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ABSTRACT Correlated sampling technique has been applied to the fission matrix approach for Monte Carlo

eigenvalue calculation of reactivities (AK) due to small cross-section perturbations. The reference Monte Carlo
simulation is performed in a system different from both the unperturbed and perturbed systems. This allows the
determination of multiple AKs due to multiple cross-section perturbations with a single Monte Carlo simulation and
a corresponding significant reduction in computational effort. The method has been tested for one energy group
transport problems with isotropic scattering.

I. INTRODUCTION

For Monte Carlo reactivity calculation due to small cross-section perturbations, a correlated simulation between
the unperturbed and the perturbed histories is necessary. Differencing the eigenvalues of two independent (unper-
turbed and perturbed) Monte Carlo simulations poses problems for a calculation of a small reactivity perturbation.
This is due to the fact that the uncertainty associated with each of the two independent Monte Carlo eigenvalue
simulations tends to be larger than the difference of the eigenvalues'. Also the conventional Monte Carlo source
iteration technique to calculate the eigenvalue does not apply for eigenvalue perturbations except for a very limited
class of problems?. The source iteration method follows an artificially stabilized neutron population from one gener-
ation to another; and it is not possible to calculate an eigenvalue perturbation by transferring correlated perturbed
weights from one generation to the next. However, the Green’s function or fission matrix approach is suitable for
applying correlated sampling methods to calculate small perturbations in reactivity. In this approach, the fission
source region is subdivided into volume elements and the mutual fission probabilities for the mesh elements are
calculated using Monte Carlo simulation. The dominant eigenvalue of the resulting fission matrix constitutes the
multiplication factor of the system. In this method only the fission matrix is evaluated using Monte Carlo simulation
whereas the eigenvalue problem is solved using a conventional matrix iterative algorithm. Correlated sampling has
been applied to the fission matrix approach where along with the unperturbed fission matrix another fission matrix,
for the perturbed system, is generated from the correlated histories reacting with the perturbed system.

An efficient form of correlated sampling has been developed® where the Monte Carlo simulation is carried out
in an artificial reference system which is different from both the unperturbed and perturbed systems. The fission
matrices for the unperturbed and perturbed systems are formed by correlating those histories to the reference system’s
histories and by accounting for the differences in cross-sections. In this paper we report an extension of this idea for
multiple reactivity calculations due to multiple cross-section perturbations, using a single Monte Carlo simulation.
The Monte Carlo simulation is done in the artificial reference system and the unperturbed and multiple perturbed
fission matrices are generated by correlating them to the reference system’s histories. We have verified the accuracy
of this method against a deterministic transport theory code for two dimensional Cartesian geometry perturbation
problems in one energy group and with isotropic scattering. Since multiple reactivities, due to multiple perturbations,
are calculated from single simulation a significant reduction in computational effort is observed. This is shown by
comparing the computational time required for multiple reactivity calculation to that for single reactivity calculation.



II. MONTE CARLO EIGENVALUE CALCULATION FOR REACTIVITY PERTURBATION

There are two methods to calculate the multiplication constant K of a system using Monte Carlo methods*. One
is the source iteration technique where K for a generation is obtained from a ratio of the cumulative total number of
fission neutrons to the cumulative total number of source neutrons. The first generation source particles are started
from an assumed spatial distribution. For subsequent generations, the source distribution is based on the fission
neutron production distribution obtained from the previous generation. After each generation, some type of source
normalization is performed to prevent population explosion or extinction. Some initial generations are discarded to
eliminate the effect of the assumed first generation source distribution. The average K for the remaining generations
gives an estimate of the multiplication constant along with the statistical uncertainties. This procedure is not suitable
for eigenvalue perturbation calculation because perturbed weights, propagated from one generation to next, tend to
grow and eventually all the pertinent information about the perturbation is lost.

Another procedure to calculate eigenvalue, using the Monte Carlo method is to make use of the Green’s function or
fission matrix approach. The Monte Carlo fission matrix method defines the multiplication constant as the eigenvalue
of the homogeneous transport equation,

KQ(7) = / & Q)P —7) | (1)

where Q(7)dr is the number of fission neutrons produced in the differential volume dr about the position 7, P(7—7)dr
is the number of next generation fission neutrons produced in dr about 7 due to one fission neutron starting at 7,
and K is the multiplication factor, or the dominant eigenvalue of equation (1). A spatial grid (V,; m=1,2,...,.N) is
imposed on all regions that contain a fission source. Then, integrating over a volume V,,, equation (1) yields:
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where @, is the total number of fission neutrons produced in region m and p;,, (elements of matrix P) is the expected
number of fission neutrons produced in region m due to one fission neutron starting in region 1. The matrix P is
estimated during random walk within each fission generation. Once the p;,,’s have been evaluated using Monte
Carlo method the eigenvalue problem of equation (2) can be solved using standard matrix iterative methods for
the dominant eigenvalue. The calculation of the fission matrix constitutes an initial value problem and correlated
sampling can be applied directly to it.

III. APPLICATION OF CORRELATED SAMPLING FOR REACTIVITY CALCULATION

In the correlated sampling technique for particle transport problems, the perturbed histories are forced to follow
the same transition points in phase space as the unperturbed histories®. Appropriate weight factors are then used to
correct the weight of the perturbed particles due to the perturbation. Regular correlated sampling techniques require
that the Monte Carlo simulation is done in the unperturbed (up) system. It is assumed that another particle is being
simulated simultaneously in the perturbed (p) system. Both the unperturbed and the perturbed particles start with
a weight of unity. Whenever the unperturbed particle enters a perturbed region the weight of the perturbed particle
is multiplied by a biasing factor,

B = ﬂ — Etpemp(_ztpl) , (3)
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where 1 is the distance traveled within the perturbed region and ¥; is the macroscopic total cross-section. It is
necessary that B and hence F), and F,,;, remain finite i.e. F,, > 0 and F,;, > 0. In some practical cases (e.g. void
region) these conditions may not be satisfied. To avoid this situation a special form of correlated sampling is used
where the Monte Carlo particle transport is simulated in a reference (ref) system which is generally different from
both the unperturbed and perturbed systems. An added advantage of this method is that a proper choice of the
reference system can avoid large fluctuations in biasing factors Ifi’; and %, and therefore reduce the uncertainty




involved with the differential effect. One way (not the only way)® to choose the reference system is to take the
average cross-section of perturbed and unperturbed systems i.e.,

1
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where x denotes different types of cross-sections. The Monte Carlo particle transport simulation is done only in
the reference system with total macroscopic cross-section E;ef . The spatial collision distance s is sampled from
¥ exp(—2 ¢/ 5). The biasing factor with which the weight of the unperturbed particle is multiplied is given by,
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Similarly the biasing factor for the perturbed particle is,

P
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Now assuming ¥ > ¥} the biasing factor for the unperturbed history has a positive exponent and may assume
large values if s is large. And similarly the biasing factor for the perturbed history may assume a very small value. To
avoid these large fluctuations, a d-scatter in the forward direction is added to all three total reaction cross-sections.
For each of the three cases the §-scatter is chosen in such a way that the sum of the total reaction cross-section and
d-scatter are the same for all three cases. This correlated sampling technique can be used to simultaneously estimate
the three fission matrices for the reference, unperturbed and perturbed systems. The dominant eigenvalues of these
three fission matrices can then be evaluated using conventional matrix iterative methods. Since the fission matrices
are correlated it is possible to calculate AK = KP? — K"P for small cross-section perturbations. This efficient method
has been used successfully to calculate reactivity” changes due to cross-section perturbation.

IV. MULTIPLE REACTIVITY CALCULATION

We have extended the correlated sampling fission matrix method to evaluate multiple reactivities (AK;, i =
1,2,3,...,N) due to multiple small perturbations of the same unperturbed system. Multiple reactivities are calculated
from a single Monte Carlo simulation. We apply correlated sampling to the fission matrix approach of eigenvalue
calculation. To describe this method we assume that there is an unperturbed system and N small cross-section
perturbations of this system lead to N perturbed systems denoted by p;, i = 1,2,3,...,N.

A. Reference System

The reference system is chosen such that,
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where AYP: = ¥Pi — %P and x denotes a different cross-section type. It is possible to choose a different reference
system and the optimum choice for reference system may vary from one problem to another. For all the numerical
results shown in this paper we have used equation (7) to determine the reference system. The Monte Carlo particle
tracking is done in the reference system. The spatial collision distance s is sampled from ¥, exp(—X} of s). The
biasing factors for the unperturbed and the perturbed systems are given respectively by,
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B. Forward §-scatter

To avoid large difference between B,,, and By;, a d-scatter in the forward direction is added to the total reaction
cross-sections for the reference, unperturbed and perturbed systems. The é-scatter for the reference system (57¢f) is
chosen, depending upon the problem, such that,

6l S| 20 —max(SP) | if maz(P) > B (10)
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Then §-scatter for the unperturbed system (0%?) and perturbed systems (67, 1 = 1,2,3,...,N) are chosen as,
§up = 57ef gref _wur (12)
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The conditions imposed by equation (10) and (11) ensure that all the J-scatters are positive quantities. In our test
problems the above four equations were used to determine forward d-scatter for reference, unperturbed and perturbed
systems. The spatial collision distance s in the reference system is sampled from (2,"°f + 67¢)exp(—(Z7¢/ + 67¢F)s).
Now the modified biasing factors for the unperturbed and the perturbed systems become,
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Thus the large fluctuations in B,, and By, are avoided.

C. AK Calculation

For the fission matrix eigenvalue calculation in the reference system, the first generation is started with an
assumed source distribution and W,y = 1, where W,y is the weight of a reference system particle. Along with
that, the initial weights of the unperturbed (W,,) and all the perturbed (W,,) particles are also set to one. Even
though particle tracking simulation is only carried out in the reference system, the weights of the unperturbed and
all the perturbed systems are modified by multiplying them with appropriate biasing factors B,, and B,, during
simulation. At the end of the first generation, source normalization is done for the reference system particles to
stabilize neutron population. The source normalization has no direct effect on other systems, except that the next
generation unperturbed and perturbed systems’ particles start out with the same weight as that of the normalized
reference system particles. For the second generation the fission neutron production distribution obtained from the
first generation is used for the reference system particles. The unperturbed and the perturbed systems’ particles also
use the same source distribution as that of the reference system for the second generation. This process is continued
for specified number of generations. A few of the initial generations are discarded to avoid the bias due to the initial
source guess.

Now the fission rate is determined, similar to equation (2), as the probability that a particle starting in volume
element 1 generates p; ,, particles in element m. For the reference system the matrix elements pZiﬁ of the reference
fission matrix P"¢/ are scored as,
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where v"¢/ is the number of particles emerging from a fission process in the reference system and E;ef is the macro-
scopic fission cross-section for the reference system. Simultaneously the fission matrix elements for the unperturbed
and perturbed fission matrices, P*? and P?: respectively, are scored as,
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The dominant eigenvalues K™¢f, K and KP: of matrices P"¢f, PP and PP respectively, are determined numerically.
Then multiple reactivities due to multiple perturbations (p;, i = 1,2,3,...,N) are calculated as,

AK! = KPi — K"P | (19)

The standard deviation of the single generation AK is given by,
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where M is the active number of fission generations. And the standard deviation of the mean is,
g
Om = M% (21)

This o, is provided with the numerical Monte Carlo results in section V.

D. Variance Reduction

Survival biasing and Russian roulette techniques® are applied to the reference system particles. After determining
the site of collision the survival chance of the particle in the reference system is sampled from,
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where ¥, is the macroscopic scattering cross-section. This leads to the following biasing factors for the unperturbed
and perturbed particles,
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The weights of all the particles are reduced as follows at the site of the jth collision,
Wlep =Wl wi (25)
Wi, = Wi 'n? (26)
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After the weight adjustment the Russian roulette method is applied to the reference system particles. In this
procedure it is checked to determine if the reference system particle weight has fallen below some minimum value. A
random number £ (uniformly distributed between 0 and 1) is generated and compared to an input number 6 which
is typically between 2 and 10. If £ > %, the reference system particle and along with that the unperturbed and all
the perturbed particles are terminated. If £ < %, the reference system particle and along with that the unperturbed
and all the perturbed particles are continued with their weight multiplied by 6.

V. NUMERICAL RESULTS

We have implemented the correlated sampling method for multiple reactivity calculations in x-y geometry and
one energy group with isotropic scattering. Multiple AKs due to multiple small cross-section perturbations were
evaluated using this Monte Carlo test code and the results were compared to that of the TWODANT? code with



S16 Gauss-Legendre quadrature set and the convergence criterion for inner and outer iterations set at 107'2. The
dimensions of each square mesh for the TWODANT simulation are .125 mean free path X .125 mean free path. The
homogeneous test problem is a square region with dimensions of 16.659c¢cm X 16.659cm and cross-section perturba-
tions were performed over the whole square region. The heterogeneous problem, with the same dimensions as the
homogeneous one, has a center square region of 8.329cm X 8.329cm. For the heterogeneous problem, cross-section
perturbations were performed only in the inner square region. All test cases have vacuum boundary conditions on
four sides. Tables I (homogeneous problem, two AK calculation), IT (heterogeneous problem, two AK calculation),
ITI (homogeneous problem, three AK calculation) and IV (heterogeneous problem, three AK calculation) show com-
parisons of AK results between the Monte Carlo test code and the TWODANT code for different test problems.
Errors (| TWOD;‘{VVE";B%‘\’#‘?C“”O |) in AK are also given. In table V we show computational timing results for multiple
AK calculation compared to a single calculation. These timing results are the average of several computer runs for
the homogeneous test problems.

VI. DISCUSSION

Comparing relative errors of results between the TWODANT code and the Monte Carlo test code we observe
that the results are in agreement with a maximum error of ~4%. It appears that it is possible to calculate multiple
reactivities due to multiple small perturbations using one Monte Carlo simulation for one energy group transport
problems with isotropic scattering. We observe from the timing results in table V that, if applicable, this approach
could result in significant saving in computational effort. The only extra computational effort involved for multiple
AK evaluation compared to one AK evaluation, is in the number of times the matrix iterative algorithm is used.
Computational time spent in this matrix iterative algorithm is insignificant compared to that spent in Monte Carlo
particle tracking. This particular correlated sampling technique is applicable to problems where the perturbations
are performed over large spatial regions. It should be noted that this methodology worked for relatively large
perturbations (e.g. 10% or more change in AK) as well as small perturbations. One possible area of application
would be to calculate reactivities due to variations in soluble boron concentrations.
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Table I. Two AK calculation for homogeneous case.

Unperturbed cross-sections ¥=1.0,
3,=0.9, ¥,=0.1, vE=0.11
Perturbed TWODANT AK Two Correlated error (%)
cross-sections Monte Carlo AK
¥;=1.0, ¥X,=0.9 -.016683 —.016682 + .10FE — 4 .006
$,=0.1, v¥;=.108
3;=1.0, X,=0.9 .0075073 .0075070+.48E — 5 .004
$,=0.1, v2;=.1109
3¥,;=1.001, ¥,=0.9 -.0074674 —.0076096 + .89E — 5 1.9
2, =101, v¥;=.11
3,;=1.0001, ¥,=0.9 -.0007522 -.0007666+.90E — 6 1.9
$,=.1001, v ;=11
3,=1.0, ¥,=.901 .007718 .00773+.10E — 4 2
$,=.099, v¥;=.11
3;=1.0, ¥,=.899 -.007590 -.007609+.10F — 4 2
%,=.101, vS;=.11
3;=1.002, ¥;=.86 -.003040 -.002989+.18E — 3 1.9
%,=.142, 13 ;=0.149
¥;=1.0001, ¥,=.897 .009408 .009418+.12F — 4 1
Y,=.1031, v¥;=0.114




Table II. Two AK calculation for heterogeneous case.

Unperturbed cross-sections ¥=1.0,
¥,=0.9, ¥,=0.1, vE;=0.11
Perturbed TWODANT AK Two Correlated error (%)
cross-sections Monte Carlo AK
¥;=1.0, X,=0.9 -.010029 —.00974 + 25F — 4 2.8
%,=0.1, v£;=.108
¥;=1.0, £,=0.9 .004567 .004438+.11E — 4 2.8
%,=0.1, v3;=.1109
¥¢=1.001, ¥,=0.9 -.004583 —.004443 + .21E - 4 3.0
%,=.101, vT;=.11
¥,;=1.0001, ¥;=0.9 -.0004619 -.0004478+.22E — 5 3.0
$,=.1001, vT;=.11
¥=1.0, ¥4,=.901 .004680 .004560+.13F — 4 2.5
¥,=.099, v¥;=.11
¥;=1.0, ¥,=.899 -.004599 -.004482+.13FE — 4 2.5
¥,=.101, v¥;=.11
3=1.002, ¥,=.86 .001951 .001912+.67TE — 4 1.9
$,=.142, 1% ;=0.149
¥;=1.0001, ¥,=.897 .005779 .005625+.10F — 4 2.6

Y,=.1031, v¥;=0.114




Table ITI. Three AK calculation for homogeneous case.

Unperturbed cross-sections ¥:=1.0,
¥,=0.9, %,=0.1, vE=0.11
Perturbed TWODANT AK | Three Correlated | error (%)
cross-sections Monte Carlo AK
¥¢=1.0, ¥,=0.9 -.016683 —.016679+ .18 — 4 .02
$.=0.1, v%;=.108
3;=1.0, ¥,=0.9 .0075073 .0075058+.83E — 5 .02
¥,=0.1, v¥;=.1109
¥;=1.0, ¥,=0.9 .091756 .091738+.10E— 3 .03
$,=0.1, v%;=.121
¥=1.01, £,=0.9 -.06958 —.07057+ .12E — 3 1.4
N,=.11, v8p=.11
¥¢=1.001, ¥,=0.9 -.007467 —.007581+.13E -4 1.5
%,=.101, vT;=.11
¥,=1.0001, ¥,=0.9 -.0007522 -.0007638+.13E — 5 1.5
$,=.1001, vT;=.11
¥;=1.0, ¥,=.9009 .006940 .006944+.10E — 4 .05
$,=.0991, v¥ ;=11
¥,=1.0, £,=.901 007718 007723+.11E — 4 .06
¥,=.099, v¥;=.11
¥:=1.0, ¥,=.899 -.007590 -.007595+.11E — 4 .06
%,=.101, vT;=.11
3,;=1.0003, ¥,=.907 .027766 027677+.24E — 4 0.3
¥,=.0933, v¥;=.10699
3¥;=1.002, ¥;=.86 .003040 .003001+.75E — 4 1.2
$,=.142, v¥;=0.149
¥,=1.0001, ¥,=.897 .0094077 .0094058+.52E — 5 .02

X¥,=.1031, v¥;=0.114




Table IV. Three AK calculation for heterogeneous case.

Unperturbed cross-sections ¥=1.0,
¥=0.9, 3,=0.1, v¥;=0.11
Perturbed TWODANT AK Three Correlated error (%)
cross-sections Monte Carlo AK
¥;=1.0, X,=0.9 -.010029 —.009713 + .36E — 4 3.1
¥,=0.1, v¥;=.108
3;=1.0, X,=0.9 004567 .004422+.16E — 4 31
¥,=0.1, v¥;=.1109
3;=1.0, X,=0.9 .05789 .05606+.19E — 3 3.1
¥,=0.1,v¥;=.121
3;=1.01, ¥,=0.9 -.04248 —.04128 £ .12E -3 2.8
Y,=.11, v¥;=.11
3,;=1.001, ¥,=0.9 -.004583 —.004455 + .13E — 4 2.8
¥,=.101, v¥;=.11
3,;=1.0001, ¥,=0.9 -.0004619 -.0004490+.12E — 5 2.7
¥,=.1001, v¥;=11
¥;=1.0, ¥,=.9009 .004208 .004133+.13E -4 1.8
¥,=.0991, v¥;=.11
3;=1.0, ¥,=.901 .004680 .004596+.14F — 4 1.8
¥,=.099, v¥;=.11
3,=1.0, ¥,=.899 -.004599 -.004517+.14E — 4 1.7
¥,=.101, v¥;=.11
3;=1.003, ¥£,=.907 .0034704 .0033154+.56FE — 5 4.4
%,=.096, vX ;=.10699
¥;=1.002, ¥,=.86 .001951 .001992+.43F — 4 2.1
Y,=.142, v¥$=0.149
3,;=1.0001, ¥,=.897 .0057797 .0056409+.73E — 5 24
¥,=.1031, v¥;=0.114

Table V. Timing results for AK calculations.

# of AK calculations | Time (sec) normalized to one AK calculation

1 1.0

2 1.14

3 1.25




