
Using Stream Semantics for Continuous Queries in Media Stream Processors

Amarnath Gupta
San Diego Supercomputer Center

University of California San Diego

gupta@sdsc.edu

Bin Liu
Electrical and Computer Engineering

Georgia Institute of Technology

bliu@ece.gatech.edu

Pilho Kim
Electrical and Computer Engineering

Georgia Institute of Technology

phkim@ece.gatech.edu

Ramesh Jain
Electrical and Computer Engineering

Georgia Institute of Technology

jain@ece.gatech.edu

Abstract

In this demonstration paper we present a stream query
processor capable of handling media (audio, video, mo-
tion ...) and feature streams. We show that due to their
inherent semantics, a number of constraints can be speci-
fied on the streams and the dependencies among streams.
These are expressed using a Media Stream Definition Lan-
guage (MSDL). We also show how MSDL constructs are
utilized by the query planner and executor, for example, to
reduce redundant stream elements. The system is demon-
strated using an immersive environment application called
IMMERSI-MEET that enables a user to launch continuous
queries against a live meeting.

1 Introduction

Over the past few years, processing continuous queries
over one or more unbounded streams has become a major
research area in data management. A number of research
groups are developing data stream processing systems for
a wide variety of problem domains including network data
management, traffic monitoring, business data analysis, en-
vironmental sensor networks and immersive environments
(see [4] for a repository of application domains and example
queries). Our motivation arises from an immersive system
application where we need to continually evaluate queries
overmediaandfeature streams.

A media streamis usually the output of a sensor device
such as video, audio or motion sensor that produces a con-
tinuous or discrete signal, but typically cannot be directly
used by a data stream processor. Instead, it needs to be
post-processed by one or more transformers to producefea-
ture streamswhich are data streams correlated to the me-

dia stream temporally and in terms of content. Very often,
we would want to evaluate a query over one or more fea-
ture streams, but would want to output a part of the media
stream. For example, assume that there is a video streamV
coming from a camera and a motion feature detectorM that
outputs a stream of characters ”Y” or ”N” such that ”Y” is
output if it detects a motion. We pose the query:

select S format realVideo
from video V, motion feature M
where I is s regexp(M, ’Y+’) and S is clip(V,I).

where the functions regexp(stream, regular-expression) re-
turns all time intervals of where a character stream matches
the regular expression, and the functionclip(stream, time-
interval) selects the portion of the stream corresponding
with the time interval. In this query, we want to output the
video from the camera whenever the motion sensor detects
a movement.

In this demonstration paper, we describe our on-going
research on a general-purpose media stream management
system, which permits a designer to describe the proper-
ties of media and feature streams using a media stream
description language. These properties are then used by
the stream query planner to schedule operators in the me-
dia stream processor. In the demonstration, we present
IMMERSI-MEET, an application built around an immersive
environment for an instrumented meeting room being devel-
oped by the Experiential Systems Group at Georgia Institute
of Technology.

2 Our Approach

The basic premise of our approach is that not all streams
are created equal – they differ in content, streaming proper-
ties, operations permitted on them, and how they would be



used in the application. Furthermore, in the case of media
and feature streams, explicitinter-stream constraintsexist
and can be exploited in the evaluation of continuous queries
in the spirit of semantic query optimization. We express
these properties using a media stream declaration language
MSDL.

Media Stream Description Language: The IMMERSI-
MEET system distinguishes betweencontinuous streams,
where values of different types come at a specified data rate,
and discrete streamswhere sources push values intermit-
tently. For example, a video is declared as a data type:

create type frame as media record {
integer frame number,
image content

}.
create type video as continuous stream of frame

at 30 per second,
timestamp as frame number.

Heremedia record denotes the object as a record contain-
ing at least one media object. A stream containing a media
object is a media stream. Note that the timestamp (an intrin-
sic property of any stream) is specified to be frame number
than the default unit of absolute time from the start of the
stream. The stream instance is declared as:

create media video V1 {
format mpeg,
skip 1 in every 4 in input.

}

The optional keywordskip provides the directive that the
media has sufficient content redundancy that dropping 1 in
every 4 elements (an element is a time tick, i.e., every frame
here) from the input will not hurt the queries. The default
is to skip nothing, thus the output video cannot drop any
further frames. In contrast, consider a stream that outputs a
PowerPoint presentation in the form of an image sequence.
This is simply declared as:

create type ppt slide as {
image slide content

}.
create type ppt stream as continuous stream of ppt slide.

Now assume there is a software that tracks users’ I/O events
like mouse-clicks and keystrokes. This software, in con-
junction with the PowerPoint stream, serves as a discrete
feature stream that intermittently reports whether the user
goes forward or reverse during a presentation – we call this
the punctuation streamof the ppt stream. While in prin-
ciple, the idea of punctuation here is similar to that in [5],
namely, to treat a single unbounded stream as a combina-
tion of streams that terminate at punctuation boundaries,
in our case, the punctuation itself comes from a different

stream. Further, there is yet a content extraction software,
which, at every tick of the punctuation stream, processes the
current PowerPoint presentation and outputs aslide content
streamcontaining the textual content corresponding to each
slide with every mouse click of the user. Clearly, the feature
streams allow us to specify some inter-dependency among
these three streams. To capture this dependency in MSDL,
we first have to declare the base types and the stream types:

create type ppt marker as
textToken (’FWD’|’REV’).

create type marker stream as discrete stream of ppt marker.
create type ppt text as record {

integer slide number primary key,
string(30) slide title,
string(1000) text content

}.
create type ppt content as discrete stream of ppt text.

Now, the dependencies can be declared while creating the
concrete stream instances.

create media ppt stream S1.
create feature marker stream M1 on S1

with avg delay 1 second and
max delay 2 second where

punctuates(M1, S1).
create feature ppt content C1 on S1, M1

with avg delay 2 second with S1 where
start synchronized(M1, C1) and
identifier(S1,C1.slide number) and
repeats(C1.fields).

Note the usage of the primary key for the record, and the
usage of the keywordon in specifying the dependence re-
lation between streams. In MSDL, any dependence decla-
ration must have at least one dependency specifying pred-
icate in the body. Thepunctuates(discrete stream, contin-
uous stream) predicate denotes a first kind of inter-stream
dependency. In addition, one or morewith delay specifier
serves as a directive to the stream processor to set some
guidelines on the temporal asynchrony between streams,
thus accounting for the computation time for feature extrac-
tion. In the second case, we illustrate the dependency pred-
icate start synchronized(discrete stream, discrete stream)
that denotes that the start of the stream elements of M1
and C1 are synchronized, but not their ends. This is ex-
pected because M1 only outputs a token stream while C1
outputs a variable length record. The assumption made
here is that two successive signals from M1 does not oc-
cur before C1 is completed. If this possibility exists, the
start synchronized predicate must be replaced by the pred-
icateorder synchronized to mean that thei-th elements of
the two streams denotecorresponding objects. Finally, the
predicateidentifier(stream1, stream2 var) is a directive that
ascribes a variable from a punctuating stream as the key
to another, possibly continuous stream. The implication of

2



this identification constraintis discussed later. Therepeats
constraint asserts that all fields of the streaming record may
be identical across punctuations, which is likely to happen
if the PowerPoint presenter goes back and forth between
slides.

In some cases, a feature stream needs to be considered
as independent. Consider the example query – typically, the
media stream corresponding to a motion sensor is declared,
but not used by any query. Instead, all queries use a feature
stream produced from it. As in the other cases, the motion
sensorm would typically declare a data rateρm. But now,
the corresponding feature stream would have to declare a
data rateρf asα × φ(ρm) + δ, whereα is the drop rate,
δ is a delay andφ() is an experimentally determined func-
tion. The feature itself will be declared ascreate indepen-
dent feature ... to ensure that the definition is compiled to
compute the stream properties of the feature, and then used
for query planning and operator scheduling.

Stream Constraints in Query Evaluation: As stream
declarations are registered, the stream constraints are in-
terpreted to construct a set ofevaluation directives. The
skip keyword for the streamS produces a directive
S.dropElement(<fraction>). We call this a directive be-
cause the stream query engine may choose not to exercise
the directive. In the example case, if the input and output
formats dictate that theclip procedure needs the input video
stream to be uncompressed into raw frames, the frames will
be dropped – if it is more expensive to uncompress and drop
frames than to convert directly into the output format with-
out dropping frames, the directive will be ignored. This
illustrates a primary distinction between media streams and
data streams – while theclip operator can be used for any
media stream, its implementation will depend significantly
on the format of the data and hence will be a primary deter-
minant in any cost-based planning operation exercised by
the stream query processor.

The effect of thedropElement directive is much more
pronounced in the case of a punctuating feature. By our
declaration, the punctuating feature may arrive with a max-
imum possible delay ofδmax compared to the video stream.
The video stream is therefore queued in chunks ofδmax ×
frame rate, and then upon the arrival of the next feature
element from the punctuating stream, the frameδavg + ε is
selected (i.e., marked for selection), whereε is a uniformly
distributed random variable between 1 andδavg

2 . The rest of
the frames are dropped, with minimal chances of informa-
tion loss.

As a consequence of thestart synchrnonized predicate,
the stream query planner/scheduler ensures that the queue
for the punctuating signal also supplies the selection oper-
ator for the slide-content stream, from which the content
record is picked at the arrival of the punctuating token. It

is possible to define a “handler” for therepeats constraint.
Note that while the text content of the slide might repeat, the
timestamp for the(i + 1)-th occurrence of the same slide is
always increasing. One possible way to “handle” this case,
is to project only the primary key (i.e., the slide number) as
a way to compress the output, but at this time we are still
evaluating if such special treatments give us any benefit.

In IMMERSI-MEET all text terms for a window around
the current slide are indexed, with the slide number (the
primary key) being used as the record pointer. The iden-
tification constraint is used toinducea join between the
“unidentified” stream and the “identifying variable” from
a feature stream, by supplying it a primary key. Simply, it
constructs an intermediate bookkeeping table in the query
processor by associating every slide number to the times-
tamp intervals of the frame stream. This table serves as an
index for any query that needs to access specific portions of
the frames based on slide content. This is used, for instance,
in a query that requests a stream upon the occurrence of an
event is expressed by extending the SQL syntax as:

show ppt stream on event (
select frames F
from ppt stream, features(ppt stream)
where F->text content like “%View Unfolding%”

).

The function features(<media stream>) is a convenient
macro that hides the exact feature to be used from the user.
When we refer tosomefeature related to the frame, we use
the notationF-><attribute name>) as if this were a prop-
erty of the frame itself. This indirection is compiled away
before execution. The plan uses the text index to spot the
keyword, and the bookkeeping table to acquire the times-
tamp on the pptstream. The temporary table makes the
frame searching more efficient. When the frame is located,
the system opens a channel to the user to stream the presen-
tation from that point on.

System Architecture: The logical architecture of the sys-
tem is strongly influenced by theSTREAM project [3]. Our
current focus is to demonstrate the dependency utilization
fragment without focusing on load shedding and operator
schedulin [1], or the communication optimization consid-
ered in [2].

3 The Demonstration

In the previous section, we described the operations of
the query processor primarily in terms of the relatively sim-
ple PowerPoint stream and its features. The immersive
environment of theIMMERSI-MEET environment is much
richer in the variety of media streams. It is built around a
meeting room with a number of cameras and microphones.

3



There is a designated camera and microphone for the pri-
mary speaker. Every other participant has a dedicated mi-
crophone and shares some cameras. In addition, the door-
way to the meeting room is equipped with a camera and a
motion sensor.

The computer of the presenter is instrumented with
customized software written around a clickstream and
keystream tracker software. This software parses the text
content of the focus window of the audio-stream processors
from the microphones assume only speech signal is present
and is routed through a speech-to-text converter that pro-
vides about 80% correct transcription. The database will
also have static relations that keep the details of partici-
pants, presenters, and the topics of their presentations. The
video streams from the cameras will be processed through
some elementary motion-processing and feature extraction
routines. These detectors will compute a set of simple fea-
tures like positions and bounding boxes of clusters of mo-
tion. They will be further processed by a set of “elemen-
tal event detectors” to determine events like “standing-up”,
“sitting-down”, “entering-room”, “raising hand”, etc. under
the simplifying assumption that only single events occur in
the meeting room at any time. Each event detector then
sends a stream of events (previously declared as dependent
feature streams), each described using a set of parameters
like an error estimate of event detection.

During demonstration, the meeting room will be “sim-
ulated” by first pre-recording the different channels of the
meeting on a number of different computers. These com-
puters will then send a set of media and feature streams
to a processing computer that runs the media stream pro-
cessor. We will show an interface to register streams and
queries. Further, we will present a “debugger’s console”
which would show the operators used for a query and the
states of the queues as the execution occurs. The queries
we would show would include both the notification case,
where the user gets connected to the meeting when a speci-
fied event occurs, and the “log upon event occurrence” case,
where the output is a media record composed by project-
ing portions of the media that satisfy the query and other
attributed computed from feature streams or from static re-
lations.

References

[1] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Con-
vey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Au-
rora: A new model and architecture for data stream manage-
ment.VLDB Journal, August (to appear) 2003.

[2] S. Krishnamurthy, S. Chandrasekaran, O. Cooper, A. Desh-
pande, M. J. Franklin, J. M. Hellerstein, W. Hong, S. R. Mad-
den, V. Raman, F. Reiss, and M. A. Shah. Telegraphcq: An
architectural status report.IEEE Data Engineering Bulletin,
26(1), March 2003.

[3] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu,
M. Datar, G. Manku, C. Olston, J. Rosenstein, and R. Varma.
Query processing, resource management, and approximation
in a data stream management system. InConference on Inno-
vative Data Systems Research (CIDR). IEEE, January 2003.

[4] The Stanford STREAM Group. Stream Query Repository.
web site at http://www-db.stanford.edu/stream/sqr/, January
2003.

[5] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Ex-
ploiting punctuation semantics in continuous data streams.
IEEE Transactions on Knowledge and Data Engineering,
15(3):555–568, May 2003.

4


