
A Modeling and Execution Environment for

Distributed Scientific Workflows∗

Ilkay Altintas\ Sangeeta Bhagwanani+ David Buttler∗ Sandeep Chandra+ Zengang Cheng+

Matthew A. Coleman‡ Terence Critchlow‡ Amarnath Gupta\ Wei Han∗ Ling Liu∗

Bertram Ludäscher\ Calton Pu∗ Reagan Moore\ Arie Shoshani† Mladen Vouk+

1 Introduction

The Scientific Data Management Center project
(short: SDM) is part of a large research program
sponsored by the US Department of Energy (DOE)
to enable Scientific Discovery through Advanced
Computing [SDM02, Sci]. SDM brings together re-
search teams from DOE labs and universities to ad-
dress and resolve novel data management challenges
that arise due to the new data and information cen-
tric ways in which science is conducted today.

This demonstration illustrates how a domain sci-
entist can perform a complex scientific task by in-
terleaving data access, querying, and manipulation,
as well as analytical steps and computations in com-
plex, problem specific ways. We show how our sys-
tem is used by a geneticist for solving the problem
of discovering so-called “co-regulated” genes by in-
terlinking data and computation from several web
sites, local computations, as well as local and re-
mote databases. The main distinctive features of
our system (compared, e.g., to the ZOO environ-
ment [ILGP96]) include (i) executable workflows run
as web services, (ii) abstract workflows employ con-
cept names and semantic types that are higher-level
(and thus more “scientist friendly”) than executable
workflows, and (iii) our system supports automatic
translation of the latter into the former.

A Scientist’s Problem: Promoter Identifi-
cation Workflow (PIW). Through the Human
Genome Sequencing Project a wealth of informa-
tion has been gained at the nucleotide level. With
the advent of DNA-based microarrays the wealth of
data for interpretation is quickly becoming daunt-
ing. A starting point for discovery is to link ge-
nomic biology approaches such as microarrays with
bioinformatics to identify and characterize eukary-

otic promoters – here, we call this the promoter iden-

∗Georgia Institute of Technology, †Lawrence Berkeley
Laboratory (LBL), ‡Lawrence Livermore National Labora-
tory (LLNL), +North Carolina State University (NCSU),
\San Diego Supercomputer Center (SDSC). This work was
supported by DOE LLNL contract No. W-7405-Eng-48, and
SciDAC/SDM contract No. DE-FC02-01ER25486.

tification workflow or PIW.1 To clearly identify co-
regulated groups of genes, high throughput compu-
tational molecular biology tools are first needed that
are scalable for carrying out a variety of tasks such
as identifying DNA sequences of interest, compar-
ison of DNA sequences, and identification of tran-
scription factor binding sites, etc.

Some of these steps can be executed by query-
ing web-accessible databases and computation re-
sources. However, using web sources “as-is” to en-
act scientific workflows requires many manual and
thus time-consuming and error-prone steps. It is
desirable to automate the scientific workflows such
as the PIW as much as possible. A number of infor-
mation technology and database challenges have to
be overcome:

• Most current web sources are made for human
interaction and thus do not lend themselves eas-
ily to automation. Semiautomatic or automatic
wrapping techniques have to be applied in or-
der to turn interactive web sources into remote
function invocations and database queries.

• An execution environment for running dis-
tributed workflows over the web has to be de-
vised. This includes capabilities for monitor-
ing workflow execution, checkpointing, and re-
running or resuming suspended runs. This is
hard due to the autonomous nature of sources,
their heterogeneous and limited access capabil-
ities, and their occasional, unpredictable down-
times.

• The design of scientific workflows poses unique
challenges both to the domain scientist who
drives the overall design and the IT expert who
is charged with defining the specific data and
control flow. This is due to the complexity of
the scientific data, the complexity of the (of-
ten hidden) semantic links between the different
data sources, and the complexity of the syn-
tactic and procedural intricacies that have to
be overcome when chaining together actual web
sources in the PIW.

1a promoter is a subsequence of a chromosome that sits
close to a gene and regulates its activity

1



Our system demonstration illustrates how the above
problems are addressed and resolved using a web
service oriented execution environment based on
XWrap-ed sources [LPH01] and a semantic medi-
ation approach [LGM01]. We present the overall
approach and system components in the following.

2 Scientific Workflow Ap-

proach and Architecture

Our system for managing scientific workflows bor-
rows some ideas from database mediation, most
notably the use of wrappers to provide uniform
data access (in XML syntax) to heterogeneous web
sources. However, the promoter identification work-
flow PIW cannot be modeled using simple declar-
ative database queries. Here, by (scientific) work-

flow we mean a directed graph over domain-specific
tasks and control structures. A scientific workflow
in our system can be seen as a user-specified ab-
stract “query plan” whose operators include not only
the usual database operations but domain-specific
functions such as gene sequence homology and clus-

ter analysis. In our architecture, an extensible repos-
itory of such abstract tasks is made available to the
scientist.2 Thus the core idea of our approach and
system is that the scientist designs an abstract work-

flow (AWF) from the repository of problem-oriented
abstract tasks while the system tries to derive from
AWF an executable workflow (EWF) in terms of
the available web services. The use of two sepa-
rate vocabularies of abstract tasks and executable
tasks (the actual available web services) has several
advantages:

By hiding the low-level details and intricacies
of actual web services, the scientist user can fo-
cus on the design of the given scientific work-
flow at the conceptual level. For example, there
are several web sources that we have wrapped as
web services that implement the abstract task of
gene sequence homology. Taken together such ser-
vices provide a similar functionality, but are often
implemented using different algorithms and/or ap-
plied to different data sets, e.g., see [BLAa, FAS02,
BLAb].

We provide a mechanism to specify how the func-
tionality of abstract tasks can be defined in terms of
the available executable web services. We call this
the abstract-as-view (AAV) mapping, since we ex-
press the abstract task as a view over the existing ex-
ecutable tasks. Our view definition language for the

2We are not aware of a specific standard API for recurring
tasks such as gene sequence homology. Once such standards
emerge, they can be easily added to our repository.

AAV mapping differs, e.g., from Datalog through its
use of procedural constructs (e.g., task order, pa-
rameter binding patterns, and guarded commands),
data types, and semantic types. Differences among
web services that play a role in the implementation
of an abstract task are hidden in the AAV map-
ping and do not interfere with the design of the ab-
stract workflow. Instead the system creates a dis-
tributed executable workflow plan EWF from AWF
and AAV.

2.1 System Architecture and Compo-

nents

Figure 1 depicts the system architecture. The user
interacts with a GUI called the workflow pilot for
designing the abstract workflow AWF and enacting
and monitoring the exectuable workflow EWF. The
workflow compiler translates AWF to EWF using
the AAV mapping. In order to assist the user in the
abstract workflow design, abstract tasks have associ-
ated semantic types that come from a linked domain
ontology. Using semantic types, the system can au-
tomatically introduce conversion steps (see below).
Abstract tasks are stored in the abstract task reposi-

tory, while executable tasks are stored in a web ser-
vices repository. The signatures of web services are
described using a WSDL extension; process com-
munication is done using SOAP. After invoking the
WF-Compiler, the WF-Pilot can display and run the
executable workflow plan. Executing EWF includes
invocation of generated XML wrappers.

WF-Pilot. The WF-Pilot is a Java/Swing based
GUI and allows the user to design the abstract work-
flow in an intuitive manner using graphical primi-
tives for the WF language constructs explained be-
low. The WF-Pilot is also tightly coupled with the
WF-engine, i.e., a web service-oriented runtime en-
vironment for enacting and monitoring workflows.
Features of the WF-Pilot include checkpointing of
intermediate data nodes, e.g., for subsequent analy-
sis or reruns of parts of the workflow with different
parameters.

WF-Compiler. An important step during the

AWF
AAV
−→ EWF translation is to ensure that ab-

stract tasks are “fed” with correctly typed data, and
that binding pattern restrictions of executable tasks
(web services) are observed. The underlying lan-
guage for defining workflows is based on the follow-
ing nodes and edges:

• Task nodes represent functions such as
gene sequence homology. A task node has var-

2



Figure 1: Scientific Workflow Management System architecture

ious ports connecting it to other nodes, i.e.,
data-in, data-out (for the main data flow),
parameter-in (for control parameters), and exit-

code. The latter is used to determine whether
a task has been executed successfully and can
be used to specify contingency actions.

• Control nodes are used to specify branching
based on runtime conditions. A control node
has data-in and parameter-in ports and k condi-

tional data-out ports, each guarded with a con-
dition ϕi, for i = 1, . . . , k. Data (and control)
flows through data-outk iff ϕk is true.

• Data nodes characterize the data types and se-
mantic types (concept names from a shared on-
tology) of the data flowing between tasks, while
parameter nodes characterize the data types
and semantic types of the control parameters
of tasks.

XWRAP-Composer. This component gener-
ates wrappers that extract relevant information from
different interlinked pages and compose a wrapped
XML document, containing the combined informa-
tion from those pages. In the PIW example, each
executable step requires access to some Bioinformat-
ics web sources. For instance, for the task of iden-
tification of DNA sequences that may have similar
reactions to those gene expression profiles resulting
from the microarray experiments, one needs to use
the full sequence obtained from the search result of
GenBank database to run a BLAST query [BLAa]
over NCBI [NCB02] sources. To obtain a set of
homologues (fragments of similar DNA sequences)
from BLAST, one needs to traverse the outgoing

links from the BLAST summary page to get to
each of the BLAST detail pages. The XWRAP-
Composer encodes both the link reference flow graph
and the data extraction flow graph over multiple
pages and utilizes them to build wrapper programs
that capture the relevant information from multiple
selected pages using a single web service invocation.
XWRAP-Composer is built on top of the XWRAP
toolkit [LPH01].

3 Demonstration

The system demonstration will show our current
prototype developed for the use of a real-world
molecular biologist trying to find “co-regulated
genes” using the PIW. The demonstration highlights
both the usage and several internal features of the
prototype:

AWF Design Mode. The end-user uses the WF-
Pilot to define the abstract promoter identification
workflow. To accomplish any of the PIW abstract
tasks, the user will search through the abstract
task library. Suppose the user chooses the task
gene sequence homology as a way of finding promot-
ers. As the task is graphically put in the WF-Pilot
workspace, the system notices that there are multi-
ple possible overlapping instantiations for this task.
This triggers a semantic disambiguation routine that
asks the user whether any of the predefined semantic
pre-conditions apply to the input (e.g., “Is the length

of the sequence always less then 5000?”). As the
user answers these questions, the system selects the
appropriate instantiations, or possibly keeps several
of them as alternate sources to be selected based on

3



runtime availability and performance. As the user
builds an abstract workflow by drawing edges be-
tween consecutive abstract tasks, the system checks
for data and semantic type compatibility between the
output types and input types of the predecessor and
successor tasks, respectively. For example, the re-
sult of a Blast search from the NCBI web site pro-
duces a genomic sequence, and the TransFac site
[TRA02] accepts a genomic sequence. However, the
Blast output can come from either of the two gene
strands (5’ or 3’), but for the subsequent compari-
son using TransFac derived data, a single orienta-
tion is needed. Therefore, the system inserts a se-

mantic type conversion rule that complements and
reverses the sequence (complementation swaps the
bases: A ↔ T and G ↔ C).

AAV Design Mode. In this mode, a workflow
engineer defines single abstract tasks in terms of ex-
ecutable tasks using the WF-Pilot GUI or a text-
oriented interface. For example, the abstract task of
cluster analysis is first defined as a procedure which,
given microarray observational data returns a hier-
archical grouping of genes, together with additional
metadata for each gene (like its distance from the
cluster mean). The AAV designer creates a con-
crete instance of cluster analysis by associating it
with a specific cluster analysis tool such as Clus-

favor. Like abstract tasks, executable instances of
abstract tasks come with pre- and post-conditions
that guard their applicability. In general the AAV
designer may create multiple executable instances of
the same abstract task, e.g., gene sequence homology

will be defined in terms of both the Blast web-site
from NCBI and the Blat web-site from UC Santa
Cruz. In this case, the AAV designer has to spec-
ify the conditions that allow the system to select at
runtime one or more of the executable tasks in place
of the abstract task. If the conditions do not deter-
mine a unique instantiation, the user is prompted
for a decision at runtime. Possible relationships be-
tween different executable tasks include equivalent

(in which case the system can pick either one, based
on availability and performance), complementary (in
which case the designer has to state mutually dis-
joint conditions), and overlapping (so task selection
at runtime usually involves prompting the user).

EWF Execution Mode. Similar to the AWF,
the EWF can be viewed and even edited through the
WF-Pilot. In order to enact this workflow, the user
is first prompted for remaining runtime parameters
that have not been specified as part of the AWF. In
execution mode, the user can also add ad-hoc break-
points to inspect intermediate results, and decide

which intermediate data should be made persistent.
In general, all user-defined parameter settings and
answers to interactive steps are logged by the sys-
tem, thus allowing the user to rerun a workflow with
the same or adjusted parameter settings.

Given the growing complexity and volume of
the genomic information, robust computational ap-
proaches such as the PIW approach are especially
needed. As presented, this is a novel system that
can link microarray data to genomic database infor-
mation and pass it to multiple tools. The resulting
PIW database and workflow tools become a predic-
tive model to form and test hypotheses related ef-
fects based on gene/pathway interactions. There are
currently no easily accessible methodologies that al-
low for what the PIW demo offers. Our model pro-
vides the biologist with a quickly adaptable way to
identify genes and functional pathways that are co-
incidentally related to gene expression patterns. As
new algorithms and databases are developed they
can be quickly absorbed by the workflow, so that
the biologist can focus his work on new research hy-
potheses instead of spending his time on data man-
agement.

References

[BCC+02] D. Buttler, M. Coleman, T. Critchlow, R. Fileto,
W. Han, C. Pu, D. Rocco, and L. Xiong. Query-
ing Multiple Bioinformatics Information Sources:
Can Semantic Web Research Help? SIGMOD
Record, 31(4), 2002.

[BLAa] Basic Local Alignment Search Tool (BLAST).
http://www.ncbi.nlm.nih.gov/BLAST/, 2002.

[BLAb] UCSC Genome Bioinformatics – BLAT FAQ.
http://genome.ucsc.edu/FAQ.html#188.

[FAS02] European Bioinformatics Institute – FASTA.
http://www.ebi.ac.uk/fasta33/, 2002.

[ILGP96] Y. E. Ioannidis, M. Livny, S. Gupta, and N. Pon-
nekanti. ZOO: A Desktop Experiment Manage-
ment Environment. In VLDB, 1996.

[LGM01] B. Ludäscher, A. Gupta, and M. E. Martone.
Model-Based Mediation with Domain Maps. In
Intl. Conf. on Data Engineering (ICDE), 2001.

[LPH01] L. Liu, C. Pu, and W. Han. An XML-Enabled
Data Extraction Tool for Web Sources. Informa-
tion Systems, Special Issue on Data Extraction,
Cleaning, and Reconciliation, 2001.

[NCB02] National Center for Biotechnology Information
(NCBI). http://www.ncbi.nlm.nih.gov/, 2002.

[Sci] Scientific Discovery through Advanced Comput-
ing (SciDAC), Department of Energy (DOE).
http://www.er.doe.gov/scidac/.

[SDM02] Scientific Data Management Center (SDM).
http://sdm.lbl.gov/sdmcenter/ and http://

www.er.doe.gov/scidac/, 2002.

[TRA02] TRANSFAC – Transcription Factor Database.
http://transfac.gbf.de/TRANSFAC/, 2002.

4


