![]() | |||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | ||
![]() |
![]() |
![]() |
![]() |
![]()
![]()
|
DOT 2.0: Macromolecular Docking Software
Please acknowledge your use of DOT by citing:
DOT is a software package for docking macromolecules, including proteins, DNA, and RNA. DOT performs a systematic, rigid-body search of one molecule translated and rotated about a second molecule. The intermolecular energies for all configurations generated by this search are calculated as the sum of electrostatic and van der Waals energies. These energy terms are evaluated as correlation functions, which are computed efficiently with Fast Fourier Transforms. In a typical run, energies for about 108 billion configurations of two molecules can be calculated in a few hours on a few desktop workstations working in parallel. The significantly enhanced new version of the DOT software package provides the following:
DOT has been successfully applied to stable protein-protein interactions, to the transient interactions between electron-transfer proteins, and to protein-DNA interactions. DOT's rigid-body docking has done well in the CAPRI (Critical Assessment of PRediction of Interactions http://capri.ebi.ac.uk/) experiments, in which predictions, usually based on unbound protein structures, are submitted before the structure of the complex is available. The combination of computational docking results from DOT with experimental data has proved to be a powerful tool for understanding molecular interactions. Docking results can help to interpret biochemical data by putting it into a structural context, can guide the design of new experiments to further explore macromolecular interactions, and can, by providing a large set of candidates, reveal complexes that best fit biochemical or spectroscopic data.
Please consult the following DOT documentation:
The CCMS team supports two DOT related mailing lists:
Please complete this registration form to download DOT 2.0. You will receive a link to a page containing documentation and precompiled binaries for several popular platforms. The CCMS folks really, really hate spam and really, really respect your privacy. We use your provided information only to send you the link to the download and to compile statistics for our grant sponsors. We provide binaries for the following platforms and architectures:
NIH GM-070996 |
Last revision: May 7, 2013 | San Diego Supercomputer Center |
URL: www.sdsc.edu/CCMS/DOT | © Copyright 2007 University of California at San Diego |