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• Different Approaches
• Why use it
• How can you program it
• Which method should you use? 

Unified Memory

7/29/252
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• If you have been at this workshop all morning, you know what it is: 
• Creating a single address space between CPU and GPU  (or any set of processing 

elements). 

• Ideally allowing both/all devices to access the same physical memory. 

• Not necessarily uniform access speeds. 

• There are a lot of historic approaches to achieving this; for a short talk, the two 
main ones on the market now (and the drivers for this workshop) are:   
• NVIDIA Grace-Hopper (Vista, IsembardAI, Jupiter, Alps, Miyabi-G, and soon Horizon). 

• AMD MI300A (El Capitan, SDSC Cosmos). 

Unified Memory 
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• The obvious reason: Reduce Complexity
• But a lot of code exists that assumes you don’t have it. 

• The hopeful reason: Increase Performance
• In almost every HPC context, making copies/moving data around is pure overhead. 

• Less obvious: Reduce total energy used.
• Turns out, a lot of power goes into moving data around. 

• Let’s look at how these could work, and what we know about if they do. 

Why would you want to do this? 



5

• GH200
• The CPU has its own LP-DDR memory.  
• The GPU has its own HBM memory. 
• The Address Translation System makes access work from either device; but each 

has different performance and capacity. 

• AMD MI300A 
• The CPU tiles and GPU tiles all have their own memories; but it is true shared 

memory NUMA just as in a multi-chiplet AMD CPU or across the tiles of a pure 
GPU.   (in essence, one chiplet has been subbed out for CPU cores instead of GPU 
cores). 

• All tiles have the same memory speed/capacity, but there is, as always, advantages 
to locality – access to remote tiles has a cost. 

Hardware Approaches

7/29/255
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Grace-Hopper Architecture

Source: https://arxiv.org/html/2407.07850v1   “Harnessing Integrated CPU-GPU System Memory for HPC: a first look into 
Grace Hopper”

https://arxiv.org/html/2407.07850v1
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• Data Movement uses a 
lot of energy.

•  Not just across 
networks, but across 
the chips themselves!

• In this NVIDIA 
examples, the actual 
math op is 1/3rd the 
power of the 
operation… the rest is 
datapath and buffers! 

• Tighter integration of 
memory can save a lot 
of power. 

A Note on Energy

7/29/257

Source: Giri Chukkupali, “NVIDIA Grace Hopper Architecture” , ATPESC-2023
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• We know (and Amit has shown) we get really good performance from Grace-
Hopper, vs. both CPUs and older CPU-GPU systems. 
• But, do we know where it came from? 

• Faster GPUs than A100 or MI250x? 
• Better CPUs than the old platform? 
• Removal of the PCI bus between GPU-CPU? 
• Unified/faster memory system? 

• And how would we measure the impacts of the memory system? 

• To do so, we need to know a little about how to program them; let’s dive into 
the GH200. 

Let’s consider performance a bit. 



Source: Giri Chukkupali, “NVIDIA Grace Hopper Architecture” , ATPESC-2023



Address Translation Service

With ATS, you have multiple options for how to deal with memory: 

• Explicit copies (manage as you always have). 

• Managed Memory

• System Allocated



Address Translation Service

Source: Giri Chukkupali, “NVIDIA Grace Hopper Architecture” , ATPESC-2023



And you can do this across languages! 

• Support for C, C++, Fortran, and Python. 
• Through OpenACC directives, or through native languages. 
• Python support still listed as “experimental”, but I used it and got acceleration. 

• With nv compilers, add –gpu=unified and -stdpar or -acc
• Fortran, use the do concurrent loop construct, e.g.

  do concurrent (i = 1 : size(b))

   a(b(i)) = i 

  enddo

• C++, use the stdpar package e.g.
 std::for_each(std::execution::par_unseq, r.begin(), r.end(), [&](auto i) { my_array[i] = init_val; });

• Python, use standard Numpy and Cupy, with managed allocation extensions. 



Memory Models in GH200

Source: https://arxiv.org/html/2407.07850v1   “Harnessing Integrated CPU-GPU System Memory for HPC: a first look into 
Grace Hopper”

https://arxiv.org/html/2407.07850v1


SpecFP Performance

Source: https://developer.nvidia.com/blog/simplifying-gpu-programming-for-hpc-with-the-nvidia-grace-hopper-superchip/

OpenACC implementation 
with/without –gpu=unified

Various apps, explicit 
memcopy vs. managed 
buffers vs. system.

Source: https://arxiv.org/html/2407.07850v1   “Harnessing Integrated CPU-GPU System Memory for HPC: a first look into Grace Hopper”

https://arxiv.org/html/2407.07850v1


Lulesh Performance

For Lulesh, the improvement 
comes from the H200 being 
faster and more power than 
the PCI version. 

Not so much from the 
memory system. 

Source: https://developer.nvidia.com/blog/simplifying-gpu-programming-for-hpc-with-the-nvidia-grace-hopper-superchip/



POT3D Performance

By contrast, with POT3D, 
unified memory makes 
OpenACC calls completely 
redundant. 

Source: https://developer.nvidia.com/blog/simplifying-gpu-programming-for-hpc-with-the-nvidia-grace-hopper-superchip/



Performance for the same Matrix Multiply, across 
3 ways of allocating memory in Python. 

• Let’s compare GH200 to GH200, so we can only look at performance of the memory 
system!  

• “Traditional” – allocate with numpy on the CPU, multiply on the GPU. 
• Old code on the new platform, in essence. 

• “Managed” – allocate on the CPU, use the shared memory system. 

• “GPU Local” – allocate on the GPU, use on the GPU (the old way if it fit).
• Multiply a 64kx16k matrix with a 16kx8k matrix to generate a 64kx8k matrix. 

• Data to be moved: ~10GB (and about a second of FLOPS). 



The setup: 

Vista Modules: gcc/15.1.0 cuda/12.9 python3

Python libraries: 
 import nvmath as nv
 import cupy as cp
 import numpy as np
 import cupy._core.numpy_allocator as ac
 import numpy_allocator
 import ctypes
 import time
The allocator package is experimental last I checked



My simple kernel for these measurements: 

m, n, k = 65536, 32768, 8192

A = np.random.rand(m, n)

B = np.random.rand(n, k)

C = np.random.rand(m, k)

start = time.time()

D = cp.matmul(cp.asarray(A), cp.asarray(B) )

elapsed = time.time() - start

print(f"MatMul:  Time: {elapsed:.2f}s")



To use managed memory: 

This is the experimental part: 

cp.cuda.set_allocator(cp.cuda.MemoryPool(cp.cuda.malloc_managed).malloc)

lib = ctypes.CDLL(ac.__file__)

class my_allocator(metaclass=numpy_allocator.type):

  _calloc_ = ctypes.addressof(lib._calloc)

  _malloc_ = ctypes.addressof(lib._malloc)

  _realloc_ = ctypes.addressof(lib._realloc)

  _free_ = ctypes.addressof(lib._free)

my_allocator.__enter__()



All GPU Version: 

A = cp.random.rand(m, n)

B = cp.random.rand(n, k)

C = cp.random.rand(m, k)

start = time.time()

D = cp.matmul(cp.asarray(A), cp.asarray(B) )

cp.cuda.Stream.null.synchronize()

elapsed = time.time() - start

print(f"MatMul:  Time: {elapsed:.2f}s")

With Managed Memory on,  NumPy and CuPy references is just the domain of where to run the command.



Results

5 runs on Vista dev node, GH200: 

• Traditional copy:  1.99 seconds
• ATS/Managed:  1.30 seconds

• GPU Native: 1.01 seconds (should be the upper bound). 

Unified memory is a huge improvement on the traditional copy, execution time reduced 
by 1/3rd.    GPU native is the best you can get, but assumes your data fits in GPU 
memory, and didn’t ever have to get there.  

• Another way to look at this: With traditional copy, the runtime is 50% overhead; with unified 
memory, it’s only 25% overhead.   

• As usual, the code matters, not just the chip! 



Takeaways 
• Well implemented managed memory systems *can* help performance, power, and 

open up different programming models.  

• You can run code without changes… but it may not be optimal. 

• You can run code without managing data movement… but that may not be optimal 
either! 

• As always, good implementation helps; hopefully this type of system will be closer to 
universal in the future! 
• Certainly, you will see a lot of it on upcoming NVIDIA machines – future AMD systems TBD. 



Thanks!
dan@tacc.utexas.edu


