
Unified Memory – to
use or Not to use.
Dan Stanzione

July, 2025

2

• Different Approaches
• Why use it
• How can you program it
• Which method should you use?

Unified Memory

7/29/252

3

• If you have been at this workshop all morning, you know what it is:
• Creating a single address space between CPU and GPU (or any set of processing

elements).

• Ideally allowing both/all devices to access the same physical memory.

• Not necessarily uniform access speeds.

• There are a lot of historic approaches to achieving this; for a short talk, the two
main ones on the market now (and the drivers for this workshop) are:
• NVIDIA Grace-Hopper (Vista, IsembardAI, Jupiter, Alps, Miyabi-G, and soon Horizon).

• AMD MI300A (El Capitan, SDSC Cosmos).

Unified Memory

4

• The obvious reason: Reduce Complexity
• But a lot of code exists that assumes you don’t have it.

• The hopeful reason: Increase Performance
• In almost every HPC context, making copies/moving data around is pure overhead.

• Less obvious: Reduce total energy used.
• Turns out, a lot of power goes into moving data around.

• Let’s look at how these could work, and what we know about if they do.

Why would you want to do this?

5

• GH200
• The CPU has its own LP-DDR memory.
• The GPU has its own HBM memory.
• The Address Translation System makes access work from either device; but each

has different performance and capacity.

• AMD MI300A
• The CPU tiles and GPU tiles all have their own memories; but it is true shared

memory NUMA just as in a multi-chiplet AMD CPU or across the tiles of a pure
GPU. (in essence, one chiplet has been subbed out for CPU cores instead of GPU
cores).

• All tiles have the same memory speed/capacity, but there is, as always, advantages
to locality – access to remote tiles has a cost.

Hardware Approaches

7/29/255

6

Grace-Hopper Architecture

Source: https://arxiv.org/html/2407.07850v1 “Harnessing Integrated CPU-GPU System Memory for HPC: a first look into
Grace Hopper”

https://arxiv.org/html/2407.07850v1

7

• Data Movement uses a
lot of energy.

• Not just across
networks, but across
the chips themselves!

• In this NVIDIA
examples, the actual
math op is 1/3rd the
power of the
operation… the rest is
datapath and buffers!

• Tighter integration of
memory can save a lot
of power.

A Note on Energy

7/29/257

Source: Giri Chukkupali, “NVIDIA Grace Hopper Architecture” , ATPESC-2023

8

• We know (and Amit has shown) we get really good performance from Grace-
Hopper, vs. both CPUs and older CPU-GPU systems.
• But, do we know where it came from?

• Faster GPUs than A100 or MI250x?
• Better CPUs than the old platform?
• Removal of the PCI bus between GPU-CPU?
• Unified/faster memory system?

• And how would we measure the impacts of the memory system?

• To do so, we need to know a little about how to program them; let’s dive into
the GH200.

Let’s consider performance a bit.

Source: Giri Chukkupali, “NVIDIA Grace Hopper Architecture” , ATPESC-2023

Address Translation Service

With ATS, you have multiple options for how to deal with memory:

• Explicit copies (manage as you always have).

• Managed Memory

• System Allocated

Address Translation Service

Source: Giri Chukkupali, “NVIDIA Grace Hopper Architecture” , ATPESC-2023

And you can do this across languages!

• Support for C, C++, Fortran, and Python.
• Through OpenACC directives, or through native languages.
• Python support still listed as “experimental”, but I used it and got acceleration.

• With nv compilers, add –gpu=unified and -stdpar or -acc
• Fortran, use the do concurrent loop construct, e.g.

 do concurrent (i = 1 : size(b))

 a(b(i)) = i

 enddo

• C++, use the stdpar package e.g.
 std::for_each(std::execution::par_unseq, r.begin(), r.end(), [&](auto i) { my_array[i] = init_val; });

• Python, use standard Numpy and Cupy, with managed allocation extensions.

Memory Models in GH200

Source: https://arxiv.org/html/2407.07850v1 “Harnessing Integrated CPU-GPU System Memory for HPC: a first look into
Grace Hopper”

https://arxiv.org/html/2407.07850v1

SpecFP Performance

Source: https://developer.nvidia.com/blog/simplifying-gpu-programming-for-hpc-with-the-nvidia-grace-hopper-superchip/

OpenACC implementation
with/without –gpu=unified

Various apps, explicit
memcopy vs. managed
buffers vs. system.

Source: https://arxiv.org/html/2407.07850v1 “Harnessing Integrated CPU-GPU System Memory for HPC: a first look into Grace Hopper”

https://arxiv.org/html/2407.07850v1

Lulesh Performance

For Lulesh, the improvement
comes from the H200 being
faster and more power than
the PCI version.

Not so much from the
memory system.

Source: https://developer.nvidia.com/blog/simplifying-gpu-programming-for-hpc-with-the-nvidia-grace-hopper-superchip/

POT3D Performance

By contrast, with POT3D,
unified memory makes
OpenACC calls completely
redundant.

Source: https://developer.nvidia.com/blog/simplifying-gpu-programming-for-hpc-with-the-nvidia-grace-hopper-superchip/

Performance for the same Matrix Multiply, across
3 ways of allocating memory in Python.

• Let’s compare GH200 to GH200, so we can only look at performance of the memory
system!

• “Traditional” – allocate with numpy on the CPU, multiply on the GPU.
• Old code on the new platform, in essence.

• “Managed” – allocate on the CPU, use the shared memory system.

• “GPU Local” – allocate on the GPU, use on the GPU (the old way if it fit).
• Multiply a 64kx16k matrix with a 16kx8k matrix to generate a 64kx8k matrix.

• Data to be moved: ~10GB (and about a second of FLOPS).

The setup:

Vista Modules: gcc/15.1.0 cuda/12.9 python3

Python libraries:
 import nvmath as nv
 import cupy as cp
 import numpy as np
 import cupy._core.numpy_allocator as ac
 import numpy_allocator
 import ctypes
 import time
The allocator package is experimental last I checked

My simple kernel for these measurements:

m, n, k = 65536, 32768, 8192

A = np.random.rand(m, n)

B = np.random.rand(n, k)

C = np.random.rand(m, k)

start = time.time()

D = cp.matmul(cp.asarray(A), cp.asarray(B))

elapsed = time.time() - start

print(f"MatMul: Time: {elapsed:.2f}s")

To use managed memory:

This is the experimental part:

cp.cuda.set_allocator(cp.cuda.MemoryPool(cp.cuda.malloc_managed).malloc)

lib = ctypes.CDLL(ac.__file__)

class my_allocator(metaclass=numpy_allocator.type):

 calloc = ctypes.addressof(lib._calloc)

 malloc = ctypes.addressof(lib._malloc)

 realloc = ctypes.addressof(lib._realloc)

 free = ctypes.addressof(lib._free)

my_allocator.__enter__()

All GPU Version:

A = cp.random.rand(m, n)

B = cp.random.rand(n, k)

C = cp.random.rand(m, k)

start = time.time()

D = cp.matmul(cp.asarray(A), cp.asarray(B))

cp.cuda.Stream.null.synchronize()

elapsed = time.time() - start

print(f"MatMul: Time: {elapsed:.2f}s")

With Managed Memory on, NumPy and CuPy references is just the domain of where to run the command.

Results

5 runs on Vista dev node, GH200:

• Traditional copy: 1.99 seconds
• ATS/Managed: 1.30 seconds

• GPU Native: 1.01 seconds (should be the upper bound).

Unified memory is a huge improvement on the traditional copy, execution time reduced
by 1/3rd. GPU native is the best you can get, but assumes your data fits in GPU
memory, and didn’t ever have to get there.

• Another way to look at this: With traditional copy, the runtime is 50% overhead; with unified
memory, it’s only 25% overhead.

• As usual, the code matters, not just the chip!

Takeaways
• Well implemented managed memory systems *can* help performance, power, and

open up different programming models.

• You can run code without changes… but it may not be optimal.

• You can run code without managing data movement… but that may not be optimal
either!

• As always, good implementation helps; hopefully this type of system will be closer to
universal in the future!
• Certainly, you will see a lot of it on upcoming NVIDIA machines – future AMD systems TBD.

Thanks!
dan@tacc.utexas.edu

