
memory between CPUs and GPUs" workshop in PEARC'25

http://jcahpc.jp/eng/index.html

3

Miyabi (1/3)
Operation will start from Jan. 2025

Installation
& Operation:

Fujitsu

July 21, 2025 "Opportunities, benefits and challenges of sharing
memory between CPUs and GPUs" workshop in PEARC'25

37th of Top500
with 46.80 PFLOPS
(Jun. 2025)

Miyabi (2/3)
Operation starts in January 2025
• Miyabi-G: CPU+GPU: NVIDIA GH200
• Node: NVIDIA GH200 Grace-Hopper Superchip

• Grace: 72c, 3.456 TF, 120 GB, 512 GB/sec (LPDDR5X)
• H100: 66.9 TF DP-Tensor Core, 96 GB, 4,022 GB/sec (HBM3)

• Cache Coherent between CPU-GPU
• NVMe SSD for each GPU: 1.9TB, 8.0GB/sec, GPUDirect Storage

• Total (Aggregated Performance: CPU+GPU)
• 1,120 nodes, 78.8 PF, 5.07 PB/sec, IB-NDR 200

• Miyabi-C: CPU Only: Intel Xeon Max 9480 (SPR)
• Node: Intel Xeon Max 9480 (1.9 GHz, 56c) x 2

• 6.8 TF, 128 GiB, 3,200 GB/sec (HBM2e only)
• Total

• 190 nodes, 1.3 PF, IB-NDR 200
• 372 TB/sec for STREAM Triad (Peak: 608 TB/sec)

4July 21, 2025 "Opportunities, benefits and challenges of sharing
memory between CPUs and GPUs" workshop in PEARC'25

• File System: DDN EXA Scalar, Lustre FS
• 11.3 PB (NVMe SSD) 1.0TB/sec, “Ipomoea-01” with 26 PB is also available

• All nodes are connected with Full Bisection Bandwidth
• (400Gbps/8)×(32×20＋16×1) = 32.8 TB/sec

• Operation starts in January 2025, h3-Open-SYS/WaitoIO will be
adopted for communication between Acc-Group and CPU-Group

Miyabi (3/3)
Operation starts in January 2025

5

IB-NDR（400Gbps）
IB-NDR200（200） IB-HDR（200）

File System
DDN EXA Scaler

11.3 PB, 1.0TB/sec

Miyabi-C
Intel Xeon Max

(HBM2e) 2 x 190
1.3 PF, 608 TB/sec

Miyabi-G
NVIDIA GH200 1,120
78.2 PF, 5.07 PB/sec

Ipomoea-01
Common Shared Storage

26 PB

July 21, 2025 "Opportunities, benefits and challenges of sharing
memory between CPUs and GPUs" workshop in PEARC'25

6
July 21, 2025 "Opportunities, benefits and challenges of sharing

memory between CPUs and GPUs" workshop in PEARC'25 6

Performance Evaluation of System-Allocated
Memory on NVIDIA GH200

Objective
• This research aims for memory and communication performance on

GH200
• GH200 introduces a new unified memory (UM)

• However, its performance has not been well studied yet
• New UM has lower-overhead of CPU-GPU memory access than that of

previous implementations
• We also evaluate performance of inter-node communication (MPI)

• InfiniBand communication performance when data is located on the new UM
• Especially, communication performance on UM if data is located on GPU-

memory
"Opportunities, benefits and challenges of sharing

memory between CPUs and GPUs" workshop in PEARC'25 7July 21, 2025

Related Work
• Schieffer et. al [1]
• Performance evaluation on GH200 memory system
• Rodinia Benchmark and QC Simulation were used in the evaluation
• The new Unified Memory on GH200 is faster than traditional Managed

Memory
• Easy to port applications to GH200

• Originality of this research
• Performance evaluation on new system Miyabi-G
• Communication performance evaluation using multiple GH200 nodes

"Opportunities, benefits and challenges of sharing
memory between CPUs and GPUs" workshop in PEARC'25 8

[1] Gabin Schie.er, et. al., Harnessing Integrated CPU-GPU System Memory for HPC: a first look into Grace Hopper. In Proceedings
of the 53rd International Conference on Parallel Processing (ICPP '24). Association for Computing Machinery, New York, NY, USA,
199–209. https://doi.org/10.1145/3673038.3673110

July 21, 2025

GH200
• GH200 is a module which tightly couples

Grace CPU and Hopper GPU
• However, CPU-memory and GPU-memory are

separated
• CPU: LPDDR5X 120GB, GPU: HBM3 96GB (Miyabi-G)
• Differs from AMD’s APU (MI300A)

(In MI300A, CPU and GPU share the same HBM)
• Cache-Coherent is maintained between CPU

and GPU
• Proprietary bus (NVLink-C2C) connects

CPU and GPU
• Very high-bandwidth: 450GB/s (each direction)

"Opportunities, benefits and challenges of sharing
memory between CPUs and GPUs" workshop in PEARC'25 9

From Data Sheet:
https://resources.nvidia.com/en-us-
grace-cpu/grace-hopper-superchipJuly 21, 2025

GH200 Architecture
• Grace CPU

• CPU architecture is ARM. Be careful about x86-dependent
proprietary software

• 128bit SVE SIMD, 3.4TFLOPS@3GHz
• Applications designed for “Fugaku” A64FX can be ran on Grace as-is
• The width of SVE is 128bit, which is different from A64FX. Performance

may differ.
• LPDDR5X Memory 120GB, 512GB/s

• Hopper GPU (H100)
• 67 TFLOPS (DP, Tensor)
• HBM3 Memory 4.02TB/s
• Same CUDA core with SXM and PCIe H100

• You can run CUDA or OpenACC applications without any change
• NVLink-C2C is the same as PCIe bus in terms of application’s view

• NVLink-C2C is like a fast PCIe bus and cudaMemcpy() will be faster
• NVLink-C2C@450GB/s is 7x faster than PCIe Gen.5 x16@64GB/s

"Opportunities, benefits and challenges of sharing
memory between CPUs and GPUs" workshop in PEARC'25 10

The OFP-II system has 1,120 nodes for Accelerator node, each of which
consists of NVIDIA GH200 Grace Hopper Superchip (Arm Neoverse V2
core, cache-coherent with GPU), 190 nodes for General-purpose CPU
node, and NVIDIA/Mellanox InfiniBand NDR as a high-performance
interconnect. This is the first large-scale system with GH200 in Japan.
The system will be installed by Fujitsu, and Supermicro and Fujitsu
PRIMERGY servers are employed as compute nodes. The system employs
the shared files system by All Flash with 10.3 PB provided by Data Direct
Network (DDN). In addition, “Ipomoea-01” is also available as a large-
scale external filesystem to be coupled to OFP-II.

Overview

Joint Center for Advanced HPC (JCAHPC)
Center for Computational Sciences, University of Tsukuba
Information Technology Center, The University of Tokyo

New JCAHPC Supercomputer System

We decided to introduce a new supercomputer system “OFP-II” (tentative, aka. Post-OFP)
with a total peak performance of 79.5 PFLOPS as a successor of Oakforest-PACS. We will
start its operation in January 2025. This system will be installed in the Kashiwa campus,
the University of Tokyo, at the exact same location as the Oakforest-PACS system.

Configuration of OFP-II System

The OFP-II will be offered to researchers in Japan and their international collaborators through various types of programs
operated by HPCI, by MEXT’s Joint Usage/Research Centers, and by each of us under original supercomputer resource
sharing programs. Inheriting the philosophy of the introduction of Oakforest-PACS, OFP-II aims to promote novel
computational science methods leveraging AI, such as AI for HPC/Science, to offer a platform supporting Society 5.0 by
integration of simulation, data analysis, and machine learning, in addition to support users of large-scale applications.

Node Type Accelerator General-purpose CPU
Theoretical Peak
Performance 78.2 PFLOPS 1.29 PFLOPS

Number of Nodes 1,120 190
Total Memory Capacity 220.0 TiB 23.75 TiB
Total Memory BW 5.07 PB/sec 608 TB/sec
Interconnect

Topology
InfiniBand NDR200 (200 Gbps)

Full-bisection Fat Tree
Shared Filesystem Lustre FS

MDS
Server DDN ES400NVX2
of Servers (VM) 1 (4)
of inodes appx. 23.5 B

OSS

Server DDN ES400NVX2
of Servers 10 set
Capacity 10.3 PB (All Flash)
Theoretical BW 1.0 TB/sec

Node Type Accelerator node General-Purpose
CPU node

Server Supermicro
ARS-111GL-DNHR-LCC

FUJITSU Server
PRIMERGY CX2550 M7

CPU

Processor
NVIDIA GH200

Grace Hopper Superchip
(CPU: NVIDIA Grace)

Intel Xeon CPU Max 9480
（Codename:

Sapphire Rapids）
of CPUs (Core) 1 (72) 2 (56+56)
Frequency 2.6 GHz 1.9 GHz
Theoretical Peak
Perf. 2.99 TFLOPS 6.80 TFLOPS

Memory LPDDR5X HBM2E
Capacity /node 111 GiB (120 GB) 128 GiB
BW /node 512 GB/s 3.2 TB/s

GPU

Processor NVIDIA Hopper

N/A

of GPUs 1
of SMs 132
Theoretical Peak
Perf. 66.9 TFLOPS

Memory HBM3
Capacity 89.4 GiB (96 GB)
BW 4.02 TB/s

CPU-GPU conn. NVLink C2C 450 GB/sec
Cache-coherent

SSD NVMe SSD 1.92 TB, PCIe G4 x4 N/A

The peak performance of OFP-II becomes 79.5 PFLOPS and the total
memory BW is more than 5.6 PB/sec. All compute nodes and servers
organizing the filesystem are connected by fat-tree topology based on
InfiniBand-NDR, which provides full-bisection bandwidth. Therefore,
flexible and efficient utilization and operation of compute nodes and file
systems are available.

Node Specification

Specification of OFP-II System

Contact: Toshihiro Hanawa (hanawa@cc.u-tokyo.ac.jp)
Information Technology Center, The University of Tokyo

RFP Contract
Award Installation

2025

Operation

3 4 5 6 … 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 … 1 …

202420232022
Schedule

RFCRFI
Draft Spec. Final Spec.

Decide
GPU

GPU
Pre-bench

NVIDIA GH200 Grace Hopper Superchip

Hopper
GPU

GRACE
CPU

72c, 2.6 GHz

IB NDR HCA
ConnectX-7

LPDDR5X
111 GiB
(120 GB)

450 GB/s512 GB/s

HBM3
89.4 GiB
(96 GB)

4.02 TB/s

NVLink C2C

PCIe Gen4
x4

PCIe Gen5
x8

IB NDR200
(200 Gbps)

NVMe SSD
1.92 TB Block diagram

of Acc. node

InfiniBand NDR (400 Gbps), Full-bisection Fat-Tree

Shared Filesystem
Lustre FS
10.3 PB
All Flash

DDN ES400 NVX2 x10

1.0 TB/s Login node + Prepost

Login
node Login
node
Login
node Login
node

For CPU node
& Prepost For ACC node

NVIDIA Grace
CPU SuperchipIntel Xeon 8480+ x2

Common Large-Scale
Filesystem (UTokyo)

Ipomoea-01
Lustre FS
26 PB

Ethernet
RDMA

CPU node: 1.3 PFLOPS, 608 TB/s

CPU: Intel Xeon CPU Max 9480 x 2socket
(56 core, 1.9GHz, 112.5MB L3 Cache) x2

Mem: 128 GiB (HBM2E, 3.2 TB/sec)
× 190

Fujitsu PRIMERGY Server

Login
node Login
node
Login
node Login
node

ACC node: 78.2 PFLOPS, 5.07 PB/s

CPU+GPU: NVIDIA GH200
CPU: NVIDIA Grace

(72 core, 2.6 GHz, 117MB L3 Cache)
Mem: 111 GiB (LPDDR5X, 512 GB/sec)

GPU: NVIDIA H100
(66.9 TFLOPS, NVLink C2C 450 GB/sec)
Mem: 89.4 GiB (HBM3, 4.02 TB/sec)

× 1,120

Supermicro

InfiniBand NDR200
(200 Gbps)

InfiniBand NDR200
(200 Gbps) External

Connecting
Router

9

From Data Sheet:
https://resources.nvidia.com/en-us-grace-cpu/grace-hopper-superchip

JCAHPC,
https://www.itc.u-tokyo.ac.jp/OFP-II/poster_OFP2-JCAHPC.pdfJuly 21, 2025

GH200 and System Allocated Memory
• CPU and GPU share the same address space and cache-coherent
• They are treated as NUMA nodes in kernel

• CPU is Node 0 and GPU is Node 1
• APIs for CPU NUMA are also applicable
• Memory characteristics is completely different in each NUMA domain

• System Allocated Memory (SAM)
• Normally (Regularly) allocated memory
• Both CPU and GPU can access and cache-coherent
• Memory pages are allocated by first-tough policy (same as CPU NUMA)
• Memory migration based on memory access from GPU

• One way CPU memory -> GPU memory. Opposite direction is not observed

• You can use CUDA APIs as same as traditional environment

"Opportunities, benefits and challenges of sharing
memory between CPUs and GPUs" workshop in PEARC'25 11July 21, 2025

System Allocated Memory on GH200
• System Allocated Memory（SAM）

• Normally (Regularly) allocated memory
• malloc(), mmap(), new (C++), allocate (Fortran), etc...

• Page Size
• Regular Page 64KB, Huge Page 512MB

(4KB page is possible but NVIDIA recommends 64KB page)
• Like false-sharing in caches, mixing CPU and GPU region in one page will have unexpected

performance degradation

• Traditional methods (CUDA API) are also supported
• Behavior is same as traditional environment
• Page allocation is in fixed location and no migration will happen

"Opportunities, benefits and challenges of sharing
memory between CPUs and GPUs" workshop in PEARC'25 12

Allocation API Location Migration CPU Access GPU Access

malloc(), etc. First Touch ◯ ◯ ◯

cudaMalloc() GPU ✕ ✕ ◯

cudaMallocHost() CPU ✕ ◯ ◯

July 21, 2025

SAM Page Migration
• When GPU accesses a page on CPU, the page may be migrated to

GPU (Page Migration)
• Each page has counter, and migration will happen in certain condition
• Single access is not enough. Multiple accesses are required.
• System automatically move data. Application does not require any action.
• GPU⇔LPDDR5X＠450GB/s is improved to GPU⇔HBM3＠4TB/s. Next access

will be faster.
• Opposite direction (GPU to CPU) migration is not supported

• We don’t observe migration from GPU to CPU trigged by memory access
• No detailed information about page migration in official documents
• More investigation is future work

"Opportunities, benefits and challenges of sharing
memory between CPUs and GPUs" workshop in PEARC'25 13July 21, 2025

Memory Copy Benchmark
• Memory copy benchmark is used to evaluate memory system performance of GH200 (A[i]=B[i])

• Combination of parameters: Memory allocation, page location, copy processor and copy method

• For SAM, first-touch is performed before benchmark to ensure the entire array is located either
LPDDR5X or HBM3

• Copy all elements = 1 iteration. 100 iterations are measured in total
• To check performance fluctuations and changes by migration

• Hereafter, we call fixed memory allocation by like cudaMalloc() as “Traditional”

"Opportunities, benefits and challenges of sharing
memory between CPUs and GPUs" workshop in PEARC'25 14

Memory Allocation Method SAM, cudaMalloc(),
cudaMallocHost()

Memory Page Location LPDDR5X, HBM3

Copy Processor CPU, GPU

Copy Method (API) OpenMP CPU, CUDA Kernel,
CUDA API

July 21, 2025

NVLink-C2C Performance
• NVLink-C2C performance

evaluation using CUDA API
• Performance with traditional ways

(no SAM)
(cudaMalloc+cudaMemcpy)
• HostToDevice is up to 400GB/s,

DeviceToHost is up to 300GB/s
• No performance fluctuations and

stable for each size
• Using 1 CUDA stream (serial

execution)
• If they are multiplexed, performance

would be better
• → Up to bandwidth of NVLink-C2C

• Much faster than PCIe bus
"Opportunities, benefits and challenges of sharing

memory between CPUs and GPUs" workshop in PEARC'25 15

cudaMemcpyHostToDevice

cudaMemcpyDeviceToHost

July 21, 2025

• CPU Memory Bandwidth
• About 400GB/s~420GB/s
• Faster performance on small cases

may be affected by the cache
• GPU Memory Bandwidth
• Larger array higher performance, up

to 3.4TB/s
• No performance fluctuations and

stable for each size
• NVLink-C2C is 400GB/s of

bandwidth
• LPDDR5X and HBM3 have same

order performance from CPU
perspective

"Opportunities, benefits and challenges of sharing
memory between CPUs and GPUs" workshop in PEARC'25 16

GPU Memory (HBM3) Bandwidth

CPU Memory (LPDDR5X) Bandwidth

July 21, 2025

GH200 Memory Performance

Migration Performance
• GPU copies between arrays allocated on CPU memory
• Initial: all elements are LPDDR5-to-LPDDR5 copy by GPU → lower performance
• Partially migrated: some elements are HBM3-to-HBM3 → gradually improving

performance
• All migrated: all elements are HBM3-to-HBM3 copy by GPU → best performance

"Opportunities, benefits and challenges of sharing
memory between CPUs and GPUs" workshop in PEARC'25 17

0% Migrated 50% Migrated 100% Migrated
July 21, 2025

Migration Result
(4GB data size)

• Run benchmark 200 iterations and
measure performance for each

• 10 executions from start to show
variance

• malloc() + first touch, reside on CPU
initially

• GPU reads and writes arrays
• Performance improves over iterations

and close to cudaMalloc() on HBM3
• → Pages are migrated gradually

• Performance after migration has
completed is worse than native
HBM3 access

"Opportunities, benefits and challenges of sharing
memory between CPUs and GPUs" workshop in PEARC'25 18

GPU reads and writes SAM array on CPU (first-touch)

Iteration

July 21, 2025

Migration Result
(various data size)

• 100 iterations of copy, each
performance is plotted (128MB to
32GB)
• Time to migrate is roughly proportional

to array size

• Especially, in large array (e.g.,
8GB=Pink), performance after
migration is worse than small cases
• GPU-side TLB misses may degrade

performance
• Performance using HugePage is future

work
"Opportunities, benefits and challenges of sharing

memory between CPUs and GPUs" workshop in PEARC'25 19

cudaMalloc() + cudaMemcpy()

SAM Copy with Migration by GPU

July 21, 2025

Himeno Benchmark
• Himeno Benchmark

• Solves Poisson equation using Jacobi iterative
method

• Memory bandwidth bound
• SAM is applied to benchmark

• Problem Size XL (512x512x1024)
• 3000 Iteration (fixed)

• We consider SAM migration is completed

• SAM performance underperforms Traditional
• Lower memory bandwidth of SAM may affect the

performance, same as the copy benchmark
• SAM advantage is that no memory

management is required
• CUDA program can take advantages
• If we use SAM and OpenACC, we can program GPUs

with the same complexity as OpenMP CPU

"Opportunities, benefits and challenges of sharing
memory between CPUs and GPUs" workshop in PEARC'25 20

Intel CPU+PCIe H100

July 21, 2025

SAM and MPI Communication
• NVIDIA provides GPUDirect (GDR) for direct communication between

GPUs
• Many MPI implementations support GDR for direct data transfer
• GDR has been developed for PCIe-connected GPU environment

• GDR assumes GPU (isolated) memory over PCIe
• We observed behavior on GH200 and found that GDR is not applicable for

SAM
• Even if GDR is disabled, SAM on GPU memory is still communicable

• Both SAM on CPU and on GPU can be transferred without GDR
• Communication library must support GH200 architecture

• If communication library does not consider SAM,
We find out that communication behavior is not optimal for GH200

• → All pages are migrated to CPU from GPU while communication

"Opportunities, benefits and challenges of sharing
memory between CPUs and GPUs" workshop in PEARC'25 21July 21, 2025

SAM and UCX
• OpenMPI and its derivatives uses Unified Communication X（UCX）

• Communication capability and characteristics are from UCX
• “UCX can handle SAM” ≡ “MPI can handle SAM”

• NVIDIA InfiniBand supports SAM
• InfiniBand On-Demand Paging (ODP) is key feature on GH200
• ODP enables to keep pages on GPU while communication

• Without ODP, pages move to CPU while communication, which is not desirable on
GH200

• UCX configuration to enable ODP on SAM (host) memory
• Environment Variable UCX_REG_NONBLOCK_MEM_TYPES=“host”
• Using ucx.conf bundled with UCX 1.17 or later applies this configuration
• ucx_info command to show the value

"Opportunities, benefits and challenges of sharing
memory between CPUs and GPUs" workshop in PEARC'25 22July 21, 2025

osu_bw Evaluation
• Performance evaluation using osu_bw from OSU Micro Benchmark 7.5

• It supports GDR, but does not support SAM
• We modified CPU measurement code to support SAM on GPU memory

• MPC-X MPI bundled with NVIDIA HPC SDK 24.9
• OpenMPI-based MPI, UCX backend
• ODP support is enabled in UCX

• 3 evaluation patterns
• CPU ODP: CPU-to-CPU, ODP
• GPU SAM-ODP: GPU-to-GPU, SAM, ODP
• GPU GDR: GPU-to-GPU, cudaMalloc(), GPUDirect

• Tuning
• Set UCX_RNDV_THRESH=“intra:auto,inter:4096”
• Improve bandwidth between 4-16KB on GH200

"Opportunities, benefits and challenges of sharing
memory between CPUs and GPUs" workshop in PEARC'25 23July 21, 2025

osu_bw Result
• No difference for >= 128KB, and GPU memory is fast as

CPU memory
• In most cases, we don’t need to take care of memory allocation

method and memory page location

• GPU GDR is 10% slower than GPU SAM
• It seems that overhead comes from management cost of GDR

region

• GPU SAM is comparable performance to CPU
• Better than GDR on small cases
• Eager communication on GPU SAM memory has lower overhead

than GDR memory

• Note: not all MPIs use UCX
• I tested with NVIDIA MPC-X MPI (UCX backend)

• Other MPIs and communication libraries needs to be verified
• MVAPICH2, GASNet, ...

• NVIDIA InfiniBand supports SAM via Verbs API
• Other network interfaces like Slingshot needs to be verified

"Opportunities, benefits and challenges of sharing
memory between CPUs and GPUs" workshop in PEARC'25 24July 21, 2025

Summary and Future Work for SAM
analysis
• We evaluated SAM performance on GH200

• Fast communication over NVLink-C2C, cache-coherent between CPU and GPU, and
page migration contribute to efficient data sharing between CPU and GPU

• However, SAM migration has performance issue in some cases
• It appears TLB misses degrade performance, but further analysis is future work

• Inter-node communication has same or higher performance than traditional method
• Future Work

• Detailed analysis of page migration
• Evaluation of various communication patterns
• Non UCX-based MPIs
• Performance evaluation of SAM on practical applications

• with OpenACC/OpenMP (without data directives)
• It’s difficult to estimate SAM performance right now

• Performance comparison with AMD MI300A APU

"Opportunities, benefits and challenges of sharing
memory between CPUs and GPUs" workshop in PEARC'25 25July 21, 2025

Improvement of power efficiency in GH200
• So far, Miyabi-G operates without power capping

for GH200.
• Default: 900W for GH200 package, 300W for Grace, 700W

for Hopper
• By NVIDIA, the best power efficiency is around 450W (!!);

However, we do not want to increase the execution time
of user jobs.

è Is there any way to make it work both ways?
• CPU Frequency Governor could be used to adjust the

balance between CPU and GPU power budget.

• Related work
• Julita Corbalan, “EAR: Energy management framework for

HPC”
• Barcelona Supercomputer Center，LRZ SuperMUC

• Anna Yue et al., “EVeREST: An Effective and Versatile Runtime Energy
Saving Tool for GPUs,” PPoPP’25

è Will try in the future

July 21, 2025 "Opportunities, benefits and challenges of sharing
memory between CPUs and GPUs" workshop in PEARC'25 26

Power measurement points in GH200
• Read by sensor driver in Arm core
• Module Power : /sys/class/hwmon/hwmon1/device/power1_average
• Grace Power: /sys/class/hwmon/hwmon2/device/power1_average

• Similarly, hwmon3 è Sensor2, hwmon4 è Sensor3

July 21, 2025 "Opportunities, benefits and challenges of sharing
memory between CPUs and GPUs" workshop in PEARC'25 27

Module Power
Supply

Regulators
(Hopper + HBM)

Regulators
(CPU)

Regulators
(SOC)

Regulators
(other)

Sensor 0
(module)

Sensor 1
(Grace)

Sensor 2
(CPU)

Sensor 3
(SysIO)

Grace CPU

All Cores + Caches

System IO

LPDDR5X DRAM

HBM Hopper GPU

HPL @ GH200, CPU governor: performance
(900W-700W)
• HPL_OOC_MODE=1, N=141312
• 50.58 TFLOPS
• 27.73 kJ
è avg power 745.1 W
è 67.89 GF/W

July 21, 2025 "Opportunities, benefits and challenges of sharing
memory between CPUs and GPUs" workshop in PEARC'25 28

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35 40

Module GPU CPU Core SysIO

HPL @ GH200, CPU governor: ondemand
• HPL_OOC_MODE=1, N=141312
• 50.57 TFLOPS
• 27.21 kJ
è avg power 731.1 W
è 69.17 GF/W

July 21, 2025 "Opportunities, benefits and challenges of sharing
memory between CPUs and GPUs" workshop in PEARC'25 29

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35 40

Module GPU CPU Core SysIO

Ondemand with optimizing parameters
• /sys/devices/system/cpu/cpufreq/ondemand/up_threshold : 95è80

• Raise the frequency earlier.
• /sys/devices/system/cpu/cpufreq/ondemand/sampling_down_factor:
1è100
• Less likely to drop frequency

• HPL_OOC_MODE=1, N=141312
• 50.63 TFLOPS
• 27.29 kJ
è avg power 733.8 W
è 68.99 GF/W

July 21, 2025 "Opportunities, benefits and challenges of sharing
memory between CPUs and GPUs" workshop in PEARC'25 30

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35 40

Module GPU CPU Core SysIO

Summary & Future work

31
July 21, 2025 "Opportunities, benefits and challenges of sharing

memory between CPUs and GPUs" workshop in PEARC'25

• Performance evaluation for System Allocated Memory: SAM
• U Tsukuba will also introduce MI300A system March 2026 (?)

• Power optimization: Checking for optimal settings unique to CG1
(1 socket/node)
• Control by CPU Frequency governor, ondemand + parameter change

looks good
• Better performance for Green500
• To obtain good performance without setting special conditions

• Evaluation using practical applications
• Efficient use of local storage by NVMe SSD on each compute node
• Hopper GPU can access thru Grace CPU to SSD easily

• Once a file is mmaped by Grace CPU, and pointer can be used from Hopper GPU directly

2025/5/12 HPC研究会＠柏

32

FY.2011-2015 FY.2016-2020 FY.2021-2025 FY.2026-2030

Yayoi
Hitachi, 54.9 TF

T2k Todai
Hitachi, 140 TF

Oakleaf-FX
Oakbridge-FX

Fujitsu, 1.13+0.13PF
Reedbush-U/H/L
SGI-HPE, 3.36 PF

Wisteria/BDEC-01
Fujitsu, 33.1 PF

BDEC-02
150+ PF

OBCX
Fujitsu, 6.61 PF

Oakforest-PACS
Fujitsu, 25.0 PF

Miyabi
Fujitsu, 80.1 PF

mdx: Data Platform
Fujitsu

HA-PACS
Cray, 802+364 TF

COMA
Cray, 1.00 PF

Post-Cygnus
è MI300A

Cygnus
NEC, 2.40 PF, 64FPGA

Pegasus
NEC, 6.50 PF

T2k Tsukuba
Cray, 95 TF

CPU

CPU/GPU CPU/GPU

GPU

Cloud

Unification of OpenACC/OpenMP target
• Directive-based implementation (for easier GPU porting)
• OpenACC: virtually for NVIDIA GPU (except for HPE Cray compiler)

• OpenMP target: for NVIDIA/AMD/Intel GPUs, fewer function/docs

• Is uni<cation of the interfaces possible?
• Yes, we can unify the interfaces by using preprocessor macros
• Miki & Hanawa (2024, IEEE Access)

• https://github.com/ymiki-repo/solomon

• Basis: _Pragma()-style directive

• Supported backends:
• OpenACC, OpenMP target, OpenMP

• Which style do users prefer?
• Normal/messy implementation ➡

• ⬇ SimpliOed one

#ifdef OFFLOAD_BY_OPENACC
#pragma acc kernels vector_length(NTHREADS)
#pragma acc loop independent
#endif // OFFLOAD_BY_OPENACC
#ifdef OFFLOAD_BY_OPENMP_TARGET
#ifdef OFFLOAD_BY_OPENMP_TARGET_LOOP
#pragma omp target teams loop
thread_limit(NTHREADS)
#else // OFFLOAD_BY_OPENMP_TARGET_LOOP
#pragma omp target teams distribute parallel
for simd thread_limit(NTHREADS)
#endif // OFFLOAD_BY_OPENMP_TARGET_LOOP
#endif // OFFLOAD_BY_OPENMP_TARGET
for (int32_t i = 0; i < N; i++) {

OFFLOAD(AS_INDEPENDENT, NUM_THREADS(NTHREADS))
for (int32_t i = 0; i < N; i++) {

May 28, 2025
Introduction to GPU programming@Fugaku-

next kickoff

33

https://doi.org/10.1109/ACCESS.2024.3509380
https://doi.org/10.1109/ACCESS.2024.3509380
https://doi.org/10.1109/ACCESS.2024.3509380
https://github.com/ymiki-repo/solomon
https://github.com/ymiki-repo/solomon
https://github.com/ymiki-repo/solomon
https://github.com/ymiki-repo/solomon

