GPU Computing and Programming

Andreas W Götz

San Diego Supercomputer Center
University of California, San Diego

Tuesday, April 9, 2019, 11:00 am to 12:00 pm, PDT
Webinar overview

We will cover the following topics

- GPU hardware overview
- GPU accelerated software examples
- GPU enabled libraries
- CUDA C programming basics
- OpenACC introduction
- Accessing GPU nodes and running GPU jobs on SDSC Comet
What is a GPU?

Accelerator
- Specialized hardware component to speed up some aspect of a computing workload.
- Examples include floating point co-processors in older PCs, specialized chips to perform floating point math in hardware rather than software. More recently, Field Programmable Gate Arrays (FPGAs).

Graphics processing unit
- “Specialist” processor to accelerate the rendering of computer graphics.
- Development driven by $150 billion gaming industry.
- Originally fixed function pipelines.
- Modern GPUs are programmable for general purpose computations (GPGPU).
- Simplified core design compared to CPU
 - Limited architectural features, e.g. branch caches
 - Partially exposed memory hierarchy
Why is there such an interest in GPUs?

Moore’s law
- Transistor count in integrated circuits doubles about every two years.
- Exponential growth still holds (see figure).
- However…

Trends since mid 2000s
- Clock frequency constant.
- Single CPU core performance (serial execution) roughly constant.
- Performance increase due to increase of CPU cores per processor.
- Cannot simply wait two years to double code execution performance.
- Must write parallel code.

Source: https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
Why is there such an interest in GPUs?

- GPUs offer significantly higher 32-bit floating point performance than CPUs.
- Datacenter GPUs also offer significantly higher 64-bit floating point performance than CPUs.

Figures source: https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
Why is there such an interest in GPUs?

- GPUs have significantly higher memory bandwidth than CPUs.
- Given power consumption, a fair comparison would be a single GPU to 2-socket CPU server.

Figures source: https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
Comparison of top X86 CPU vs Nvidia V100 GPU

<table>
<thead>
<tr>
<th>Aggregate performance numbers (FLOPs, BW)</th>
<th>Dual socket Intel 8180 28-core (56 cores per node)</th>
<th>Nvidia Tesla V100, dual cards in an x86 server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak DP FLOPs</td>
<td>4 TFLOPs</td>
<td>14 TFLOPs (3.5x)</td>
</tr>
<tr>
<td>Peak SP FLOPs</td>
<td>8 TFLOPs</td>
<td>28 TFLOPs (3.5x)</td>
</tr>
<tr>
<td>Peak HP FLOPs</td>
<td>N/A</td>
<td>224 TFLOPs</td>
</tr>
<tr>
<td>Peak RAM BW</td>
<td>~ 200 GB/sec</td>
<td>~ 1,800 GB/sec (9x)</td>
</tr>
<tr>
<td>Peak PCIe BW</td>
<td>N/A</td>
<td>32 GB/sec</td>
</tr>
<tr>
<td>Power / Heat</td>
<td>~ 400 W</td>
<td>2 x 250 W (+ ~ 400 W for server) (~ 2.25x)</td>
</tr>
<tr>
<td>Code portable?</td>
<td>Yes</td>
<td>Yes (OpenACC, OpenCL)</td>
</tr>
</tbody>
</table>
A supercomputer in a desktop?

ASCI White (LLNL)
- 12.3 TFLOP/sec – #1 Top 500, November 2001.
- Cost – $110 Million USD (in 2001!)

SDSC Comet
- 2.8 PFLOP/sec aggregate
- 36 nodes 2 x Nvidia K80
 - 5.5 TFLOP/sec DP, 16.4 TFLOP/sec SP (each node)
- 36 nodes 4 x Nvidia P100
 - 18.8 TFLOP/sec DP, 37.2 TFLOP/sec SP (each node)
- Cost – $25 Million USD ($14 Million Hardware)

DIY 4 x Nvidia RTX 2080 box
- 1.3 TFLOP/sec DP
- 40.0 TFLOP/sec SP
- Cost – ~ $5 Thousand USD
GPU accelerated software

Examples from virtually any field

- Chemistry
- Life sciences
- Bioinformatics
- Astrophysics
- Finance
- Medical imaging
- Natural language processing
- Social sciences
- Weather and climate
- Computational fluid dynamics
- Machine learning, of course
- etc...
Machine learning and GPUs

Machine learning
- Estimate / predictive model based on reference data.
- Many different methods and algorithms.
- GPUs are particularly well suited for deep learning workloads

Deep learning
- Neural networks with many hidden layers.
- Tensor operations (matrix multiplications).
- GPUs are very efficient at these (4x4 matrix algebra is used in 3D graphics)
- Half-precision arithmetic can be used for many ML applications, at least for inference.
- ML frameworks provide GPU support (E.g. PyTorch, TensorFlow)
Benchmark examples
Benchmark examples

Quantum chemistry

• Compute molecular properties from quantum mechanics (TeraChem code)
Benchmark examples

Molecular dynamics
• Amber code: Atomistic simulations of condensed phase biomolecular systems

Cytochrome c oxidase enzyme

Water exit pathway 1
Water exit pathway 2

 Millions of time steps required
• 16 order of magnitude range
 - Femtosecond timesteps
 - Need to simulate micro to milliseconds

Yang, Skjevik, Han Du, Noodleman, Walker, Götz,
BBA Bioenergetics 2016 (1857) 1594.
Benchmark examples

Molecular dynamics

- Amber code: Atomistic simulations of condensed phase biomolecular systems

Water exit pathway 1

Water exit pathway 2

Relevant timescales

- Bond vibration
- Isomerization
- Water dynamics
- Helix forms
- Fastest folders
- Typical folders
- Slow folders

10^{-15} femto
10^{-12} pico
10^{-9} nano
10^{-6} micro
10^{-3} milli
10^0 seconds

Millions of time steps required

Amber 18 molecular dynamics software

Cellulose in water
408,576 atoms
What’s the catch?

OUR SERVERS ARE USING TOO MUCH ELECTRICITY.
WE NEED TO USE GPUS

I DID MY PART BY READING ABOUT GPUS IN A TRADE JOURNAL. NOW YOU DO THE SOFTWARE PART.

WHY IS YOUR PART TAKING SO LONG?
GPU vs CPU architecture

CPU
- Few processing cores with sophisticated hardware
- Multi-level caching
- Prefetching
- Branch prediction

GPU
- Thousands of simplistic compute cores (packaged into a few multiprocessors)
- Operate in lock-step
- Vectorized loads/stores to memory
- Need to manage memory hierarchy
GPU architecture

Nvidia GPU architecture in 2009
- Tesla T10, a server with early C1060 datacenter GPU
- Basic architecture is still the same

Multiprocessor
- SP compute cores
- DP compute core(s)
- Special function units
- Instruction cache
- Shared memory / data cache
- Handles many more threads than processing cores
Hardware complexities

Hardware characteristics change across GPU models and generations
• Single precision / double precision floating point performance
• Memory bandwidth
• Number of compute cores and multiprocessors
• Number of threads that the hardware can execute
• Number of registers and cache size
• Available GPU memory, device / shared

Memory hierarchy needs to be explicitly managed
• CPU memory, GPU global / shared / texture / constant memory
• Unified memory helps, but the memory hierarchy still exists

Different hardware vendors work in different ways
• Nvidia vs AMD
Nvidia GPU models

Nvidia compute capabilities determine features available on Nvidia GPUs

• E.g. double precision support since version 1.3

Hardware Version 3.0 / 3.5
(Kepler I / Kepler II)
• Tesla K20 / K20X / K40 / K80
• Tesla K10 / K8
• GTX-Titan / Titan-Black / Titan-Z
• GTX770 / 780 / 780Ti
• GTX670 / 680 / 690
• Quadro cards supporting SM3.0 or 3.5

Hardware Version 2.0 (Fermi)
• Tesla M2090
• Tesla C2050/C2070/C2075 (and M variants)
• GTX560 / 570 / 580 / 590
• GTX465 / 470 / 480
• Quadro cards supporting SM2.0

Hardware Version 7.0 (Volta V100)
• Titan-V
• V100

Hardware Version 6.1 (Pascal GP102/104)
• Titan-XP [aka Pascal Titan-X]
• GTX-1080Ti / 1080 / 1070 / 1060
• Quadro P6000 / P5000
• P4 / P40

Hardware Version 6.0 (Pascal P100/DGX-1)
• Quadro GP100 (with optional NVLink)
• P100 12GB / P100 16GB / DGX-1

Hardware Version 5.0 / 5.5 (Maxwell)
• M4, M40, M60
• GTX-Titan-X
• GTX970 / 980 / 980 Ti
• Quadro cards supporting SM5.0 or 5.5
What this means for your program

Threads
• Never write code with any assumption for how many threads it will use.
• Use functions (CUDA calls) to query the hardware configuration at runtime.
• Launch many more threads than processing cores.

Data types
• Avoid using double precision where not specifically needed.
GPU programming languages

OpenCL
• Industry standard, works for Nvidia and AMD GPUs (and other devices)

CUDA
• Proprietary, works only for Nvidia GPUs
• De-facto standard for high-performance code

OpenACC
• Accelerator directives for Nvidia and AMD
• Works with C/C++ and Fortran

OpenMP
• Version 4.x includes accelerator and vectorization directives
• Works well with Intel Xeon Phi (and AVX512), not mature for GPUs
Nvidia GPU computing universe

<table>
<thead>
<tr>
<th>GPU Computing Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Libraries and Middleware</td>
</tr>
<tr>
<td>cuDNN TensorRT</td>
</tr>
<tr>
<td>cuFFT, cuBLAS, cuRAND, cuPARSE</td>
</tr>
<tr>
<td>Programming Languages</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>C++</td>
</tr>
<tr>
<td>Fortran</td>
</tr>
<tr>
<td>Java, Python, Wrappers</td>
</tr>
<tr>
<td>DirectCompute</td>
</tr>
<tr>
<td>Directives (e.g., OpenACC)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CUDA-enabled NVIDIA GPUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turing Architecture</td>
</tr>
<tr>
<td>(Compute capabilities 7.x)</td>
</tr>
<tr>
<td>DRIVE/JETSON AGX Xavier</td>
</tr>
<tr>
<td>GeForce 2000 Series</td>
</tr>
<tr>
<td>Quadro RTX Series</td>
</tr>
<tr>
<td>Tesla T Series</td>
</tr>
<tr>
<td>Volta Architecture</td>
</tr>
<tr>
<td>(Compute capabilities 7.x)</td>
</tr>
<tr>
<td>DRIVE/JETSON AGX Xavier</td>
</tr>
<tr>
<td>Quadro V Series</td>
</tr>
<tr>
<td>Tesla V Series</td>
</tr>
<tr>
<td>Pascal Architecture</td>
</tr>
<tr>
<td>(Compute capabilities 6.x)</td>
</tr>
<tr>
<td>Tegra X2</td>
</tr>
<tr>
<td>GeForce 1000 Series</td>
</tr>
<tr>
<td>Quadro P Series</td>
</tr>
<tr>
<td>Tesla P Series</td>
</tr>
<tr>
<td>Maxwell Architecture</td>
</tr>
<tr>
<td>(Compute capabilities 5.x)</td>
</tr>
<tr>
<td>Tegra X1</td>
</tr>
<tr>
<td>GeForce 900 Series</td>
</tr>
<tr>
<td>Quadro M Series</td>
</tr>
<tr>
<td>Tesla M Series</td>
</tr>
<tr>
<td>Kepler Architecture</td>
</tr>
<tr>
<td>(Compute capabilities 3.x)</td>
</tr>
<tr>
<td>Tegra K1</td>
</tr>
<tr>
<td>GeForce 700 Series</td>
</tr>
<tr>
<td>GeForce 600 Series</td>
</tr>
<tr>
<td>Quadro K Series</td>
</tr>
<tr>
<td>Tesla K Series</td>
</tr>
</tbody>
</table>

Source: CUDA C programming guide
Nvidia CUDA Toolkit

Obtain from https://nvidia.com/getcuda

Compiler
• CUDA compiler (nvcc)

Development Tools
• Debugger (CUDA-gdbm, CUDA-memcheck)
• Profiler (nvprof, nvvp)
• Nsight IDE for Eclipse and Visual Studio

Libraries
• cuBLAS, cuFFT, cuRAND, cuSPARSE, cuSolver, NPP, cuDNN, Thrust, CUDA Math Library, cuDNN

CUDA code samples
3 ways to use GPUs

Applications

Libraries
“Drop-in” Acceleration

OpenACC Directives
Easily Accelerate Applications

Programming Languages
Maximum Flexibility
GPU accelerated libraries

Ease of use
• GPU acceleration without in-depth knowledge of GPU programming
 “Drop-in”
• Many GPU accelerated libraries follow standard APIs
• Minimal code changes required

Quality
• High-quality implementations of functions encountered in a broad range of applications

Performance
• Libraries are tuned by experts

=> Use if you can – (do not write your own matrix multiplication)
GPU accelerated libraries

Deep Learning Libraries

<table>
<thead>
<tr>
<th>Library</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cuDNN</td>
<td>GPU-accelerated library of primitives for deep neural networks</td>
</tr>
<tr>
<td>TensorFlow</td>
<td>GPU-accelerated neural network inference library for building deep learning applications</td>
</tr>
<tr>
<td>Deeplens SH</td>
<td>Advanced GPU-accelerated video inference library</td>
</tr>
</tbody>
</table>

Linear Algebra and Math Libraries

<table>
<thead>
<tr>
<th>Library</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cuBLAS</td>
<td>GPU-accelerated standard BLAS library</td>
</tr>
<tr>
<td>CUDA Math Library</td>
<td>GPU-accelerated standard mathematical function library</td>
</tr>
<tr>
<td>cuSPARSE</td>
<td>GPU-accelerated BLAS for sparse matrices</td>
</tr>
<tr>
<td>cuRAND</td>
<td>GPU-accelerated random number generation (RNG)</td>
</tr>
<tr>
<td>cuSOLVER</td>
<td>Dense and sparse direct solvers for Computer Vision, CFD, Computational Chemistry, and Linear Optimization applications</td>
</tr>
<tr>
<td>AmgX</td>
<td>GPU accelerated linear solvers for simulations and implicit unstructured methods</td>
</tr>
</tbody>
</table>

Signal, Image and Video Libraries

<table>
<thead>
<tr>
<th>Library</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cuFFT</td>
<td>GPU-accelerated library for Fast Fourier Transforms</td>
</tr>
<tr>
<td>NVIDIA Performance Primitives</td>
<td>GPU-accelerated library for image and signal processing</td>
</tr>
<tr>
<td>NVIDIA Codec SDK</td>
<td>High-performance APIs and tools for hardware accelerated video encode and decode</td>
</tr>
</tbody>
</table>

Parallel Algorithm Libraries

<table>
<thead>
<tr>
<th>Library</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCCL</td>
<td>Collective Communications Library for scaling apps across multiple GPUs and nodes</td>
</tr>
<tr>
<td>nvGRAPH</td>
<td>GPU-accelerated library for graph analytics</td>
</tr>
<tr>
<td>Thrust</td>
<td>GPU-accelerated library of parallel algorithms and data structures</td>
</tr>
</tbody>
</table>

Partner Libraries

<table>
<thead>
<tr>
<th>Library</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenCV</td>
<td></td>
</tr>
<tr>
<td>FFmpeg</td>
<td></td>
</tr>
<tr>
<td>ArrayFire</td>
<td></td>
</tr>
</tbody>
</table>

... and several others
GPU accelerated libraries

3 steps to using libraries

• Step 1: Substitute library calls with equivalent CUDA library calls
 \[
 \text{saxpy (...) \rightarrow cublasSaxpy (...)}
 \]

• Step 2: Manage data locality
 - with CUDA: \text{cudaMalloc()}, \text{cudaMemcpy()}, etc.
 - with CUBLAS: \text{cublasSetVector()}, \text{cublasGetVector()}
 etc.

• Step 3: Rebuild and link the CUDA-accelerated library
 \[
 \text{nvcc myobj.o -l cublas}
 \]
CUBLAS library example

```c
int N = 1 << 20;

// Perform SAXPY on 1M elements: y[] = ax[] + y[]
saxpy(N, 2.0, d_x, 1, d_y, 1);
```
CUBLAS library example

```c
int N = 1 << 20;
```

// Perform SAXPY on 1M elements: d_y[] = a*d_x[] + d_y[]
cublasSaxpy(handle, N, 2.0, d_x, 1, d_y, 1);

Add “cublas” prefix and use device variables
CUBLAS library example

```
int N = 1 << 20;
cublasCreate(&handle);

// Perform SAXPY on 1M elements: d_y[] = a*d_x[] + d_y[]
cublasSaxpy(handle, N, 2.0, d_x, 1, d_y, 1);

cublasDestroy(handle);
```

Initialize CUBLAS

Shut down CUBLAS
CUBLAS library example

```c
int N = 1 << 20;
cublasCreate(&handle);
cudaMalloc((void**)&d_x, N*sizeof(float));
cudaMalloc((void**)&d_y, N*sizeof(float));

// Perform SAXPY on 1M elements: d_y[] = a*d_x[] + d_y[

cublasSaxpy(handle, N, 2.0, d_x, 1, d_y, 1);

cudaFree(d_x);
cudaFree(d_y);
cublasDestroy(handle);
```
CUBLAS library example

```c
int N = 1 << 20;
cublasCreate(&handle);
cudaMalloc((void**)&d_x, N*sizeof(float));
cudaMalloc((void**)&d_y, N*sizeof(float));

cublasSetVector(N, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(N, sizeof(y[0]), y, 1, d_y, 1);

// Perform SAXPY on 1M elements: d_y[] = a*d_x[] + d_y[]
cublasSaxpy(N, 2.0, d_x, 1, d_y, 1);

cublasGetVector(N, sizeof(y[0]), d_y, 1, y, 1);
cublasFree(d_x);
cublasFree(d_y);
cublasDestroy(handle);
```
int N = 1 << 20;
cublasCreate(&handle);
cudaMalloc((void**)&d_x, N*sizeof(float));
cudaMalloc((void**)&d_y, N*sizeof(float));
cublasSetVector(N, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(N, sizeof(y[0]), y, 1, d_y, 1);

// Perform SAXPY on 1M elements: d_y[i]=a*d_x[i]+d_y[i]
cublasSaxpy(N, 2.0, d_x, 1, d_y, 1);

cublasGetVector(N, sizeof(y[0]), d_y, 1, y, 1);

cublasFree(d_x);
cublasFree(d_y);
cublasDestroy(handle);
Nvidia CUDA

CUDA C
- Solution to run C seamlessly on GPUs (Nvidia only)
- De-facto standard for high-performance code on Nvidia GPUs
- Nvidia proprietary
- Modest extensions but major rewriting of code

CUDA Toolkit (free)
- Contains CUDA C compiler, math libraries, debugging and profiling tools

CUDA Fortran
- Supports CUDA extensions in Fortran, developed by Portland Group Inc (PGI)
- Available in the PGI Fortran Compiler
- PGI is now part of Nvidia
Nvidia CUDA C basics

CUDA programming guide
• See http://docs.nvidia.com/cuda/cuda-c-programming-guide/

Good books to get started
Heterogeneous Computing

Serial code

Parallel code

Serial code

Parallel code
1. Copy input data from CPU memory to GPU memory
Processing Flow

1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute, caching data on chip for performance
Processing Flow

1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute, caching data on chip for performance
3. Copy results from GPU memory to CPU memory
Unified memory

• Pool of managed memory that is shared between host and device
• Primarily productivity feature
• Memory copies still happen under the hood
• Available since CUDA 6 on Kepler architecture
• Page fault mechanisms supported since Pascal architecture
Some CUDA basics

Kernel
• In CUDA, a kernel is code (typically a function), that can be executed on the GPU.
• The kernel code operates in lock-step on the multiprocessors of the GPU.
 (In so-called warps, currently consisting of 32 threads)

Thread
• A thread is an execution of a kernel with a given index.
• Each thread uses its index to access a subset of data (e.g. array) to operate on.

Block
• Threads are grouped into blocks, which are guaranteed to execute on the same multiprocessor.
• Threads within a thread block can synchronize and share data

Grid
• Thread blocks are arranged into a grid of blocks.
• The number of threads per block times the number of blocks gives the total number of running threads.
Some CUDA basics

Threads, blocks, grids, warps

Grids
- Grids map to GPUs

Blocks
- Blocks map to the multiprocessors (MP)
- Blocks are never split across MPs
- Multiple blocks can execute simultaneously on an MP

Threads
- Threads are executed on stream processors (GPU cores)
- Warps are groups of threads that execute simultaneously, in lock-step (currently 32, not guaranteed to remain fixed).
Some CUDA basics

CUDA built-in variables
- Following variables allow to compute the ID of each individual thread that is executing in a grid block.

Block indexes
- `gridDim.x`, `gridDim.y`, `gridDim.z` (unused)
- `blockIdx.x`, `blockIdx.y`, `blockIdx.z`
- Variables that return the grid dimension (number of blocks) and block ID in the x-, y-, and z-axis.

Thread indexes
- `blockDim.x`, `blockDim.y`, `blockDim.z`
- `threadIdx.x`, `threadIdx.y`, `threadIdx.z`
- Variables that return the block dimension (number of threads per block) and thread ID in the x-, y-, and z-axis.

Example in the figure is executing 72 threads
- (3 x 2) blocks = 6 blocks
- (4 x 3) threads per block = 12 threads per block
Some CUDA basics

__global__ keyword

- Function that executes on the device (GPU), must return `void`, and is called from host code.

```c
__global__ vector_add_kernel(int *a, int *b, int *c, int n){
    int tid = threadIdx.x + blockDim.x * blockIdx.x;
    int stride = blockDim.x * gridDim.x;
    while (tid < n) {
        c[tid] = a[tid] + b[tid];
        tid += stride;
    }
}
```

CUDA API handles device memory

- `cudaMalloc()`, `cudaFree()`, `cudaMemcpy()`
- Equivalent to C `malloc()`, `free()`, `memcpy()`
- `cudaMemcpy()` is used to transfer data between CPU and GPU memory.

CUDA kernel launch specification

- Triple angle bracket determines grid and block size (i.e. total number of threads) for kernel launch:

```c
vector_add_kernel<<<dim3(bx,by,bz), dim3(tx,ty,tz)>>>(d_a, d_b, d_c, N);
```
Some CUDA basics

CUDA memory hierarchy

• Host memory (x86 server)
• Device memory (GPU)

Device memory

• Global memory
 visible to all threads, slow
• Shared memory
 visible to all threads in a block, fast on-chip
• Registers
 per-thread memory, fast on-chip
• Local memory
 per-thread, slow, stored in Global Memory space
• Constant memory
 visible to all threads, read only, off-chip, cached
 broadcast to all threads in a half-warp (16 threads)
General CUDA programming strategy

Avoid data transfers between CPU and GPU
• These are slow due to low PCI express bus bandwidth

Minimize access to global memory
• Hide memory access latency by launching many threads

Take advantage of fast shared memory by tiling data
• Partition data into subsets that fit into shared memory
• Handle each data subset with one thread block
• Load the subset from global to shared memory using multiple threads to exploit parallelism in memory access
• Perform computation on data subset in shared memory (each thread in thread block can access data multiple times)
• Copy results from shared memory to global memory
CUDA Example: Matrix-matrix multiply

float* host_A, host_B, host_C;
float* device_A, device_B, device_C;

// Allocate host memory
host_A = (float*) malloc(mem_size_A);
host_B = (float*) malloc(mem_size_B);
host_C = (float*) malloc(mem_size_C);

// Allocate device memory
cudaMalloc((void**) &device_A, mem_size_A);
cudaMalloc((void**) &device_B, mem_size_B);
cudaMalloc((void**) &device_C, mem_size_C);

// Set up the initial values of A and B here.
...

CUDA Example: Matrix-matrix multiply - 2

// copy host memory to device
cudaMemcpy(device_A, host_A, mem_size_A, cudaMemcpyHostToDevice);
cudaMemcpy(device_B, host_B, mem_size_B, cudaMemcpyHostToDevice);

// setup execution parameters
dim3 threads(BLOCK_SIZE, BLOCK_SIZE);
dim3 grid(WC / threads.x, HC / threads.y);

// execute the kernel
matrixMul<<<grid, threads>>>(device_C, device_A, device_B, WA, WB);

// copy result from device to host
cudaMemcpy(host_C, device_C, mem_size_C, cudaMemcpyDeviceToHost);

// Free host and device memory
...
CUDA Example: Matrix-matrix multiply kernel
CUDA Example: Matrix-matrix multiply kernel

```c
__global__ void matrixMul( float* C, float* A, float* B, int wA, int wB)
{
   // Block index
   int bx = blockIdx.x;
   int by = blockIdx.y;
   // Thread index
   int tx = threadIdx.x;
   int ty = threadIdx.y;
   // Index of the first sub-matrix of A processed by the block
   int aBegin = wA * BLOCK_SIZE * by;
   // Index of the last sub-matrix of A processed by the block
   int aEnd = aBegin + wA - 1;
   // Step size used to iterate through the sub-matrices of A
   int aStep = BLOCK_SIZE;
   // Index of the first sub-matrix of B processed by the block
   int bBegin = BLOCK_SIZE * bx;
   // Step size used to iterate through the sub-matrices of B
   int bStep = BLOCK_SIZE * wB;
   // Csub is used to store the element of the block sub-matrix
   // that is computed by the thread
   float Csub = 0;
}
```
CUDA Example: Matrix-matrix multiply kernel – 2

// Loop over all the sub-matrices of A and B
// required to compute the block sub-matrix
for (int a = aBegin, b = bBegin;
 a <= aEnd;
 a += aStep, b += bStep) {

 // Declaration of the shared memory array As
 // store the sub-matrix of A
 __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

 // Declaration of the shared memory array Bs
 // store the sub-matrix of B
 __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

 // Load the matrices from device memory
 // to shared memory; each thread loads
 // one element of each matrix
 AS(ty, tx) = A[a + wA * ty + tx];
 BS(ty, tx) = B[b + wB * ty + tx];

 // Synchronize to make sure the matrices are loaded
 __syncthreads();
CUDA Example: Matrix-matrix multiply kernel – 3

// Multiply the two matrices together;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < BLOCK_SIZE; ++k)
 Csub += AS(ty, k) * BS(k, tx);
// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of A and B in the next iteration
__syncthreads();

// Write the block sub-matrix to device memory;
// each thread writes one element
int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
C[c + wB * ty + tx] = Csub;
CUDA Example: Matrix-matrix multiply summary

Summary
• We made use of a variety of CUDA features including
 • 2D grids and blocks
 • Shared memory
 • Thread synchronization

Note
• In reality we would not write a matrix-matrix multiplication function
• The CUDA implementation of BLAS is highly optimized for GPUs
Directive based programming

OpenACC
• See https://www.openacc.org
• Open standard for expressing accelerator parallelism
• Designed to make porting to GPUs easy, quick, and portable
• OpenMP-like compiler directives language
 • If the compiler does not understand the directives, it will ignore them.
 • Same code can work with or without accelerators.
• Fortran and C
• Full support by PGI compilers and Cray compilers on Crays
• Partial support by GNU compilers (experimental since version 5.1)
• Also some less commonly used and experimental compilers

OpenMP
• See https://www.openmp.org
• Not mature for GPUs, will not discuss here
Directive based programming

PGI Community Edition

• See https://developer.nvidia.com/openacc-toolkit
• Community Edition is free
• PGI Accelerator Fortran / C / C++ compilers
• PGI 2018 supports
 • OpenACC 2.6 for Nvidia GPUs
 • OpenACC 2.6, CUDA Fortran, OpenMP 4.5 for Multicore CPUs
• Pgprof performance profiler
• GPU-enabled libraries
• OpenACC code samples
A simple OpenACC exercise: SAXPY

SAXPY in C

```c
void saxpy(int n,
    float a,
    float *x,
    float *restrict y)
{
    #pragma acc kernels
    for (int i = 0; i < n; ++i)
        y[i] = a*x[i] + y[i];
}

... // Perform SAXPY on 1M elements
saxpy(1<<20, 2.0, x, y);
...
```

SAXPY in Fortran

```fortran
subroutine saxpy(n, a, x, y)
    real :: x(:), y(:), a
    integer :: n, i
    !$acc kernels
    do i=1,n
        y(i) = a*x(i)+y(i)
    enddo
    !$acc end kernels
end subroutine saxpy

... ! Perform SAXPY on 1M elements
call saxpy(2**20, 2.0, x_d, y_d)
...
```
OpenACC directives syntax

Fortran

```fortran
!$acc directive [clause [,] clause] ...]
```
Often paired with a matching end directive

```
!$acc end directive
```

```
kernels construct

!$acc kernels [clause ...]
```

structured code block

```
!$acc end kernels
```

Clauses

```
if( condition )
async( expression )
```

or data clauses

C

```
#pragma acc directive [clause [,] clause] ...]
```
Often followed by a structured code block

```
kernels construct

#pragma acc kernels [clause ...]
```

structured code block

```
#pragma acc end kernels
```

```
{ structured code block }
```
OpenACC directives syntax

Data clauses

copy (list) Allocates memory on GPU and copies data from host to GPU when entering region and copies data to the host when exiting region.
copyin (list) Allocates memory on GPU and copies data from host to GPU when entering region.
copyout (list) Allocates memory on GPU and copies data to the host when exiting region.
create (list) Allocates memory on GPU but does not copy.
present (list) Data is already present on GPU from another containing data region.

and present_or_copy[in|out], present_or_create, deviceptr.
OpenACC example: Jacobi iteration

Iteratively converges to correct value (e.g. Temperature), by computing new values at each point from the average of neighboring points.

- Common, useful algorithm
- Example: Solve Laplace equation in 2D: $\Delta \varphi(x, y) = 0$

$$A_{k+1}(i,j) = \frac{A_k(i-1,j) + A_k(i+1,j) + A_k(i,j-1) + A_k(i,j+1)}{4}$$
OpenACC example: Jacobi iteration

```c
while ( error > tol && iter < iter_max )
{
    error=0.0;

    for( int j = 1; j < n-1; j++ ) {
        for( int i = 1; i < m-1; i++ ) {
            Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] + 
                                 A[j-1][i] + A[j+1][i]);
            error = max(error, abs(Anew[j][i] - A[j][i]));
        }
    }

    for( int j = 1; j < n-1; j++ ) {
        for( int i = 1; i < m-1; i++ ) {
            A[j][i] = Anew[j][i];
        }
    }

    iter++;
}
```

Iterate until converged
Iterate across matrix elements
Calculate new value from neighbors
Compute max error for convergence
Swap input/output arrays
OpenACC example: Jacobi iteration – first attempt

```c
while ( error > tol && iter < iter_max )
{
    error=0.0;

    #pragma acc kernels
    for( int j = 1; j < n-1; j++ ) {
        for( int i = 1; i < m-1; i++ ) {
            Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
                                A[j-1][i] + A[j+1][i]);

            error = max(error, abs(Anew[j][i] - A[j][i]));
        }
    }

    #pragma acc kernels
    for( int j = 1; j < n-1; j++ ) {
        for( int i = 1; i < m-1; i++ ) {
            A[j][i] = Anew[j][i];
        }
    }

    iter++;
}
```
OpenACC example: Jacobi iteration – first attempt

Compiler output

pgf90 -acc -ta=nvidia -Minfo=accel -o jacobi-pgf90-acc-v1.x jacobi-acc-v1.f90

laplace:

44, Generating copyout(anew(1:4094,1:4094))
 Generating copyin(a(0:4095,0:4095))

45, Loop is parallelizable
46, Loop is parallelizable
 Accelerator kernel generated
 Generating Tesla code
45, !$acc loop gang ! blockidx%y
46, !$acc loop gang, vector(128) ! blockidx%x threadidx%x

49, Max reduction generated for error

57, Generating copyin(anew(1:4094,1:4094))
 Generating copyout(a(1:4094,1:4094))

58, Loop is parallelizable
59, Loop is parallelizable
 Accelerator kernel generated
 Generating Tesla code
58, !$acc loop gang ! blockidx%y
59, !$acc loop gang, vector(128) ! blockidx%x threadidx%x
OpenACC example: Jacobi iteration – first attempt

SDSC Comet
CPU: Intel Xeon E5-2680 v3
GPU: NVIDIA Tesla K80
(using single GPU)

<table>
<thead>
<tr>
<th>Execution</th>
<th>Time (s)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU 1 OpenMP thread</td>
<td>71</td>
<td>--</td>
</tr>
<tr>
<td>CPU 2 OpenMP threads</td>
<td>41</td>
<td>1.73x</td>
</tr>
<tr>
<td>CPU 4 OpenMP threads</td>
<td>26</td>
<td>2.73x</td>
</tr>
<tr>
<td>CPU 6 OpenMP threads</td>
<td>24</td>
<td>2.96x</td>
</tr>
<tr>
<td>OpenACC GPU</td>
<td>501</td>
<td>0.05x FAIL</td>
</tr>
</tbody>
</table>

Speedup vs. 1 CPU core

Speedup vs. 6 CPU cores
OpenACC example: Jacobi iteration – first attempt

```
export PGI_ACC_TIME=1 ! Activate profiling, then run again

Accelerator Kernel Timing data
/server-home1/agoetz/UCSD_Phys244/2017/openacc-samples/laplace-2d/jacobi-acc-v1.f90
laplace NVIDIA devicenum=0
time(us): 89,612,134
..... <snip -- some lines cut>
44: data region reached 2000 times
   data copyin transfers: 8000
   device time(us): total=22,587,486 max=2,898 min=2,799 avg=2,823
52: data copyout transfers: 8000
   device time(us): total=20,278,262 max=2,612 min=2,497 avg=2,534
57: compute region reached 1000 times
59: kernel launched 1000 times
   grid: [128x1024] block: [32x4]
   device time(us): total=1,456,273 max=1,465 min=1,452 avg=1,456
   elapsed time(us): total=1,498,877 max=1,524 min=1,492 avg=1,498
57: data region reached 2000 times
57: data copyin transfers: 8000
   device time(us): total=22,664,227 max=2,902 min=2,802 avg=2,833
63: data copyout transfers: 8000
   device time(us): total=20,278,000 max=2,618 min=2,498 avg=2,534
```

What went wrong?

- We spent all the time with data transfers between host and device
OpenACC example: Jacobi iteration – first attempt

Excessive data transfers

```c
while ( error > tol && iter < iter_max )
{
    error=0.0;
    ...
}
```

These copies happen every iteration of the outer while loop!

A, Anew resident on host

#pragma acc kernels

```c
for( int j = 1; j < n-1; j++) {
    for( int i = 1; i < m-1; i++) {
        error = max(error, abs(Anew[j][i] - A[j][i]));
    }
}
```

A, Anew resident on host

A, Anew resident on accelerator

Copy

Copy

A, Anew resident on accelerator
OpenACC example: Jacobi iteration – second attempt

```
#pragma acc data copy(A), create(Anew)
while ( error > tol && iter < iter_max ) {
    error=0.0;

#pragma acc kernels
for( int j = 1; j < n-1; j++) {
    for(int i = 1; i < m-1; i++) {
        Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
                              A[j-1][i] + A[j+1][i]);

        error = max(error, abs(Anew[j][i] - A[j][i]));
    }
}

#pragma acc kernels
for( int j = 1; j < n-1; j++) {
    for( int i = 1; i < m-1; i++ ) {
        A[j][i] = Anew[j][i];
    }
}
iter++;
```
OpenACC example: Jacobi iteration – second attempt

<table>
<thead>
<tr>
<th>Execution</th>
<th>Time (s)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU 1 OpenMP thread</td>
<td>71</td>
<td>--</td>
</tr>
<tr>
<td>CPU 2 OpenMP threads</td>
<td>41</td>
<td>1.73x</td>
</tr>
<tr>
<td>CPU 4 OpenMP threads</td>
<td>26</td>
<td>2.73x</td>
</tr>
<tr>
<td>CPU 6 OpenMP threads</td>
<td>24</td>
<td>2.96x</td>
</tr>
<tr>
<td>OpenACC GPU</td>
<td>5</td>
<td>4.8x</td>
</tr>
</tbody>
</table>

SDSC Comet
CPU: Intel Xeon E5-2680 v3
GPU: NVIDIA Tesla K80
(using single GPU)

CPU Speedup vs. 1 CPU core

GPU Speedup vs. 6 CPU cores
More OpenACC

- OpenACC gives us more detailed control over parallelization
 - Via gang, worker, and vector clauses
 - Gang corresponds to block, shares resources such as cache, streaming multiprocessor etc)
 - Vector threads work in lockstep (warp)
 - Workers compute a vector, correspond to threads

- By understanding more about OpenACC execution model and GPU hardware organization, we can get higher speedups on this code

- By understanding bottlenecks in the code via profiling, we can reorganize the code for higher performance
More OpenACC

Finding and exploiting parallelism in your code

• (Nested) for loops are best for parallelization
• Large loop counts needed to offset GPU/memcpy overhead
• Iterations of loops must be independent of each other
 • To help compiler: restrict keyword (C), independent clause
• Compiler must be able to figure out sizes of data regions
 • Can use directives to explicitly control sizes
• Pointer arithmetic should be avoided if possible
 • Use subscripted arrays, rather than pointer-indexed arrays.
• Function calls within accelerated region must be inlineable.
More OpenACC

Tips and Tricks

• (PGI) Use time option to learn where time is being spent
 -ta=nvidia,time
• Eliminate pointer arithmetic
• Inline function calls in directives regions
 (PGI): -Minline or -Minline=levels:N
• Use contiguous memory for multi-dimensional arrays
• Use data regions to avoid excessive memory transfers
• Conditional compilation with _OPENACC macro
SDSC Comet GPU nodes

36 Nvidia K80 GPU nodes
• 2 x 12-core Intel Xeon E5-2680 v3 (Haswell) CPUs
• 128 GB RAM
• 2 x K80 GPUs on each node
• Each K80 = 2 GPUs => 4 GPUs per node
• 12 GB RAM per GPU

36 Nvidia P100 GPU nodes
• 2 x 14-core Intel Xeon E5-2680 v4 (Broadwell) CPUs
• 128 GB RAM
• 4 x P100 GPUs on each node
• 16 GB RAM per GPU

User guide: https://www.sdsc.edu/support/user_guides/comet.html
SDSC Comet GPU nodes

Login

$> ssh agoetz@comet.sdsc.edu
Last login: Tue Aug 2 15:45:49 2016 from 137.110.219.183
Rocks 6.2 (SideWinder)
Profile built 16:44 08-Feb-2016

Kickstarted 17:18 08-Feb-2016

WELCOME TO

Checking available queues

<table>
<thead>
<tr>
<th>Queue</th>
<th>Memory</th>
<th>CPU</th>
<th>Time</th>
<th>Node</th>
<th>Run</th>
<th>Que</th>
<th>Lm</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>compute</td>
<td>--</td>
<td>--</td>
<td>48:00</td>
<td>72</td>
<td>387</td>
<td>404</td>
<td>--</td>
<td>E R</td>
</tr>
<tr>
<td>debug</td>
<td>--</td>
<td>--</td>
<td>00:30</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>E R</td>
</tr>
<tr>
<td>shared</td>
<td>--</td>
<td>--</td>
<td>48:00</td>
<td>1</td>
<td>381</td>
<td>65</td>
<td>--</td>
<td>E R</td>
</tr>
<tr>
<td>gpu</td>
<td>--</td>
<td>--</td>
<td>48:00</td>
<td>1</td>
<td>18</td>
<td>239</td>
<td>--</td>
<td>E R</td>
</tr>
<tr>
<td>gpu-shared</td>
<td>--</td>
<td>--</td>
<td>48:00</td>
<td>1</td>
<td>28</td>
<td>13</td>
<td>--</td>
<td>E R</td>
</tr>
<tr>
<td>large-shared</td>
<td>--</td>
<td>--</td>
<td>48:00</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>--</td>
<td>E R</td>
</tr>
<tr>
<td>monitor</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>E R</td>
</tr>
<tr>
<td>maint</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>E R</td>
</tr>
</tbody>
</table>

822 725

GPU queues

- gpu
 (entire nodes with 4 GPUs)
- gpu-shared
 (individual GPUs)
SDSC Comet GPU nodes

- The GPU nodes can be accessed via either the "gpu" or the "gpu-shared" partitions.

 #SBATCH -p gpu

 Or

 #SBATCH -p gpu-shared

- In addition to the partition name (required), the type of gpu (optional) and the individual GPUs are scheduled as a resource.

 #SBATCH --gres=gpu[:type]:n

- GPUs will be allocated on a first available, first schedule basis, unless specified with the [type] option, where type can be k80 or p100 (type is case sensitive).

 #SBATCH --gres=gpu:4 #first available gpu node
 #SBATCH --gres=gpu:k80:4 #only k80 nodes
 #SBATCH --gres=gpu:p100:4 #only p100 nodes
SDSC Comet GPU nodes

• For example, on the "gpu" partition, the following lines are needed to utilize all 4 p100 GPUs:
 #SBATCH -p gpu
 #SBATCH --gres=gpu:p100:4

• Users should always set --ntasks-per-node equal to 6 x [number of GPUs] requested on all k80 "gpu-shared" jobs, and 7 x [number of GPUs] requested on all p100 "gpu-shared" jobs”. For instance, to request 2 x P100 GPUs:
 #SBATCH -p gpu-shared
 #SBATCH --ntasks-per-node=14
 #SBATCH --gres=gpu:p100:2

• Example job submission scripts are in /share/apps/examples/GPU

Charging SUs
• GPU SUs = [(Number of K80 GPUs) + (Number of P100 GPUS)*1.5] x (wallclock time)
SDSC Comet GPU nodes

• Load CUDA module and check Nvidia CUDA C compiler
 (available CUDA versions: 6.5, 7.0 (default), 7.5, 8.0, 9.2)

 [agoetz@comet-30-03 ~]$ module load cuda
 [agoetz@comet-30-03 ~]$ nvcc --version
 nvcc: NVIDIA (R) Cuda compiler driver
 Copyright (c) 2005-2015 NVIDIA Corporation
 Built on Mon_Feb_16_22:59:02_CST_2015
 Cuda compilation tools, release 7.0, V7.0.27

• Load PGI module and check PGI C compiler

 [agoetz@comet-30-03 ~]$ module load pgi
 [agoetz@comet-30-03 ~]$ pgcc --version

 pgcc 17.5-0 64-bit target on x86-64 Linux -tp haswell
 PGI Compilers and Tools
 Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
SDSC Comet GPU nodes

- Interactive access to GPU nodes

  ```
  agoetz@comet-ln2:~> srun --partition=gp...-pty --wait=0 --export=ALL /bin/bash
  ```

- Check available GPUs using Nvidia system management interface

  ```
  [agoetz@comet-33-02 ~]$ nvidia-smi
  ```

  ```
  Tue Apr 9 00:41:26 2019
  +-----------------------------------------------------------------------------+  
  | NVIDIA-SMI 396.26 Driver Version: 396.26                                   |  
  +-----------------------------------------------------------------------------+  
  | GPU Name | Persistence-M| Bus-ID | Disp.A | Volatile Uncorr. ECC | Fan | Temp | Perf | Pwr:Usage/Cap| Memory-Usage | GPU-Util | Compute M. |  
  +-----------------------------------------------------------------------------+  
  | 0 Tesla P100-PCIE... On | 00000000:04:00.0 Off | 0 |  
  | N/A 31C P0 30W / 250W | 0MiB / 16280MiB | 0% Default |  
  +-----------------------------------------------------------------------------+  
  | 1 Tesla P100-PCIE... On | 00000000:05:00.0 Off | 0 |  
  | N/A 57C P0 135W / 250W | 523MiB / 16280MiB | 96% Default |  
  +-------------------------------------------------------------------------------+
  ```
SDSC Comet GPU nodes

- Other jobs may already be running on shared GPU nodes.

<p>| Processes: |</p>
<table>
<thead>
<tr>
<th>GPU</th>
<th>PID</th>
<th>Type</th>
<th>Process name</th>
<th>GPU Memory</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>181582</td>
<td>C</td>
<td>/opt/amber/16/bin/pmemd.cuda</td>
<td>513MiB</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>65784</td>
<td>C</td>
<td>pmemd.cuda</td>
<td>1037MiB</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>67447</td>
<td>C</td>
<td>pmemd.cuda</td>
<td>1037MiB</td>
<td></td>
</tr>
</tbody>
</table>

- The nodes of the shared GPU queue are configured for the CUDA runtime to use only the requested number of GPUs.
- Check environment variable `CUDA_VISIBLE_DEVICES` for the GPU that has been assigned to you.
SDSC Comet GPU nodes

CUDA Toolkit Samples

• Install CUDA Toolkit code samples (does not require GPU node access)

 [agoetz@comet-31-16 ~]$ cuda-install-samples-7.0.sh ./
 Copying samples to ./NVIDIA_CUDA-7.0_Samples now...
 Finished copying samples.

• Explore CUDA Toolkit samples – great resource!

 [agoetz@comet-31-16 ~]$ cd NVIDIA_CUDA-7.0_Samples/
 [agoetz@comet-31-16 NVIDIA_CUDA-7.0_Samples]$ ls
 0_Simple 2_Graphics 4_Finance 6_Advanced common Makefile
 1_Utilsities 3_Imagining 5_Simulations 7_CUDALibraries EULA.txt

• Compile CUDA Toolkit samples

 [agoetz@comet-31-16 NVIDIA_CUDA-7.0_Samples]$ make -j 6
 make[1]: Entering directory `/home/agoetz/NVIDIA_CUDA-7.0_Samples/0_Simple/simpleMultiCopy'
 /usr/local/cuda-7.0/bin/nvcc -ccbin g++ -I../common/inc -m64 -gencode
 arch=compute_20,code=sm_20 -gencode arch=compute_30,code=sm_30 -gencode
 arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode
 arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode
 arch=compute_52,code=compute_52 -o simpleMultiCopy.o -c simpleMultiCopy.cu
SDSC Comet GPU nodes

CUDA Toolkit Samples

- Compilation takes a while, executables will reside in sub directory bin/x86_64/linux/release/
- Can also compile individual examples, e.g. deviceQuery, which prints information on available GPUs

```
[agoetz@comet-31-16 NVIDIA_CUDA-7.0_Samples]$ cd 1.Utilities/deviceQuery
[agoetz@comet-31-16 deviceQuery]$ make
/usr/local/cuda-7.0/bin/nvcc -ccbin g++ -I../../common/inc -m64 -gencode arch=compute...    
[agoetz@comet-31-16 deviceQuery]$ ./deviceQuery
./deviceQuery Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)

Device 0: "Tesla K80"
CUDA Driver Version / Runtime Version  8.0 / 7.0
CUDA Capability Major/Minor version number: 3.7
Total amount of global memory: 11440 MBytes (11995578368 bytes)
(13) Multiprocessors, (192) CUDA Cores/MP: 2496 CUDA Cores
GPU Max Clock rate:  824 MHz (0.82 GHz)
Memory Clock rate: 2505 Mhz
```
SDSC Comet GPU nodes

CUDA Toolkit

• Matrix multiplication example

gaotz@comet-30-11:~/NVIDIA_CUDA-7.0_Samples/0_Simple/
gaotz@comet-30-11:~/NVIDIA_CUDA-7.0_Samples/0_Simple>./matrixMul/matrixMul
 [Matrix Multiply Using CUDA] - Starting...
 GPU Device 0: "Tesla K80" with compute capability 3.7

 MatrixA(320,320), MatrixB(640,320)
 Computing result using CUDA Kernel... done
 Performance= 231.28 GFlop/s, Time= 0.567 msec, Size= 131072000 Ops, WorkgroupSize= 1024 threads/block
 Checking computed result for correctness: Result = PASS

 NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.

• Matrix multiplication example with CUBLAS

gaotz@comet-30-11:~/NVIDIA_CUDA-7.0_Samples/0_Simple>./matrixMulCUBLAS/matrixMulCUBLAS
 [Matrix Multiply CUBLAS] - Starting...
 GPU Device 0: "Tesla K80" with compute capability 3.7

 MatrixA(320,640), MatrixB(320,640), MatrixC(320,640)
 Computing result using CUBLAS...done.
 Performance= 952.24 GFlop/s, Time= 0.138 msec, Size= 131072000 Ops
 Computing result using host CPU...done.
 Comparing CUBLAS Matrix Multiply with CPU results: PASS
Questions?