NSF LEADERSHIP-CLASS
COMPUTING FACILITY

Unified Memory - to
use or Not to use.

Dan Stanzione

July, 2025

TEXAS ADVANCI IMPUTING

Unified Memory

* Different Approaches

* Why use it

* How can you program it

* Which method should you use?

NSF Leadership-Class Computing Facility Texas Advanced Computing Center | The University of Texas at Austin 227/29/25

Unified Memory

* If you have been at this workshop all morning, you know what it is:

* Creating a single address space between CPU and GPU (or any set of processing
elements).

* Ideally allowing both/all devices to access the same physical memory.

* Not necessarily uniform access speeds.

* There are a lot of historic approaches to achieving this; for a short talk, the two
main ones on the market now (and the drivers for this workshop) are:

* NVIDIA Grace-Hopper (Vista, IsembardAl, Jupiter, Alps, Miyabi-G, and soon Horizon).
* AMD MI300A (El Capitan, SDSC Cosmos).

NSF Leadership-Class Computing Facility Texas Advanced Computing Center | The University of Texas at Austin

Why would you want to do this?

* The obvious reason: Reduce Complexity

* But a lot of code exists that assumes you don’t have it.

* The hopeful reason: Increase Performance

* In almost every HPC context, making copies/moving data around is pure overhead.

* Less obvious: Reduce total energy used.

* Turns out, a lot of power goes into moving data around.

* Let's look at how these could work, and what we know about if they do.

NSF Leadership-Class Computing Facility

Texas Advanced Computing Center | The University of Texas at Austin

Hardware Approaches

* GH200
* The CPU has its own LP-DDR memory.

* The GPU has its own HBM memory.
* The Address Translation System makes access work from either device; but each
has different performance and capacity.

* AMD MI300A

* The CPU tiles and GPU tiles all have their own memories; but it is true shared
memory NUMA just as in a multi-chiplet AMD CPU or across the tiles of a pure
GPU. (in essence, one chiplet has been subbed out for CPU cores instead of GPU

cores).

* All tiles have the same memory speed/capacity, but there is, as always, advantages
to locality — access to remote tiles has a cost.

Texas Advanced Computing Center | The University of Texas at Austin 557/29/25

NSF Leadership-Class Computing Facility

Grace-Hopper Architecture

H O (1) Thread generated
I memory request

(3) TLB hit III

Cache-Coherent) L1&L2

Interconnect cache miss
(CCl) ATS-TBU | L2s

(NVLink-C2C)

over CCI

(6) Cache-line
received and cached l GMMU
(4) DMA request .

(5) Corresponding
cacheline sent
over CClI

Figure 1. An overview architecture of the Grace Hopper platform that interconnects CPU and GPU with high-throughput cache-
coherent NVLink-C2C.

Source: “Harnessing Integrated CPU-GPU System Memory for HPC: a first look into
Grace Hopper”

NSF Leadership-Class Computing Facility Texas Advanced Computing Center | The University of Texas at Austin

https://arxiv.org/html/2407.07850v1

A Note on Energy

e Data Movement uses a
lot of energy.

* Not just across
networks, but across
the chips themselves!

* In this NVIDIA 70 fJ/MAC
examples, the actual 35 £J/0P
math op is 1/3™ the
power of the 29 TOPS/W
operation... the rest is
datapath and buffers!

* Tighter integration of
memory can save a lot
Of power. Voltage (V)

)0
—
N
I
0 =
)
o
7
[t
) W
c
o
=
o
) L
o
o

Source: Giri Chukkupali, “NVIDIA Grace Hopper Architecture” , ATPESC-2023

NSF Leadership-Class Computing Facility Texas Advanced Computing Center | The University of Texas at Austin 177/29/25

Let’s consider performance a bit.

* We know (and Amit has shown) we get really good performance from Grace-
Hopper, vs. both CPUs and older CPU-GPU systems.

* But, do we know where it came from?

* Faster GPUs than A100 or MI250x?

* Better CPUs than the old platform?

* Removal of the PCI bus between GPU-CPU?
* Unified/faster memory system?

* And how would we measure the impacts of the memory system?

* To do so, we need to know a little about how to program them; let’s dive into
the GH200.

NSF Leadership-Class Computing Facility Texas Advanced Computing Center | The University of Texas at Austin

GRACE+HOPPER MAKES ACCELERATION MORE ACCESSIBLE

Delivers Superior Performance and Efficiency for HPC

ABINIT
1.16 CPU bound

GU i = GPU-CPU

Speedu transfers
P

GPU-CPU
Data
Transfer
Overhea

|
7 H

()
E
-

c
=
)

=

o

Q

X
"
o

()
N
©

=

[-

(@)
=z

White Paper - Grace
x86+Hopper HGX Grace Hopper Hopper Superchip
Architecture

NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE. 33 <ANVIDIA.

Source: Giri Chukkupali, “NVIDIA Grace Hopper Architecture” , ATPESC-2023

Address Translation Service

With ATS, you have multiple options for how to deal with memory:
« Explicit copies (manage as you always have).
« Managed Memory

« System Allocated

Address Translation Service

GRACE HOPPER

Unified Programming Model

GPU mem CPU mem

» Address Translation Service (ATS) enables
all CPUs and GPUs in the node to share a
single page table

» System-allocated memory is accessible by
all CPU and GPU threads

* Runtime system backs system-allocated
memory with physical memory on first
touch, either on LPDDR5 X or HBM3,
depending on whether a CPU or a GPU
thread accesses it first .

Source: Giri Chukkupali, “NVIDIA Grace Hopper Architecture” , ATPESC-2023

And you can do this across languages!

« Support for C, C++, Fortran, and Python.
« Through OpenACC directives, or through native languages.
« Python support still listed as “experimental”, but | used it and got acceleration.

* With nv compilers, add —gpu=unified and -stdpar or -acc

« Fortran, use the do concurrent loop construct, e.g.
do concurrent (i = 1 : size(b))
a(b(i)) = i
enddo
« C++, use the stdpar package e.g.

std::for_each(std::execution::par_unseq, r.oegin(), r.end(), [&](auto i) { my_array[i] = init_val; });

« Python, use standard Numpy and Cupy, with managed allocation extensions.

Memory Models in GH200

Memory

Location

CPU/GPU

CPU/GPU

Source:

Grace Hopper”

PTE

Interface Init

Allocation

malloc () CPU

cudaMallocManaged ()

cudaMalloc ()
cuMemCreate()
numa_alloc_onnode()
cudaMallocHost ()
cudaHostAlloc ()

cuMemCreate()

“Harnessing Integrated CPU-GPU System Memory for HPC: a first look into

Cache

Coherent

Migration
Granularity
transparent

128 byte
64KB

transparent
2MB
explicit

1 byte

explicit
1 byte

https://arxiv.org/html/2407.07850v1

SpecFP Performance

OpenACC implementation
with/without —gpu=unified

N
o

N
=}

mexplicit mmanaged Osystem

.y
w

Various apps, explicit
memcopy vs. managed
buffers vs. system.

1.0

Relative Speed

e
2]

pathfinder

Source: “‘Harnessing Integrated CPU-GPU System Memory for HPC: a first look into Grace Hopper”

https://arxiv.org/html/2407.07850v1

Lulesh Performance

7.00X
For Lulesh, the improvement .
comes from the H200 being 2
Q 4.00X
faster and more power than .
the PCI version. £ 2.00x

1.00X

Not so much from the TN
0.00X

memory System Intel Xeon 8480+ H100 PCle GH200 (managed) GH200 (unified)

Figure 2. Comparison of LULESH performance using managed and unified memory options on NVIDIA GH200 with NVIDIA H100 PCle
and a modern CPU

Source: https://developer.nvidia.com/blog/simplifying-gpu-programming-for-hpc-with-the-nvidia-grace-hopper-superchip/

POT3D Performance

By contrast, with POT3D,
unified memory makes
OpenACC calls completely

red u ndant Explicit Memory Management No OpenACC Directives
(OpenACC) (Pure Fortran)

GH200

Figure 3. POT3D performance using OpenACC data directives compared to Grace Hopper unified memory

Source: https://developer.nvidia.com/blog/simplifying-gpu-programming-for-hpc-with-the-nvidia-grace-hopper-superchip/

Performance for the same Matrix Multiply, across
3 ways of allocating memory in Python.

» Let's compare GH200 to GH200, so we can only look at performance of the memory
system!

* “Traditional” — allocate with numpy on the CPU, multiply on the GPU.
Old code on the new platform, in essence.

« “Managed” — allocate on the CPU, use the shared memory system.
 “GPU Local” — allocate on the GPU, use on the GPU (the old way if it fit).

« Multiply a 64kx16k matrix with a 16kx8k matrix to generate a 64kx8k matrix.
Data to be moved: ~10GB (and about a second of FLOPS).

The setup:

Vista Modules: gcc/15.1.0 cuda/12.9 python3

Python libraries:
import nvmath as nv
import cupy as cp
import numpy as np
import cupy._core.numpy_allocator as ac
import numpy_allocator
import ctypes
import time
The allocator package is experimental last | checked

My simple kernel for these measurements:

m, n, k = 65536, 32768, 8192

A = np.random.rand(m, n)

B = np.random.rand(n, k)

C = np.random.rand(m, k)

start = time.time()

D = cp.matmul(cp.asarray(A), cp.asarray(B))
elapsed = time.time() - start

print(f"MatMul: Time: {elapsed:.2f}s")

To use managed memory:

This is the experimental part:
cp.cuda.set_allocator(cp.cuda.MemoryPool(cp.cuda.malloc_managed).malloc)

lib = ctypes.CDLL(ac.__file_)
class my_allocator(metaclass=numpy_allocator.type):
cdalloc = ctypes.addressof(lib._calloc)
malloc = ctypes.addressof(lib._malloc)
readlloc = ctypes.addressof(lib._realloc)
free = ctypes.addressof(lib._free)

my_allocator.__enter_ ()

All GPU Version:

A = cp.random.rand(m, n)

B = cp.random.rand(n, k)

C = cp.random.rand(m, k)

start = time.time()

D = cp.matmul(cp.asarray(A), cp.asarray(B))
cp.cuda.Stream.null.synchronize()

elapsed = time.time() - start

print(f"MatMul: Time: {elapsed:.2f}s")

With Managed Memory on, NumPy and CuPy references is just the domain of where to run the command.

Results

5 runs on Vista dev node, GH200:

« Traditional copy: 1.99 seconds
« ATS/Managed: 1.30 seconds

 GPU Native: 1.01 seconds (should be the upper bound).

Unified memory is a huge improvement on the traditional copy, execution time reduced
by 1/39. GPU native is the best you can get, but assumes your data fits in GPU
memory, and didn’t ever have to get there.

Another way to look at this: With traditional copy, the runtime is 50% overhead; with unified
memory, it's only 25% overhead.

As usual, the code matters, not just the chip!

LELCEWEVE

Well implemented managed memory systems *can™ help performance, power, and
open up different programming models.

You can run code without changes... but it may not be optimal.

You can run code without managing data movement... but that may not be optimal
either!

As always, good implementation helps; hopefully this type of system will be closer to
universal in the future!

« Certainly, you will see a lot of it on upcoming NVIDIA machines — future AMD systems TBD.

NSF LEADERSHIP-CLASS
COMPUTING FACILITY

Thanks!

dan@tacc.utexas.edu

TACC | TEXAS
The University of Texas at Austin

TEXAS ADVANCED COMPUTING CENTER

