OntoQuest: Exploring Ontological Data Made Easy

Li Chen' Maryann Martone?

Amarnath Gupta*

Lisa Fong?

tSan Diego Supercomputer Center 2Center for Research in Biological System
University of California, San Diego, 9500 Gilman Drive, CA 92093

ABSTRACT

Recently, there is a large demand by many scientific appli-
cations for managing, querying and reasoning ontology con-
cepts and instances. We demonstrate OntoQuest, a system
that provides powerful yet easy-to-use query and reasoning
utilities by which the ontological data exploration experi-
ence is made easy. Even without any knowledge of ontology
query languages, one can easily get a hands-on ontological
data exploration experience using OntoQuest. The method
is to categorize commonly asked queries based on their usage
contexts so to prompt the user with context-aware guidance
throughout the exploration process. OntoQuest is also de-
signed to offer extended mapping schemes for storing OWL
ontologies into back-end databases. Most existing ontol-
ogy storage systems support mappings only for RDF data.
Lastly, OntoQuest supports bulk insertion and updating of
instances.

In this demonstration, we show how OntoQuest guides a
user through the inquiry (querying and reasoning) process
and also have a peek at the underlying handling of storing,
querying, reasoning, and interacting with the user.

1. INTRODUCTION

The OntoQuest system is motivated by an OWLI[5]-based
neural anatomy ontology development project initiated by
neuroscientists at UCSD. An ontology is a way of describing
a shared common understanding about domain knowledge
(concepts and their relationships) in formal logic such that
the data is comprehensible to both human beings and ma-
chines.

To represent the knowledge base of a scientific domain, e.g.,
the subcellular anatomy of the nervous system in our case, a
large-scale ontology needs to be developed to capture several
thousands of concepts including cell types, subcellular com-
ponents and molecules, and multicellular domains. Further-
more, instances that represent facts described in voluminous
neuroscience literature need to be extracted and classified

under concept definitions of the ontology. Developing such
an ontology is extremely important for allowing neuroscien-
tists to share the data, to validate hypotheses, and to make
scientific discoveries through querying and reasoning.

1.1 Redated Work

There is a growing sense among researchers and practition-
ers that ontologies will play a significant role in forthcoming
information management. Numerous commercial and open-
source software tools are available for building and deploy-
ing ontologies, and for integrating inference with database
infrastructures. Existing ontology tools and systems’ can be
categorized into the following. (1) Ontology editors. Pro-
tege[6] is an ontology editor that supports frames, RDF(S)

and OWL. OilEd is an ontology editor supporting DAML+OIL.

(2) Program API libraries. Jena[4] is a programming toolkit
that supports parsing, creating and searching primarily RDF
models. In Jena2, a preliminary OWL API is implemented
for accessing OWL ontologies, but the supported OWL rea-
soning is limited and has performance issues. (3) Ontology
reasoners. The well-known DL (description logic) reasoners
are FaCT (now FaCT++) [3] and Racer [2]. Instance rea-
soning is not supported by FaCT++, and nominals are not
available neither in FaCT++ nor Racer. The new comer
Pellet promises reasoning with instances (including nomi-
nal support). (4) Ontology stores. RDFSuite and Sesame
are two representative RDF schema-based repositories and
querying facilities. Jena also provides APIs via JBDC to talk
to back-end RDBMSs. DLDB is another relational store for
RDF/OWL data. It represents the inferred concept class
hierarchy using relational views but does not capture the
expressive OWL restrictions.

Limitations. These existing ontology tools and systems are
less satisfactory for our purpose because either these tools
are browsing and editing oriented, or their storing, query-
ing, and reasoning capabilities are limited in the following
ways. First, all existing ontology query systems demand
users to master certain ontology query languages such as
RDQL and RQL in order to ask any questions. With this
requirement, the user interfaces of these systems are not
friendly to most domain scientists. Second, the process of a
scientific exploration often involves a series of question ask-
ing. Sometimes the results of a previous query may inspire
the user to ask the next one using part(s) of the results of
interest. Currently, the typical query interfaces are simply a

!This review and the citations are not meant to be complete
due to the space.

set of unrelated query text fields which facilitate no forma-
tion of such interrelated inquiries. Third, existing systems
support limited querying capabilities concerning graph prop-
erties, aggregate and grouping functions, etc. Furthermore,
the available reasoning interfaces are so far restricted and
are handled separately from queries. Fourth, current ontol-
ogy stores are mainly relational ones compatible with RDF
ontologies. They commonly ignore the expressive OWL re-
strictions. Fifth, there is little support for bulk insertion and
updating of instances.

1.2 OntoQuest Feature Highlights

We demonstrate four main features of the OntoQuest sys-
tem. (1) An intuitive and easy-to-use interface for domain
scientists. A majority of ontology users are biologists who
appreciate tools that do not require them going through a
steep learning curve of ontology query languages. Onto-
Quest allows biologists to easily query ontologies without
knowledge of a particular query language. Commonly asked
queries are categorized into groups and shown via menus
and parameterized forms. Example queries include find-
ing the most general/specific classes for a class/instance,
retrieving the instances of a class which satisfy some con-
dition (e.g., value of property p is y), etc. Users simply
click and check the provided options to issue queries. (2)
“Context-aware” capabilities during an exploration session.
Sometimes a user’s query only makes senses within a con-
text, e.g., she first asks for all properties of an instance o,
and then picks one output property and wants to get its
value. In this case, two queries are interrelated; the second
one can only be answered by knowing that the asked prop-
erty value is for that instance o. Context-aware is also re-
flected through the automatic choice of the group of queries
to be prompted in a menu to the user. Queries that are
not in the menu are not likely to be asked next. (3) The
ability to process interesting aggregate operations that may
involve reasoning. We will elaborate on this one through
examples in Section 2.4. (4) Extended mapping from OWL
constructs to database schema and constraints. OntoQuest
not only supports storage for OWL ontologies, but also ex-
ploits indexing and encoding techniques [1] for optimizing
graph transitivity computations. Frequently asked results
can be materialized to trade off for query efficiency. (5)
Interface for bulk editing and updating of instances. This
may be very useful in situations where a large number of
instances share the same property values, or the value dis-
tribution is describable by some function, or a selected set of
instances are subject to the same value change. OntoQuest
also supports automatic incremental validation realized by
triggers in databases.

To the best of our knowledge, OntoQuest is the first ontology
system targeted at domain scientists that facilitates their
scientific explorations through an integrated environment for
storing, interrelated querying, reasoning, etc.

2. DEMONSTRATION OVERVIEW

We use the following example ontology (Figure 1 shows part
of it) for our demonstration.

2.1 Our Example Ontology
This ontology describes the basic structure of subcellular
anatomy for nerve cell. Two main classes of cells are neurons

S

LEGEND

isa

hasa,

=== Component

-b Compartment

hasaW

I
-4 l Molecule

Figure 1: Ontology for Neuron Subcellular Anatomy

and glia, with subclasses categorized under each. Four main
categories of entities are compartment, component, property
and molecule which are related to the cell classes by the
“has-a” relationships. These entities may be related to a
cell class at any level. Take compartment and component for
example. Compartment captures a functional subdomain of
the nerve cell. For neurons, the four main compartments
are cell body, dendrite, axon and spine. Component refers
to cellular structures common to all cells and they are taken
from and cross-reference to the cell component hierarchy of
the Gene Ontology. The instances of these classes may come
from the literature or locally curated data repositories.

2.2 User Interface of OntoQuest

We first demonstrate the user interface of OntoQuest.

< OntoQuest Explorer

((Connection. | OntaTree | Admin, | GuidedExplore | BulKEd | [Log |
Get_MetaData |Global Access |
e Get All Classes:

Get Root Classes

Get Class Hierarchy

Get All Instances

Get All Properties

Search for Classes

Search for Properties

[save cloar

 [connected to neuronONTGT in

Figure 2: User Interface of OntoQuest

As shown in Figure 2, the interface is mainly a split pane —
the right side consists of a scrollable pane displaying a log
of past activities (e.g., connections, querying and reasoning
tasks) while the left side allow users to switch among a set
of tabbed panels each assigned a specific functionality. The
first panel is for configuring the connection to the backing
store for storing or fetching the ontology model. The sec-
ond one is for browsing the expandable ontology hierarchy.
The third is for users who are familiar with ontology query
languages (e.g., RDQL) to directly post queries for admin-
istrating and debugging purposes. The fourth is for general

users to explore ontologies and issue interrelated queries.
The last one is for bulk insertion and updating of instances.

2.3 Queries Categorized by Usage Context
We now demonstrate the feature of categorized queries that
are designed for easy of use for general users.

Query Category | Query APIs (shown in top and popup

menus)
Ontology Meta- | getVersion(), getCreator(), getOntolo-
data gyURI(), getImports()
Global Access get AllClasses(), getRootClasses
getAlllnstances(), getAllProperies

getClassesMatching(String s_pa'c'cern)y7
getPropertiesMatching(String

s_pattern)
Inquiry for | getInstances(), getInstancesWith-
Class Cond(String p, String p-value),
grouplnstancesByPValue(String
p), getProperties(), getSuper-
Classes(boolean direct), getSub-
Classes(boolean direct), isSub-

sumedBy (String c), isSubsum-

ing(String c)

Inquiry for In- | getClasses(boolean direct), getProp-
stance Values(), getNeighborInstances(int
direction, int dist), isClassifiedUn-
der(String c), isSatisfyingCond(String
p, String p_value), degree()

Inquiry for | getDomain(), getRange(), getSuper-
Property Properties(boolean direct), getSub-
Properties(boolean direct), isApplica-
bleTo(String c)

Aggregate or | count(), sumOfPValues(String p), ave-
Graph Property | OfPValues(String p), steinerNet(), di-
ameter(),

Table 1: Categorized Query Groups

Instead of providing a text field for users to type in a query,
the interface provides or pops up menus with the “right”
query options for the context, i.e., those that are likely to
be asked next. Queries in the first two categories listed in
Table 1 are shown as top menu items where a user may
start her exploration. The first category assembles queries
about the ontology metadata, e.g., version, creator. Queries
in the second category allow a user who may have no knowl-
edge about the content of the ontology to get all the classes,
properties, or instances with their URIs matching a given
string pattern. From here onward the exploration may con-
tinue with the user being prompted with appropriate popup
menus presenting query options of the other four categories.

For example, assume a user first clicks on “getAllClasses()”
on a top menu to initiate the exploration. From the returned
classed in the result panel, she then picks one of interest and
right-clicks to pop up a menu presenting queries of the third
category — inquiry for class. Suppose that ‘getInstances()”
was clicked next and all instances of that class are returned.
In this case she may issue further inquiries for a particular
instance, and so on.

Query Context and Its Transition. Generally speaking,
it is unlikely that a domain scientist can plan ahead exactly
what a single complicated question to ask to reach a find-
ing. Instead, she tends to ask a series of small questions,
one leading to another. The answers of a previous query

=> All classes (or matched ones)

1
tS Sub)ClI ipick
getSuper(Sub) & *getPropenies A
classes "p?c-k* A class =™ classProperties
.
gel in(e) ge erties -7

getCladges x
getNeighborInsta An insta‘r,lcege“ :a\.n.cesA property uper(Sub)Properties
v . ..
Lpiek” piclz\ ggPfopValues =~ pick
.
All instances N All properties

(or matched ones) @ “'{;Srg}r:,ﬁies) (or matched ones)

Ve =
Figure 3: Transition of Query Context

constitutes the “context” from where the next query starts.
Possible transitions among query contexts are shown in Fig-
ure 3. A starting point is usually the query options provided
in the top menus, as indicated by those bold arrows. The
context then transits along with the “picked” previous re-
sult and the clicked query option. At any point, a user may
restart the exploration process again by clicking a top menu
item. OntoQuest also offers a “back” button for users to
retrovert to any previous context.

Queries in the “aggregation or graph property” category re-
sult in numbers or a new result panel showing the neigh-
borhood graph (e.g., for steinerNet). They require multiple,
rather than a single instance, to be “picked”. Neither these
queries nor those boolean queries (i.e., the ones prefixed with
“is” which are actually access points of reasoning function-
alities) cause any context transition.

24 Implementation of Query APIs

Among the provided queries listed in Table 1, some are im-
plemented by calling Jena APIs or OWL APIs, while others
have complicated logics that may also incorporate reasoning
and post processing. Below we illustrate how to implement
the query API groupInstancesByPValue.

The semantics of groupInstances ByPValue(String p) is to
group all the instances (direct and indirect) of a class ¢ (the
context) by their values of property p. The complexity of
this query arises from the OWL-DL constructs allowed in
our ontologies, such as class and property hierarchies, in-
verse roles, nominals, number restrictions, etc. Suppose
¢ is Dendrite and p is is_Spiny whose domain is a boolean
value. In the class hierarchy, Spiny_Dendrite is a subclass of
Dendrite, which is defined with a hasValue restriction r1 :
is_Spiny> true. For the 17 instances defined under this class,
although none are explicitly given a value for is_Spiny, the
value of true is implied to all 17 instances.

Existing DL reasoners (i.e., FACT++, Racer) do not handle
reasoning for nominals (3 is a nominal construct). There-
fore, to process this query correctly, we need to gather the
instances for each subclass ¢; of ¢, check their p values as
well as whether there is a hasValue restriction on c; which
asserts that all the instances have some default value. Fur-
thermore, each superclass c¢; of ¢ also needs to be checked
to see whether a hasV alue restriction exists to affect the p
values of all the instances of c.

Besides the method we use to traverse the class hierarchy
and check for special restrictions for reasoning the p values
of ¢’s instances, we also need to sort and group these in-
stances by their p values. Such groupby operations are not
yet readily available in any well-recognized ontology query
language. Hence we implement them in a manner similar
to the counterpart relational operators. This example query
and its results are illustrated in Figure 4.

£ OntoQuest Explorer
| Connection | OntoTree | Admin | Guidedexplore | BUKEA | | Loy |

o Motabota_Giobal_Accoss: [| sme ctear

Save Clear

|| [->-Retieve Al Classes
= | oenarte
o= GROUP_INSTANCES,

sutts
(Cytoskeletal_Element
(Cytoskeletal_Protein
(Cytoskeletal_Specialization
Cvtosol

b»>Retreve All Classes
Dendrte

=6 foris_Spiny=Non_specified)

Figure 4: Groupby Query and Its Results

2.5 Mapping Ontologiesto Store Schema

Due to the size of the application ontologies, it is necessary
to use database technology in order to provide persistence
to the knowledge described by the ontologies, and scalability
to the queries and reasoning on this knowledge.

In OntoQuest we use Jena’s libraries for processing and pars-
ing OWL ontologies. However, we implement our own al-
gorithms for generating a mapping between ontologies and
the backend store schema. By our mapping, ontologies are
stored by creating a relational table for each class or prop-
erty definition. The DAG-structure of the ontology class
hierarchy is stored in the system using an advanced encod-
ing and indexing technique [1], by which transitive computa-
tions such as class subsumption can be efficiently performed.
For example, to retrieve the instances of a class, a dynamic
view of this class is generated which unions all instances of
the subclasses.

Alternatively, we provide a more flexible mapping scheme
that maps OWL ontologies into an object-relational model.
In this scheme, classes are mapped to tables, and properties
are mapped to set-valued attributes or pointer/references
(there are exceptions, e.g., functional properties are mapped
to a single-valued attribute). Furthermore, OWL restric-
tions such as allValuesFrom (Vp.c) and someValuesFrom
(3p.c) are mapped to corresponding table assertions that re-
quire exclusiveness or not null of p. For hasValue (p 3 v),
the initial value set of p contains a default value v.

2.6 Bulk Editing of Instances

OntoQuest provides the interface for users to edit property
values that will apply to a large number of instances. When
“bulk insertion” is clicked for a class, a customized property
form (with some fields partially filled and some given re-
stricting instructions) is dynamically generated based on the
class definition. In addition, a number of string or number
automatic generation functions are available as choices for
producing instance uris. For bulk updating, the user needs
to decide the set of instances to apply, which can be the re-
sult of a previous query. Regarding automatic maintenance
and evolution of ontologies, we implement an incremental

validation mechanism using triggers in the database which
are automatically invoked for each bulk editing operation.

3. SYSTEM ARCHITECTURE

The architecture of OntoQuest is shown in Figure 5. We
made use of some Jena APIs for parsing ontologies and
then manipulating them using Java objects. Application
ontologies can be put in the persistent store, while data in
the store can also be serialized into RDFS/OWL ontologies.
The query APIs and context manager are explained in Sec-
tion 2.3. The query processor takes as input a query API
call and the context, then retrieves the plan and evaluates
it. The plan may simply be a Jena API, or a complicated
process which may involve reasoning and result processing.
An example is described in Section 2.4. Some boolean query
APIs are translated into calls to a third-party reasoner. The
store mapping schemes and instance editor are described in
Section 2.5 and 2.6 respectively.

’ OntoQuest GUI ‘

¥
Ontology Parse

Instance | |Context Management
Editor

¥

Persistent API
(mapping schemes)

SSE—
3 party DB
reasoner storage

Figure 5: Architecture of OntoQuest

OntoQuest Core

OntoQuest store

The prototype of OntoQuest is implemented with Java 1.4.2
on top of Oracle 9i. The module for query optimization
and efficient reasoning is under development. Other work
considered for the future includes the development of a web-
interfaced system that allows for multiple instance editing
and alignment for multiple ontologies.

4. REFERENCES

[1] L. Chen, A. Gupta, and M. E. Kurul. Stack-based
algorithms for pattern matching on dags. In
International Conference on Very Large Data Bases
(VLDB), Trondheim, Norway, pages 493-504, 2005.

[2] V. Haarslev, R. Mller, and M. Wessel. Racer systems.
http://www.sts.tu-harburg.de/ r.f.moeller/racer.

[3] I. Horrocks. The fact system.
http://www.cs.man.ac.uk/ horrocks/FaCT.

[4] HP Labs Semantic Web Research. Jena a semantic
web framework for java. http://jena.sourceforge.net.

[5] D. L. McGuinness and F. V. Harmelen. Owl web
ontology language overview.
http://www.w3.org/TR/2004/REC-owl-features-
20040210.

[6] Stanford University. Protege: An open source ontology
editor tool. http://protege.stanford.edu.

