

Performance Characteristics of the Miyabi-G System with NVIDIA GH200 Grace-Hopper Superchip

Toshihiro Hanawa

JCAHPC /
Information Technology Center, The University of Tokyo

Norihisa Fujita Taisuke Boku

JCAHPC /
Center for Computational Sciences, University of Tsukuba

JCAHPC

筑波大学 University of Tsukuba

- Joint Center for Advanced High Performance Computing, since 2013
 - University of Tsukuba & University of Tokyo
 - Budgets of 2 Centers are combined
 - Promotion on Computational Science,
 Design/Procurement/Operation of Large-scale Systems
- Oakforest-PACS (OFP), 1st System of JCAHPC
 - 8,208 Intel Xeon Phi, 25 PF, Fujitsu
 - Top 500 (#6 (Nov.2016), #1 in Japan)
 - Retired in the end of March 2022 (#39 (Nov.2021))
- National Flagship System (in fact) in FY.2019/2020
 - Between K and Fugaku

Miyabi (1/3)

Operation will start from Jan. 2025

37th of Top500 with 46.80 PFLOPS (Jun. 2025)

Installation & Operation: Fujitsu

Miyabi (2/3) Tillist FUITSU

HBM3

96 GB

1.02 TB/s

Hopper

GPU

Miyabi-G: CPU+GPU: NVIDIA GH200

- Node: NVIDIA GH200 Grace-Hopper Superchip
 - Grace: 72c, 3.456 TF, 120 GB, 512 GB/sec (LPDDR5X)
 - H100: 66.9 TF DP-Tensor Core, 96 GB, 4,022 GB/sec (HBM3)
 - Cache Coherent between CPU-GPU
 - NVMe SSD for each GPU: 1.9TB, 8.0GB/sec, GPUDirect Storage
- Total (Aggregated Performance: CPU+GPU)
 - 1,120 nodes, 78.8 PF, 5.07 PB/sec, IB-NDR 200
- Miyabi-C: CPU Only: Intel Xeon Max 9480 (SPR)
 - Node: Intel Xeon Max 9480 (1.9 GHz, 56c) x 2
 - 6.8 TF, 128 GiB, 3,200 GB/sec (HBM2e only)
 - Total
 - 190 nodes, 1.3 PF, IB-NDR 200
 - 372 TB/sec for STREAM Triad (Peak: 608 TB/sec)

NVMe SSD

1.92 TB

512 GB/s

NVLink-C2C

450 GB/s/dir

PCle Gen5

IB NDR HCA

ConnectX-7

IB NDR200

(200 Gbps)

Miyabi (3/3)

- File System: DDN EXA Scalar, Lustre FS
 - 11.3 PB (NVMe SSD) 1.0TB/sec, "Ipomoea-01" with 26 PB is also available
- All nodes are connected with Full Bisection Bandwidth
 - $(400Gbps/8)\times(32\times20+16\times1) = 32.8 \text{ TB/sec}$
- Operation starts in January 2025, h3-Open-SYS/WaitolO will be adopted for communication between Acc-Group and CPU-Group

IB-NDR200(200)

IB-HDR (200)

Miyabi-G **NVIDIA GH200 1,120** 78.2 PF, 5.07 PB/sec

Miyabi-C Intel Xeon Max (HBM2e) 2 x 190 1.3 PF. 608 TB/sec

File System DDN EXA Scaler 11.3 PB, 1.0TB/sec

Ipomoea-01 **Common Shared Storage** 26 PB

加川田田川

Performance Evaluation of System-Allocated Memory on NVIDIA GH200

Objective

- This research aims for memory and communication performance on GH200
- GH200 introduces a new unified memory (UM)
 - However, its performance has not been well studied yet
 - New UM has lower-overhead of CPU-GPU memory access than that of previous implementations
- We also evaluate performance of inter-node communication (MPI)
 - InfiniBand communication performance when data is located on the new UM
 - Especially, communication performance on UM if data is located on GPUmemory

Related Work

- Schieffer et. al [1]
 - Performance evaluation on GH200 memory system
 - Rodinia Benchmark and QC Simulation were used in the evaluation
 - The new Unified Memory on GH200 is faster than traditional Managed Memory
 - Easy to port applications to GH200
- Originality of this research
 - Performance evaluation on new system Miyabi-G
 - Communication performance evaluation using multiple GH200 nodes

[1] Gabin Schieffer, et. al., Harnessing Integrated CPU-GPU System Memory for HPC: a first look into Grace Hopper. In Proceedings of the 53rd International Conference on Parallel Processing (ICPP '24). Association for Computing Machinery, New York, NY, USA, 199–209. https://doi.org/10.1145/3673038.3673110

GH200

- GH200 is a module which tightly couples Grace CPU and Hopper GPU
 - However, CPU-memory and GPU-memory are separated
 - CPU: LPDDR5X 120GB, GPU: HBM3 96GB (Miyabi-G)
 - Differs from AMD's APU (MI300A) (In MI300A, CPU and GPU share the same HBM)
 - Cache-Coherent is maintained between CPU and GPU
- Proprietary bus (NVLink-C2C) connects CPU and GPU
 - Very high-bandwidth: 450GB/s (each direction)

From Data Sheet: https://resources.nvidia.com/en-usgrace-cpu/grace-hopper-superchip

GH200 Architecture

- Grace CPU
 - CPU architecture is ARM. Be careful about x86-dependent proprietary software
 - 128bit SVE SIMD, 3.4TFLOPS@3GHz
 - Applications designed for "Fugaku" A64FX can be ran on Grace as-is
 - The width of SVE is 128bit, which is different from A64FX. Performance may differ.
 - LPDDR5X Memory 120GB, 512GB/s
- Hopper GPU (H100)
 - 67 TFLOPS (DP, Tensor)
 - HBM3 Memory 4.02TB/s
 - Same CUDA core with SXM and PCle H100
 - You can run CUDA or OpenACC applications without any change
 - NVLink-C2C is the same as PCle bus in terms of application's view
 - NVLink-C2C is like a fast PCle bus and cudaMemcpy() will be faster
 - NVLink-C2C@450GB/s is 7x faster than PCle Gen.5 x16@64GB/s

From Data Sheet:

https://resources.nvidia.com/en-us-grace-cpu/grace-hopper-superchip

JCAHPC,

GH200 and System Allocated Memory

- CPU and GPU share the same address space and cache-coherent
- They are treated as NUMA nodes in kernel
 - CPU is Node 0 and GPU is Node 1
 - APIs for CPU NUMA are also applicable
 - Memory characteristics is completely different in each NUMA domain
- System Allocated Memory (SAM)
 - Normally (Regularly) allocated memory
 - Both CPU and GPU can access and cache-coherent
 - Memory pages are allocated by first-tough policy (same as CPU NUMA)
 - Memory migration based on memory access from GPU
 - One way CPU memory -> GPU memory. Opposite direction is not observed
- You can use CUDA APIs as same as traditional environment

System Allocated Memory on GH200

- System Allocated Memory(SAM)
 - Normally (Regularly) allocated memory
 - malloc(), mmap(), new (C++), allocate (Fortran), etc...
- Page Size
 - Regular Page 64KB, Huge Page 512MB (4KB page is possible but NVIDIA recommends 64KB page)
 - Like false-sharing in caches, mixing CPU and GPU region in one page will have unexpected performance degradation
- Traditional methods (CUDA API) are also supported
 - Behavior is same as traditional environment
 - Page allocation is in fixed location and no migration will happen

Allocation API	Location	Migration	CPU Access	GPU Access
malloc(), etc.	First Touch	\bigcirc	\bigcirc	\circ
cudaMalloc()	GPU	×	×	\circ
cudaMallocHost()	CPU	×	0	0

SAM Page Migration

- When GPU accesses a page on CPU, the page may be migrated to GPU (Page Migration)
 - Each page has counter, and migration will happen in certain condition
 - Single access is not enough. Multiple accesses are required.
 - System automatically move data. Application does not require any action.
 - GPU⇔LPDDR5X@450GB/s is improved to GPU⇔HBM3@4TB/s. Next access will be faster.
- Opposite direction (GPU to CPU) migration is not supported
 - We don't observe migration from GPU to CPU trigged by memory access
 - No detailed information about page migration in official documents
 - More investigation is future work

Memory Copy Benchmark

- Memory copy benchmark is used to evaluate memory system performance of GH200 (A[i]=B[i])
 - Combination of parameters: Memory allocation, page location, copy processor and copy method

Memory Allocation Method	SAM, cudaMalloc(), cudaMallocHost()	
Memory Page Location	LPDDR5X, HBM3	
Copy Processor	CPU, GPU	
Copy Method (API)	OpenMP CPU, CUDA Kernel, CUDA API	

- For SAM, first-touch is performed before benchmark to ensure the entire array is located either LPDDR5X or HBM3
- Copy all elements = 1 iteration. 100 iterations are measured in total
 - To check performance fluctuations and changes by migration
- Hereafter, we call fixed memory allocation by like cudaMalloc() as "Traditional"

NVLink-C2C Performance

- NVLink-C2C performance evaluation using CUDA API
 - Performance with traditional ways (no SAM) (cudaMalloc+cudaMemcpy)
 - HostToDevice is up to 400GB/s, DeviceToHost is up to 300GB/s
 - No performance fluctuations and stable for each size
 - Using 1 CUDA stream (serial execution)
 - If they are multiplexed, performance would be better
 - → Up to bandwidth of NVLink-C2C
 - Much faster than PCIe bus

cudaMemcpyHostToDevice

GH200 Memory Performance

- CPU Memory Bandwidth
 - About 400GB/s~420GB/s
 - Faster performance on small cases may be affected by the cache
- GPU Memory Bandwidth
 - Larger array higher performance, up to 3.4TB/s
 - No performance fluctuations and stable for each size
- NVLink-C2C is 400GB/s of bandwidth
 - LPDDR5X and HBM3 have same order performance from CPU perspective

Bandwidth [GB/s] 16GB - 32GB 200 20 40 60 80 100 Iteration GPU Memory (HBM3) Bandwidth 4000 Size of each array **→** 128MB 3500 256MB 3000 2500 3andwidth | 2000 — 16GB 32GB 1000 500 memory between CPUs and GPUs" 20 40 60 80 100 Iteration

CPU Memory (LPDDR5X) Bandwidth

Size of each array
128MB

256MB 512MB 1GB

1200

Migration Performance

- GPU copies between arrays allocated on CPU memory
 - Initial: all elements are LPDDR5-to-LPDDR5 copy by GPU → lower performance
 - Partially migrated: some elements are HBM3-to-HBM3 → gradually improving performance
 - All migrated: all elements are HBM3-to-HBM3 copy by GPU → best performance

July 21, 2025

memory between CPUs and GPUs" workshop in PEARC'25

17

Migration Result (4GB data size)

- Run benchmark 200 iterations and measure performance for each
 - 10 executions from start to show variance
 - malloc() + first touch, reside on CPU initially
 - GPU reads and writes arrays
 - Performance improves over iterations and close to cudaMalloc() on HBM3
 - → Pages are migrated gradually
- Performance after migration has completed is worse than native HBM3 access

Migration Result (various data size)

- 100 iterations of copy, each performance is plotted (128MB to 32GB)
 - Time to migrate is roughly proportional to array size
- Especially, in large array (e.g., 8GB=Pink), performance after migration is worse than small cases
 - GPU-side TLB misses may degrade performance
 - Performance using HugePage is future work

Himeno Benchmark

- Himeno Benchmark
 - Solves Poisson equation using Jacobi iterative method
 - Memory bandwidth bound
- SAM is applied to benchmark
 - Problem Size XL (512x512x1024)
 - 3000 Iteration (fixed)
 - We consider SAM migration is completed
- SAM performance underperforms Traditional
 - Lower memory bandwidth of SAM may affect the performance, same as the copy benchmark
- SAM advantage is that no memory management is required
 - CUDA program can take advantages
 - If we use SAM and OpenACC, we can program GPUs with the same complexity as OpenMP CPU

SAM and MPI Communication

- NVIDIA provides GPUDirect (GDR) for direct communication between GPUs
 - Many MPI implementations support GDR for direct data transfer
 - GDR has been developed for PCIe-connected GPU environment
- GDR assumes GPU (isolated) memory over PCle
 - We observed behavior on GH200 and found that GDR is not applicable for SAM
 - Even if GDR is disabled, SAM on GPU memory is still communicable
- Both SAM on CPU and on GPU can be transferred without GDR
 - Communication library must support GH200 architecture
 - If communication library does not consider SAM, We find out that communication behavior is not optimal for GH200
 - → All pages are migrated to CPU from GPU while communication

SAM and UCX

- OpenMPI and its derivatives uses Unified Communication X(UCX)
 - Communication capability and characteristics are from UCX
 - "UCX can handle SAM"

 ≡ "MPI can handle SAM"
- NVIDIA InfiniBand supports SAM
 - InfiniBand On-Demand Paging (ODP) is key feature on GH200
 - ODP enables to keep pages on GPU while communication
 - Without ODP, pages move to CPU while communication, which is not desirable on GH200
 - UCX configuration to enable ODP on SAM (host) memory
 - Environment Variable UCX_REG_NONBLOCK_MEM_TYPES="host"
 - Using ucx.conf bundled with UCX 1.17 or later applies this configuration
 - ucx_info command to show the value

osu_bw Evaluation

- Performance evaluation using osu_bw from OSU Micro Benchmark 7.5
 - It supports GDR, but does not support SAM
 - We modified CPU measurement code to support SAM on GPU memory
- MPC-X MPI bundled with NVIDIA HPC SDK 24.9
 - OpenMPI-based MPI, UCX backend
 - ODP support is enabled in UCX
- 3 evaluation patterns
 - CPU ODP: CPU-to-CPU, ODP
 - GPU SAM-ODP: GPU-to-GPU, SAM, ODP
 - GPU GDR: GPU-to-GPU, cudaMalloc(), GPUDirect
- Tuning
 - Set UCX_RNDV_THRESH="intra:auto,inter:4096"
 - Improve bandwidth between 4-16KB on GH200

osu_bw Result

- No difference for >= 128KB, and GPU memory is fast as CPU memory
 - In most cases, we don't need to take care of memory allocation method and memory page location
- GPU GDR is 10% slower than GPU SAM
 - It seems that overhead comes from management cost of GDR region
- GPU SAM is comparable performance to CPU
 - Better than GDR on small cases
 - Eager communication on GPU SAM memory has lower overhead than GDR memory
- Note: not all MPIs use UCX
 - I tested with NVIDIA MPC-X MPI (UCX backend)
 - Other MPIs and communication libraries needs to be verified
 - MVAPICH2, GASNet, ...
 - NVIDIA InfiniBand supports SAM via Verbs API
 - · Other network interfaces like Slingshot needs to be verified

Summary and Future Work for SAM analysis

- We evaluated SAM performance on GH200
 - Fast communication over NVLink-C2C, cache-coherent between CPU and GPU, and page migration contribute to efficient data sharing between CPU and GPU
 - However, SAM migration has performance issue in some cases
 - It appears TLB misses degrade performance, but further analysis is future work
 - Inter-node communication has same or higher performance than traditional method
- Future Work
 - Detailed analysis of page migration
 - Evaluation of various communication patterns
 - Non UCX-based MPIs
 - Performance evaluation of SAM on practical applications
 - with OpenACC/OpenMP (without data directives)
 - It's difficult to estimate SAM performance right now
 - Performance comparison with AMD MI300A APU

Improvement of power efficiency in GH200

- So far, Miyabi-G operates without power capping for GH200.
 - Default: 900W for GH200 package, 300W for Grace, 700W for Hopper
- By NVIDIA, the best power efficiency is around 450W (!!); However, we do not want to increase the execution time of user jobs.
- → Is there any way to make it work both ways?
- CPU Frequency Governor could be used to adjust the balance between CPU and GPU power budget.
- Related work
 - Julita Corbalan, "EAR: Energy management framework for HPC"
 - Barcelona Supercomputer Center, LRZ SuperMUC
 - Anna Yue et al., "EVeREST: An Effective and Versatile Runtime Energy Saving Tool for GPUs," PPoPP'25
 - → Will try in the future

Grace Hopper Optimizations

Limiting Module Power

- The energy optimization that gives the most gain is limiting the total Grace Hopper module
- If we have a maximum module power of 700W, we achieve 68 GFLOPS/Watt
- Limiting the module power to 500W, we achieve 78 GFLOPS/Watt

Power measurement points in GH200

- Read by sensor driver in Arm core
- Module Power: /sys/class/hwmon/hwmon1/device/power1_average
- Grace Power: /sys/class/hwmon/hwmon2/device/power1_average
 - Similarly, hwmon3 → Sensor2, hwmon4 → Sensor3

HPL @ GH200, CPU governor: performance (900W-700W)

- HPL_OOC_MODE=1, N=141312
- 50.58 TFLOPS
- 27.73 kJ
- → avg power 745.1 W
- → 67.89 GF/W

HPL @ GH200, CPU governor: ondemand

- HPL_OOC_MODE=1, N=141312
- 50.57 TFLOPS
- 27.21 kJ
- → avg power 731.1 W
- → 69.17 GF/W

Ondemand with optimizing parameters

- /sys/devices/system/cpu/cpufreq/ondemand/up_threshold : 95→80
 Raise the frequency earlier.
- /sys/devices/system/cpu/cpufreq/ondemand/sampling_down_factor:

1→100

- Less likely to drop frequency
- HPL_OOC_MODE=1, N=141312
- 50.63 TFLOPS
- 27.29 kJ
- → avg power 733.8 W
- → 68.99 GF/W

Summary & Future work

- Performance evaluation for System Allocated Memory: SAM
 - U Tsukuba will also introduce MI300A system March 2026 (?)
- Power optimization: Checking for optimal settings unique to CG1 (1 socket/node)
 - Control by CPU Frequency governor, ondemand + parameter change looks good
 - Better performance for Green500
 - To obtain good performance without setting special conditions
 - Evaluation using practical applications
- Efficient use of local storage by NVMe SSD on each compute node
 - Hopper GPU can access thru Grace CPU to SSD easily
 - Once a file is mmaped by Grace CPU, and pointer can be used from Hopper GPU directly

Unification of OpenACC/OpenMP target

- Directive-based implementation (for easier GPU porting)
 - OpenACC: virtually for NVIDIA GPU (except for HPE Cray compiler)
 - OpenMP target: for NVIDIA/AMD/Intel GPUs, fewer function/docs
- Is unification of the interfaces possible?
 - Yes, we can unify the interfaces by using preprocessor macros
 - Miki & Hanawa (2024, IEEE Access)
 - https://github.com/ymiki-repo/solomon
 - Basis: _Pragma()-style directive
 - Supported backends:
 - OpenACC, OpenMP target, OpenMP
- Which style do users prefer?
 - Normal/messy implementation
 - Simplified one

May 28, 2025

```
OFFLOAD(AS_INDEPENDENT, NUM_THREADS(NTHREADS))
for (int32_t i = 0; i < N; i++) {</pre>
```

```
#ifdef OFFLOAD BY OPENACC
    #pragma acc kernels vector_length(NTHREADS)
    #pragma acc loop independent
    #endif // OFFLOAD BY OPENACC
    #ifdef OFFLOAD_BY_OPENMP_TARGET
    #ifdef OFFLOAD_BY_OPENMP_TARGET_LOOP
    #pragma omp target teams loop
    thread_limit(NTHREADS)
    #else // OFFLOAD BY OPENMP TARGET LOOP
    #pragma omp target teams distribute parallel
    for simd thread limit(NTHREADS)
                                           // OFFLOAD BY OPENMP TARGET LOOP
                                           // OFFLOAD BY OPENMP TARGET
\frac{1}{4} This is a second of the second of
```