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Abstract. Querying live media streams is a challenging problem that
becomes an essential requirement in a growing number of applications.
We address the problem of evaluating continuous queries on media streams
produced by media sources such as webcams and microphones. The tem-
poral attributes and the order of stream tuples play essential roles in
live stream generation and query execution. Furthermore, the temporal
constraints and query semantics of related streams provide additional
query optimization opportunities. We investigate the modeling issues
and introduce the query processing techniques of a live media stream
management system (MedSMan), including media capturing, automatic
feature generating, declaration and query languages, temporal stream
operators and querying algorithms. A prototype is implemented and we
present experimental results to show the performance of our prototype
using various real-time media experiments.

1 Introduction

In recent times, processing continuous queries over live and unbounded streams
has become a major research area in data management. A number of research
groups are developing data stream processing systems for a wide variety of prob-
lem domains including network data management, traffic monitoring, business
data analysis, environmental sensor networks and immersive environments. At
the same time, the proliferation of various sensor devices (e.g., webcam, micro-
phone, RFid, etc) has fuelled many applications utilizing massive media streams
in a unifying way. We consider the problem of continuous querying on multiple
live media streams, by taking advantages of automatic and real-time multimedia
information processing techniques. The basic premise behind delivering multi-
media information is that while each individual media channel contains some
information, it is the synchronous combination of the channels that captures the
intended semantics of the content. We use the term live multimedia to refer to
the scenario where the multimedia information is not “produced” though manual
editing, but is captured in a real-life setting by different sensors and streamed to
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a central processor. This makes live multimedia stream query systems distinct.
First, their primary problem is to effectively combine multiple media streams
as well as auxiliary non-media information to answer standing queries about
the situations observed by the media sensors. For example, consider a profes-
sional conference room equipped with multiple cameras and microphones cap-
turing the activities of both the speaker and audience. A remote user wants to
connect to the speaker’s video only when he or she talks about “multimedia
database”. This is different from research issues in the standard image, video
and audio database systems which centers around similarity queries and prob-
lems like scene detection and shot segmentation using different features. Second,
unlike alphanumeric symbolic streams, media streams often cannot be directly
queried. Instead, queries on them are evaluated by computing feature streams
from them. The data model for media streams need to capture this media-feature
dependency. Third, real-life applications often specify their queries in terms of
events occurring over intervals of time (i.e., an interval event with a start and
a end time). The events need to be expressed in terms of the underlying media
streams as well as the derived feature streams.

1.1 Prior Work

There has been considerable prior work on data stream management systems
(DSMSs), such as OpenCQ [14], NiagaraCQ [6], Aurora [1], Telegraph [16],
COUGAR [5], and STREAM system [3]. A number of research issues of DSMSs
have been received significant attentions, including data models, continuous
query semantics, query languages, blocking operators, memory requirements,
cost metrics and statistics, approximations, adaptivity and query optimizations,
and scalability issues. Much of this earlier work has focused on alphanumeric
symbolic streams, while live media streams have received less attention - due
to the heterogeneity of multimedia and tremendous on-line processing costs (in
terms of time, memory and CPU). However, advances in multimedia information
systems and digital signal processing techniques are decreasing the media pro-
cessing costs and making the queries of live media streams viable. As a result,
there is a need for a unifying data stream management system effectively com-
bining extensible digital processing techniques and the general DSMS research.

A media stream is usually the output of a sensor device such as a video,
audio or motion sensor that produces a continuous or discrete signal, but typ-
ically cannot be directly used by a data stream processor. To evaluate queries
on media streams, one needs to continuously extract content-based descriptors,
that we call features, from them and identify the qualifying media portions by
evaluating queries on the generated feature streams, which are post-processed by
one or more transformers and correlated to the media streams temporally and
in terms of content. We previously studied the media stream generation, as well
as feature function implementations (especially for feature streams derived from
single media or feature stream) in [12]. Considering the interval nature of media
tuples, we do not use window based approaches [9], but a per-tuple triggering
approach. Temporal sequence research has developed sequence models [19] and
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access modes (e.g., stream-probe) [18] for accessing sequences. But our problem
is different since for any tuple in one stream, there are no fixed corresponding
tuple(s) in another stream. Therefore, we treat all joining streams equally in
accessing and triggering operations. We cannot directly use many efficient algo-
rithms developed for temporal join, such as RI-tree-based [8], partition-based [20,
15], and index-based [4, 7] algorithms, because media streams have very high ar-
rival rates compared to typical relation updates. The construction overhead of
these algorithms triggered by each tuple arrival may not be offset by the benefit
of using them. Further, we studied event modelling and the related environment
modelling issues in [13]. In this paper, we focus on stream processing techniques
by utilizing temporal constraints and query semantics between related media
and feature streams, particularly for the purpose of query optimizations.

1.2 Example

We use a typical live media query example for illustration throughout this paper.
Consider a surveillance application in which both live video and audio are used to
automatically detect potential intrusions. A video stream (video1) is captured
by a camera and an audio stream (audio2) is produced by a microphone. If
abnormal movements occur in video1 and abnormal sounds occur in audio2 at
the same time, a possible intrusion is identified and the corresponding video
frames should be displayed.

1.3 Outline

The rest of the paper is organized as follows. Section 2 discusses the modelling
issues of media and feature streams. Section 3 presents the query techniques
of our system, including query languages, stream operators, query execution,
cost metrics and optimizations. A brief introduction of system implementation
is introduced in Section 4. We run a number of real-time media stream queries
and analyze the results in Section 5. Finally, we conclude our work and future
research in Section 6.

2 Media and Feature Stream Model

2.1 Formal Definitions

Because of their continuous nature and the stream dependency, both media
and feature elements require explicit and exact timestamps. The time attributes
provide valuable information for the stream generating and query processing. In
our framework, the element of a media or feature stream is defined as a tuple,
which consists of a logical sequence number (sqno) indicating its position in a
stream, a temporal extent defined by a pair of start and end timestamps (ts,
te] (for a time-point attribute ts = te, a single time point is represented as td),
and any other media or feature attribute. We give a series of conventions and
definitions that make more precise the notions of media and feature streams.
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Convention 1 A sequence T , is said to be continuously well-ordered iff (1)
T is well-ordered, and (2) for each time-unit (tsi, tei], there must be one and only
one directly following time-unit (tsi+1, tei+1] in T , where tei = tsi+1. We refer
to a continuously well-ordered set of time-units as a continuous time set. A
corresponding tuple value holds in each time-unit.

Convention 2 A sequence T is said to be discretely well-ordered if and only
if T is well-ordered, i.e., the continuity clause does not apply to two consecutive
units. We refer to a discretely well-ordered set of time-points as a discrete time
set. At each time-point td, a corresponding tuple value holds.

Definition 1. A continuous media stream is a sequence of tuples, each con-
sists of a sequence number (msqno) uniquely identifying its position in stream, a
pair of start and end timestamps (ts, te] whose domain is a continuous time set,
and a media valued attribute vm valid only during (ts, te].

Definition 2. A discrete stream is a sequence of tuples, each consists of a
sequence number (msqno) uniquely identifying its position in stream, a media or
non-media valued attribute vm, and a time-point td, defined on a discrete time
set domain, indicating when vm arrives intermittently.

Definition 3. A feature stream is defined as a sequence of tuples, each con-
sists of a sequence number (fsqno) uniquely identifying its position in stream, a
feature value attribute vf , a time-point attribute tf indicating when vf is com-
puted, and a set m̄sqno identifying the media tuples or a set f̄sqno identifying
other feature tuples, from which a feature tuple is derived.

For example, a pixel movement detection is derived from two consecutive
video frames. Table 1 shows a feature tuple is derived from two media tuples of
same media stream.

Table 1. A feature can be derived from two media tuples

fsqno(k) vf (k) tf (k) msqno(i) vm(i) tbi tei

msqno(j) vm(j) tbj tej

Note the start and end time of a tuple are the valid time defined in temporal
database. In particular, a feature tuple is an entity dependent on its deriving
media tuple(s), and its value is atomic in that its semantics represents one aspect
of all media tuples from which it is derived. Therefore, a feature tuple has a
representing interval equal to the time-unit or set of time-units of its deriving
media tuples. In the above example, the representing interval of fsqno(k) derived
from msqno(i) and msqno(j) is (tbi, tej ].
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2.2 Special Querying Issues

A number of unique issues should be considered in designing a general data
model for time-based media and feature streams.

Time Attributes and Order Our definitions in previous section require
explicit time attributes in both media and feature streams. Stream tuples are
generated and queried not in isolation but in synchronization. Further, we as-
sume all tuples in a stream are either continually well-ordered by intervals or
discretely well-ordered by time-points. Note tuples from different streams may
not be totally ordered, but partially ordered. For the presence of explicit time
attributes, tuples in a relation produced from a stream by sliding window op-
erators are also ordered in time, rather than a bag of unordered tuples. As we
will present in later sections, the order of tuples is necessary to guarantee tuple
continuity for queries over intervals.

Stream Uncertainties Uncertainties exist in media stream capturing, fea-
ture stream generating and stream querying. Figure 1 shows a timing diagram
of synchronization among related media and feature streams. The notations in
the figure are defined as follows:

tRs(k): The start timestamp of the k-th tuple in stream R.
tRe(k): The end timestamp of the k-th tuple in stream R.
TR

(k): The interval of the k-th tuple in stream R.
vR
(k): The timestamp indicating when the k-th tuple in stream R is generated.

DR,S
(k) : The generation delay of the k-th tuple in stream R which is derived from

stream S.

In this paper, we assume a feature stream is derived from a single media
stream and a tuple in a derived stream has the same sqno as its source tuple in
a deriving stream, thus setting up the mapping between two streams. One the
one hand, the intervals (TR

(k)) of the deriving streams (e.g., media streams M

and N) are variable. On the other hand, the generation delays (DR,S
(k) ) of tuples

in the derived streams (e.g., feature streams X and Y ) are not constant, which
depend on the transmission delays and computation delays. In the extreme case,
if a deriving tuple takes too long to generate its derived tuple, it might affect
the following tuple(s). For example, the (i + 1)-th tuple in stream N has to be
skipped since it arrives before its previous tuple finishes the i-th feature tuple
generation for stream Y . As a result, the derived tuples in feature stream Y are
not continual. This non-determinism nature of media and feature streams must
be addressed by query synchronization.

Query Synchronization In most multimedia applications, especially for
audio-visual applications, the synchronization between different media streams
needs to be precise to satisfy perceptual continuity, when viewed by the human
user. Synchronization is required not only in media composition but also in many
other phases throughout the entire media stream query processing.
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Fig. 1. A timing diagram of synchronization among media and feature streams.

Live media query processing contains multiple sub-processings (threads),
such as media capturing, feature generating and stream querying, thus form-
ing a “producer - consumer” relation. Each consumer thread depends on the
results of its producer thread(s). Because of the uncertainties of streams, spe-
cific operations performed on some tuples in a thread may cost longer than the
expected times of both its producer and consumer threads. In order to preserve
the continuity in stream tuple order, we can implement these threads through
a blocking approach, i.e., a producer thread does not send new input to its con-
sumer until the consumer finishes processing the previous input. By this way, we
may slow down the data rate of the producer. An alternative is a non-blocking
approach, i.e., to skip some inputs that cannot be processed by its consumer
(e.g., the (i + 1)-th tuple in stream N is skipped in Figure 1).

Due to the unbounded nature of streams, continuous queries over streams are
often defined in terms of sliding windows, either tuple-based or time-based [9].
Nevertheless, such windows do not take the tuple intervals into account. In those
applications, a tuple (e.g., temperature reading) is instant-based, rather than
interval-based. This is not true for typical media stream tuples, and may have
problems (e.g., false join) in joining tuples with non-overlapping intervals. A
loose window including multiple non-overlapping tuples cannot satisfy the strict
temporal join constraint for media or feature tuples from different streams. In-
stead, we require a more precise and strict metric to join them. We apply an
overlap join (O Join) TSJ1 defined in [21]: All participating tuples that satisfy
the join condition share a common time point. Tuples whose temporal attributes
overlap in time have the highest temporal relevance, thus can be joined. Those
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non-temporal attributes of tuples can only be joined after satisfying the premise
that the corresponding temporal attributes are overlapping in time. As shown
in Figure 1, the i-th tuple in stream M can be overlap joined with three tuples
in stream N , i.e., the j-th, (j + 1)-th and (j + 2)-th.

In a query plan involving more than one unsynchronized input streams, it is
essential to decide which one(s) act as the trigger stream to execute the query
plan. In general, we can make every input stream as the trigger such that each of
their arrival tuple will trigger the query execution. By this way, the query delay
may be reduced. However, as we show in later section, this is not absolutely true
in all cases, due to the complex constraints and synchronization among related
streams and threads. Instead, there are scenarios where a “master-slave” ap-
proach is preferred to reduce the overall query cost (including query delay, CPU,
memory, etc), i.e., to select one input stream as the master stream triggering the
query execution and treat all the other input streams as salve streams tuning
to the master stream. In particular, this approach allows to reduce unnecessary
high-cost feature tuple generations and the overall performance improvement is
significant.

Stream Operator Complexities The stream based operators are quite
different from the traditional record based operators. In many cases, it is the
responsibility of a stream operator to determine tuple(s) from deriving stream(s)
as its input to generate the corresponding output tuple(s) at a specific time. In
addition, the uncertainties of tuple arrival and tuple generation cost bring even
more complexities to stream operators.

A feature stream is produced by one or more stream operators (called trans-
formers) operating on one or multiple related media or other feature streams.
Feature streams are complex in terms of tuple values, deriving media or feature
streams, feature tuple interval semantics, and generation costs. Moreover, frag-
ments from multiple media streams can be composed to form a media stream of
a new format. In general, a stream operator should take N (N ≥ 1) input (media
or feature) stream(s) and generate a new stream of a format defined by users.
Our definition of stream operator also applies to the standard query operators,
such as selection, projection, join, etc.

The stream operator design and implementation depend on users’ specific
requirement. Due to the heterogeneity of media streams and different applica-
tion needs, it is desirable for a querying system to be extendable to user-defined
operators, i.e., the system allows users to design and implement their own trans-
formers and plug codes into the querying system [17].

3 Query Processing

3.1 Media and Feature Stream Description Languages

We have designed a Media Stream Description Language (MSDL) and a a Fea-
ture Stream Description Language (FSDL) for media stream capturing and fea-
ture stream generating [12]. In our example, there are two media streams. First,
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video1 is captured from a webcam connected to a local port (vfw://0) with a
data rate of 10 frames per second (FPS):

create type frame { integer frame num primary key,
time frame st, time frame et, image content };

create media stream video1 of frame from
sensortype cam sensorsource vfw://0 datarate 10.0;

Second, audio2 is captured from a local port (dsound://) with audio clip
buffer size of 40ms:

create type audioclip { integer clip num primary key,
time clip st, time clip et, audiobuffer clip };

create media stream audio2 of audioclip from
sensortype mic sensorsource dsound:// capturebuffersize 40;

Different media streams may have different sensor-dependent initialization
parameters. For example, video1 is defined with a data rate, while audio2 is
defined with a clip buffer size.

Further, we can generate one movement detection feature stream from video1
and a sound detection feature stream from audio2:

create type mvFeature { integer mv sn primary key,
time mv bt, time mv et, integer mv pixel };

create feature stream mvFStream1 of mvFeature on video1
with mv sn:=getFrameNum(frame num)

mv bt:=getFrameTime(frame bt)
mv et:=getFrameTime(frame et)
mv pixel:=getMovementNum(content);

create type sdFeature { integer sd sn primary key,
time sd bt, time sd et, double sd energy };

create feature stream sdFStream3 of sdFeature on audio2
with sd sn:=getFrameNum(clip num)

sd bt:=getFrameTime(clip bt)
sd et:=getFrameTime(clip et)
sd energy:=getSoundEnergy(clip);

Note any feature tuple in both feature streams is derived from a single media
tuple of the deriving media stream.

3.2 Query Expression

We also designed a query language, MF-CQL [13], extended from CQL [2]. Our
query example can be issued as:

Query 1 Select content From video1, mvFStream1, audio2, sdFStream3 Where
mv pixel > 5000 And sd energy > 32.0;
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The logical query plan is shown in Figure 2, where:

mv: Movement feature transformer for video;
sd: Sound feature transformer for audio;
FSel: Selection operator for feature stream;
ProjX : Projection operator filtering out attribute(s) X;
MFetch: Map operator fetching media tuples via corresponding feature tuples;
Fbi-Join: Binary overlap join operator for two feature streams.

Fbi-Join

MFetch

FSel FSel

mvFStream1 sdFStream3

video1 audio2

mv sd

ProjmvFeature

Fig. 2. Query plan example.

T-Join

MFetch

FSel

FSel

Proj
frame

sd

video1 audio2

mv

Fig. 3. Optimized query plan.

3.3 Cost Model for Operators

Table 2. Notation for cost

Notation Description

Ncomp Comparing number for pairing two tuples
Ccomp Unit cost of one comparison
λX(t) Arrival rate of stream X at time t

NX,Y (t) Number of tuples in stream Y to be paired by a tuple in X at time t

Queue length for MFetch A MFetch operator is used to inactively pull the
buffered tuple(s) in its queue at a time, triggered by the corresponding feature
tuple(s). The queue length for a stream R at time t is:
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LQ(t) =
∫ t

t−D(t)

λR(τ) dτ, (1)

where t is the time when a target tuple is retrieved, and D(t) denotes the delay
from the arrival time of the target tuple to t. Note our implementation maintains
a common media/feature tuple queue for each media/feature stream, and sets
a queue length to maximum satisfying all MFetch operators associated with a
given media stream.

O Join Cost A traditional, cardinality-based cost model is incapable of
producing cost estimates of join over unbounded streams, and a unit-time basis
cost model as a new metric should be proposed [11].

The selection of temporal attributes used in O Join (including T-Join) de-
pends on the types of joining streams in a join query:

Case(1): If the O Join operates on two feature streams derived from a same
media stream, the comparing attribute is sqno, thus Ncomp = 1;

Case(2): Otherwise, the comparing attributes are both the start and end times-
tamps of interval, thus Ncomp = 2.

A unit-time based cost formula of O join between streams R and S during period
[t1, t2] is:

CR./S(t1, t2) =
Ccomp ×Ncomp

t2− t1
×

∫ t2

t1

[λR(t)NR,S(t)+λS(t)NS,R(t)] dt, (t2 > t1).

(2)
The cost of Om Join operator joining m (m > 2) streams is:

C./m(t1, t2) =
2Ccomp

t2− t1
×

∫ t2

t1

m∑

i=1

m∑

j=1

j 6= i

λSi(t)NSi,Sj (t) dt. (3)

Query Delay For one qualified tuple in a media stream, its query delay
is defined as the time difference between it enters the system and it leaves the
topmost operator. Query delay is both media stream dependent and individual
tuple dependent, because (1) different media tuples have different tuple extents
and feature computation delays (FCDs); (2) a particular media tuple may be
joined with multiple tuples from other streams; thus (3) different tuples in one
stream joined with a common tuple in another stream may have different delays.

3.4 Query Optimization

By utilizing the temporal constraints and query semantics among media and the
derived stream streams, we can apply a number of optimizations.

Reverse Order in O Join
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According to equations (2) and (3), we should minimize the number (NX,Y(t))
of tuples to be paired to reduce the join cost. The ordering nature of sqno and
interval timestamps provides optimizations for join operator. The O Join is a
merge scan join by using the ordered sqnos and interval timestamps. This is
similar to Temporal Equijoin (TEJ-1) algorithm [10]. Rather than using ascend-
ing order in TEJ-1, our implementation takes the descending order, because each
new arrival tuple (i.e., trigger tuple) has the latest sqno and timestamp. We pair
it with every tuple in the other stream queue from rear to front, i.e., in a reverse
order, and terminate pairing at the first tuple that can not be overlap joined in
time; thus we minimize the comparison number.

Push Down T-Join The query plan shown in Figure 2 has two sub-processes
– the feature generating and the stream querying. One problem of this approach
is that the feature generating thread always runs and is independent of the fol-
lowing querying thread, i.e., whether a feature tuple is really used or not in
the querying subprocess, it is always computed. According to our experiments,
the feature computation cost (in terms of delay, CPU and memory) is the most
significant factor in overall query cost. Nevertheless, the temporal constraints be-
tween related streams, together with application semantics, provide optimization
opportunities in many scenarios. In our example, The sound feature generation
costs much lower than the movement feature generation. The movement feature
is only necessary when the predicate of sound feature is qualified (normally only
in a small portion of time the abnormal sound is detected). Upon these observa-
tions, we develop a optimization rule by using T-Join (a special form of O Join
only joining on time attributes) as follows:

Rule 1 Push down temporal join (T-Join):
Projf (Sel(FeatTran(R)) Fbi-Join S ) =Sel(FeatTran(Projm(R T-Join S))),
where FeatTran is the feature transformer from media stream R of type m to
feature type f , and S is another join (media or feature) stream.

The rule implies that other operators are processed after applying temporal
join operator T-Join first to reduce the number of unnecessary operations, espe-
cially the high-cost feature generations. This rule is especially useful in the cases
where one feature transformer is expensive while another one is much cheaper.
We apply this rule to our example and have an optimized logical query plan
shown as Figure 3.

3.5 Query Execution

Figure 3 shows there is no explicit feature stream generating thread. Insteand,
the feature generation operators are integrated into the stream query processing
thread. This integration not only simplifies issuing queries (i.e., reducing the
declaration of feature stream generation), more important, it allows performing
optimizations covering every phase of media stream querying in a unifying way.

Note the node of video1 can be split into two node instances (i.e., creating
two pointers to same memory address); thus we get a tree structured query plan,
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called transformation tree (TT). By taking a post-order serialization, we can get
a serialized transformation tree (STT) consisting of tree types of nodes:

Data node: It is an input stream and a leaf node of TT. It has a queue buffering
tuples at this node at a time.

Transformer node: It is one of the various operators inside TT. It takes one
or multiple data nodes as input and produces a new data node of any format.

Number node: It is the number N (N ≥ 1) of data nodes that a transformer
node takes as input.

For example, the STT of Figure 3 is serialized as:
Ex1:

@video1, @video1, @audio2, $sd, #1, $Selsd, #1, $T-Join, #2, $Projmv, #1,
$mv, #1, $Selmv, #1, $MFetch, #2;

where @, $ and # are the token symbols used in our query parser indicating
the data node, transformer node and number node, respectively.

The algorithm to execute the STT is:

List SST = makeCopy(SST0); // make a new instance for each run1

while (SST is not empty)

Node node = STT.getFirstNode(); //will remove node from SST

if (node is a DataNode)

DataNode dataNode = (DataNode) node5

stack.push(dataNode);

else //must be a Transformer Node

TranNode tranNode = (TranNode) node;

Node node1 = STT.getFirstNode(); //must be a Number Node

int num = ((NumNode) node1).intValue();10

DataNode dataNode_im = new DataNode(); //intermediate result

for (int = 1 to num) // get num Data Nodes

Node node2 = stack.pop();

inputDataList.add((DataNode)node2);

dataNode_im = TranExec(tranNode, inputDataList); //transform15

stack.push(dataNode_im);

DataNode result = (DataNode) stack.pop();

By default, every new arriving tuple in video1 or audio2 can trigger the query
plan. We notice video1 is a direct child of T-Join. A fact is that if there is no
tuple available in the queue of audio2 at a time, it is unnecessary for a new
arriving video1 tuple to trigger the query plan, since the T-Join will not produce
any output at this time. Therefore, a “master-slave” approach is preferred to
reduce the number of triggering streams. Only audio2’s new arriving tuples
need to trigger the query plan, and video1’s tuples just wait in queue for being
processed by T-Join when triggered by audio2.
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4 Implementation

The prototype of MedSMan is implemented using Java (JDK 1.5.0). We use
APIs provided by Java Media Framework (JMF2.1.1) and OpenCV (integrated
with the Java based query engine via Java Native Interface (JNI)) for real-time
audio/video capturing and feature generating. The stream description and query
languages are implemented using Java Compiler Compiler (JavaCC).

Our implementation consists of two major components, including media/feature
stream generation [12] and stream querying execution. The former permits a de-
signer to directly capture various live data streams from different sensor devices,
and form media streams consisting of logical media tuples. Then, more mean-
ingful feature streams can be automatically derived from media streams for the
query purpose. Stream queries are parsed and generate physical query plans.
MedSMan runs physical plans using an individual tuple triggering approach for
media and feature stream query execution, thus reduces query delays. The query
execution of the two sub-processes approach (see Figure 2) is presented in [13].

We implement the SST algorithm and provide an open system which enables
users to design, implement and upload special operator codes fulfilling their ap-
plication requirements. These codes are dynamically loaded at run-time [17].
This goal is achieved by using Java’s dynamic class loader capabilities. In addi-
tion, we also support a language structure allowing users to specify the master
stream in the join query for query optimizations. More important, by integrat-
ing a set of related individual operators and using our SST algorithm, users can
design “super” operators that can take multiple media streams of any formats
as input and perform the special transformation or query functionalities.

5 Experiments and Analysis

We run a number of query examples on multiple live media and feature streams,
and evaluate performances for two different implementing approaches. We in-
vestigate FCDs, query delays, tuple queue and optimization effects. Our exper-
iments run on a XP machine with dual 2.4GHz CPUs and 2GB RAM.

5.1 Blocking Approach

We begin with the blocking approach which creates a strict “producer-consumer”
relationship among media capturing thread, feature generating thread and stream
querying thread. We examine the FCDs and their impacts on the deriving media
streams. With the media and feature stream defined in Section 3.1, we issue two
examples performing single feature queries as follows:

Query 2 Select content From video1, mvFStream1 Where mv pixel > 5000;

Query 3 Select clip From audio2, sdFStream3 Where sd energy > 32;
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Fig. 4. Performances of single media single feature queries.

The average frame interval, FCD(mv) and query delay for Query 2 are 204.2
ms, 199.7 ms and 463.3 ms, respectively. Figure 4 (a) shows they vary with the
video frame number. The average interval is much greater than the expected
value, i.e., 100 ms, since we use the blocking approach and the average FCD(mv)
is greater than the expected data rate of video1. The video thread only produce
a new frame after the previous one is computed by the mv transformer. As a
result, the total query delay is accumulated and significant. In Query 3, the
average clip interval, FCD(sd) and query delay are 39.99 ms, 5.89 ms and 9.11
ms, respectively. These metrics are much better than those of Query 2, because
the average FCD(sd) is quite small compared to its audio clip interval (i.e., 40
ms), although there are a few big jitters as shown in Figure 4 (b).

Then, we perform Query 1 which joins two feature streams derived from
two different media streams. Figure 5 (a) shows the query delays for each video
frame and each audio clip. Note one video frame overlaps with multiple sequential
audio clips (similarly, one audio clip may overlaps with one or two video frames).
The average delay of the video frames is 393.1 ms, and the average max delay
of the audio clips is 622.5 ms for the oldest one waiting in queue, since an
optimization is implemented by making a slower feature (i.e., mvFestream1) tuple
trigger the faster feature (i.e., sdFStream3) tuples waiting in queue, in order to
remove an unnecessary trigger stream. Figure 5 (b) shows the varying length of
sdFStream3’s queue with an average of 13.9, which indicates the necessary size
of buffering memory of audio2 for this query.
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Fig. 5. Performances of video and audio join query.

The above experiments and results show FCDs play a significant role in
determining dynamic tuple intervals and total query delays. However, we can
utilize the temporal constraints and query semantics between streams to reduce
the number of unnecessary feature generations, thus improve the overall perfor-
mance.

5.2 Non-blocking Approach

We perform Query 1 by executing the serialized tree expressed in Ex1 through
the non-blocking approach. In addition, we indicate audio2 as the master stream
for the purpose of optimization. We are interested in the performance of T-Join
operator which plays a key role in the query execution and optimization. In order
to avoid the outside performance affects from other operators, we assume the
selectivities of both Selmv and Selsd are 1. An important metric discussed here
is the selectivity(video1), i.e., M/N , where M and N are the number of frames
entering and leaving the query plan tree, respectively. T-Join determines this
metric value when assuming the selectivities of related selection operators as 1.
Besides, we define an output window WT−Join, which is the maximum number
of tuples that T-Join can output at a time. This metric implies that if the T-Join
produces more than WT−Join tuples, only the latest WT−Join tuples are output
and the other earlier tuples are skipped. The necessity of WT−Join is explained
as follows.

From Figure 3, the qualified M (M ≥ 1) tuples out of T-Join are projected
and then sent to feature transformer mv, which performs the feature generation
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for every tuple. If FCD(mv) is greater than the expected frame interval or M is
large, mv will be a blocking operator which blocks the entire query plan execution
for a period of SUMFCD =

∑M
i=1 FCDi. During a blocking period, video1’s new

arriving tuples are buffered in queue but not processed. However, if SUMFCD

is too large, the new tuples will replace the old ones in video1’s queue, since the
size of the queue is limited. As a result, the following M Fetch operator cannot
retrieve the deriving media tuple which is required by a qualified but seriously
delayed feature tuple.
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Fig. 6. Performance affects of WT−Join.

As shown in Figure 6 (a), SUMFCD increases linearly as WT−Join increases,
so does the query delay. Figure 6 (b) shows the frame interval and FCD(mv)
do not change much with WT−Join. The selectivity of video1 reaches the climax
about 0.38 with WT−Join = 13 as shown in (c). After that, it drops dramatically
and jumps to 0 after WT−Join is greater 17, because we set the size of video1’s
queue as 50 and the average frame interval is about 97 ms. This implies that a
query delay greater than 4850 ms will make the qualified feature tuple fail to
fetch its deriving media tuple, which has been dequeued. Note all the metrics in
Figure 6 are average values.

Figure 7 shows which portions of the original video frames sequences are
queried out by choosing different WT−Join. Obviously, in case of WT−Join = 1,
the output frames are the most evenly distributed and the query delay is minimal
(314.8 ms). As WT−Join increases, the selectivity may not reduce and may even
increase a little (before reaching the climax), but the output tuples are not evenly
distributed, which is not preferred in an application where allocating system



17

0 5 10 15 20 25 30 35 40
0

50

100

150

new sqno of output frame

or
ig

in
al

 in
pu

t f
ra

m
e 

sq
no

W
T−Join

=1

W
T−Join

=2

W
T−Join

=5

W
T−Join

=10

W
T−Join

=15

Fig. 7. Temporal distributions of output tuples.

resource to monitor evenly across time is important. Moreover, the query delays
also increase linearly.

The average number of media tuples getting queried in a unit period by
using non-blocking approach may not be greater than that of using the blocking
approach (e.g., the ratio of the former to the latter is 70% when WT−Join=1).
However, this only holds when assuming the selectivities of related selection as
1, which is not true in typical queries and forces the mv transformer to work in
the worst blocking status. In actual cases, SUMFCD is much less; thus the non-
blocking approach works more efficiently. Further, the non-blocking approach
does not delay the media stream capturing thread. This implies the media signal
sampling resolution is not degraded; thus more media tuples have chances to
be captured and then queried. This approach also makes the capturing thread
independent of querying thread. This is essential when multiple queries share
a common media stream. In addition, the average query delay is smaller when
setting WT−Join as 1. The optimal value of WT−Join depends on the actual
selectivities of related selection operators, the tuple intervals of joining media
streams, and the FCDs of feature streams.

6 Conclusion and Future Work

This paper presents our approach to dealing with continuous querying over live
heterogeneous media streams by effectively combining extendible digital pro-
cessing techniques with a general media stream management system. A number
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of distinct issues in modelling media stream are investigated. By utilizing the
coherent temporal constraints, as well as query semantics, of media streams and
the derived feature streams, we can design efficient stream operators and query
execution algorithm for live media and feature stream querying. We analyze the
cost metrics of media stream querying and introduce several optimizations. One
additional advantage of our system implementation is its openness for users to
design, implement and plug their own operators into our system. A number of
experiments are run over live media stream queries by using both blocking and
unblocking implementations. We also discuss the metrics and performances of
our system.

In the near future, we will investigate scalability issues, sharing of multi-
ple queries, and more complex features derived from multiple media or exist-
ing feature streams out of a large number of distributed sensors. We also plan
to investigate other factors, such as media transmission delays and compres-
sion/decompression, that may affect system performance.
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