
A Model-Based Mediator System for Scientific

Data Management

Bertram Ludäscher? Amarnath Gupta? Maryann E. Martone‡

?San Diego Supercomputer Center, U.C. San Diego {ludaesch,gupta}@sdsc.edu
‡Department of Neurosciences, U.C. San Diego mmartone@ucsd.edu

Chapter 6

A Model-Based Mediator System

for Scientific Data Management

A database mediator system combines information from multiple existing source databases and
creates a new virtual, mediated database that comprises the integrated entities and their rela-
tionships. When mediating scientific data, the technically challenging problem of mediator query
processing is further complicated by the complexity of the source data and the relationships be-
tween them. In particular, one is often confronted with “complex multiple-world scenarios”, i.e.,
in which both the semantics of individual sources as well as the knowledge to link them require a
“deeper modeling” than offered by current database mediator systems. Based on experiences with
federation of brain data, we present an extension called model-based mediation (MBM). In MBM
data sources not only export raw data and schema information but conceptual models (CMs) in-
cluding domain semantics to the mediator, effectively lifting data sources to “knowledge sources”.
This allows a mediation engineer to define integrated views based on (i) the local CMs of regis-
tered sources and (ii) auxiliary domain knowledge sources called domain maps (DMs) and process
maps (PMs), respectively, which act as sources of “glue knowledge”. For complex scientific data
sources, semantically rich CMs are indeed necessary in order to represent and reason with scien-
tific rationale for linking a wide variety of heterogeneous experimental assumptions, observations,
and conclusions that together constitute an experimental study. We illustrate the challenges using
real-world examples from a complex neuroscience integration problem and present the methodol-
ogy and some of our tools, in particular the KIND1 mediator prototype for model-based mediation
of scientific data.

6.1 Background

Seamless data access and sharing, handling of large amounts of data, federation and integration
of heterogeneous data, distributed query processing and application integration, data mining, and
visualization are among the common and recurring broad themes of scientific data management
in many disciplines. A main stream of activity in the bioinformatics domain is concerned with
sequence and structural databases such as GenBank, NCBI, PDB, SwissProt, etc. and much work
is devoted to algorithmic challenges stemming from problems, e.g., efficient sequence alignment
and structure prediction. However, in addition to the well-known challenges of main stream
bioinformatics applications such as algorithmic complexity and scalability (e.g., in genomics), there
are other major challenges that are sometimes overlooked, particularly when considering other
kinds of scientific data beyond the level of sequence and protein data, e.g., brain imagery data.
These challenges arise in the context of information integration of scientific data and have to do
with the inherent semantic complexity of (i) the actual source data, and (ii) the “glue knowledge”

1Knowledge-based Integration of N euroscience Data

that is necessary to link the source data in meaningful ways. We argue that traditional federated
database system architectures and those of the more recent database mediators developed by the
database community need to be extended in order to adequately handle information integration
of complex scientific data from multiple sources. This extensions is a combination of knowledge
representation and mediator technology – in a nutshell:

Model-Based Mediation = Database Mediation + Knowledge Representation

With respect to their semantic heterogeneity (ignoring syntactic and system aspect), we can
roughly classify information integration/mediation scenarios (scientific or otherwise) along a spec-
trum as follows: On the one end, we have simple one-world scenarios, somewhere in the middle
we have simple multiple-world scenarios, and at the other end of the spectrum, we find complex
multiple-world scenarios. An example of a simple one-world scenario (i.e., in which the modeled
real-world entities can be related easily to one another and come from a single domain) is com-
parison shopping, say for books. A typical query is to find the cheapest price for a given book
from a number of sources such as amazon.com and bn.com. An example of a simple multiple-world
scenario is the integration of realtor and census data in order to annotate and rank real estate
by neighborhood quality. Here, we combine and relate quite different kinds of information, but
the relations between the multiple worlds are simple enough to be understood without deep do-
main knowledge. Examples of complex multiple-world scenarios are often found in scientific data
management and are the subject of this chapter. Thus, “simple” and “complex” here refers to
the degree in which specific domain semantics is required in order to be able to formalize or even
state meaningful associations and linkages between data objects of interest – it does not mean
that the database and mediation technology for realizing such mediators is simple.2 For example,
to state the problem what the result of an integrated comparison shopping view should be, a
basic understanding of a “books schema” (title, authors, publisher, price, etc.) is sufficient. In
particular, the association operation that links objects of interest across sources can be executed
(at least in principle) as a syntactic join on the ISBN. Similarly, in the realtor example, data can
be joined based on ZIP code, latitude/longitude, or street address, i.e., by spatial joins which
can be modeled as atomic function calls to a “spatial oracle”. To understand the basic linkage of
information objects, no “insight” into the details of the spatial join is required.

This is fundamentally different for complex multiple-world scenarios as found in many scientific
domains. There, even if data is stored in state-of-the-art (often web-accessible) databases, signifi-
cant domain knowledge is required in order to even articulate meaningful queries across disciplines
(or within different micro-worlds of a single discipline); cf. the examples in the next section.

Outline. In this chapter, we illustrate these challenges using examples from our ongoing col-
laborations with users and providers of scientific data sets, in particular, from the Neuroscience
domain (Section 6.2). We then present a methodology called model-based mediation which extends
current database mediator technology by incorporating knowledge representation (KR) techniques
in order to create explicit representations of domain experts’ knowledge that can be used in various
ways by mediation engineers and by the model-based mediator system itself (Section 6.3). The
goal of model-based mediation could be paraphrased as

Turning scientists’ questions into executable database queries.

In Section 6.4 we introduce some of the KR formalisms, e.g., for domain maps and process maps
and describe their use in model-based mediation (some details are deferred to Appendix A). In
Section 6.5 we present the KIND mediator prototype and other tools being developed at SDSC
and UCSD, primarily in the context of the Neuroscience domain. We discuss some related work
and conclude in Section 6.6.

2quite the opposite: such “simple” mediation scenarios often pose very difficult technical challenges, e.g., query
processing in the presence of limited source capabilities [PGH98, LYV+98].

Branch

Shaft

Spine

has

Ion_Binding_Protein

contains

Ion_Regulating_Component

Compartment

Axon Dendrite Soma

has

Ion_Activity

Neurotransmission

subprocess

controls = , regulates

Neuron

has

AND

has

Spiny_Neuron

=

Purkinje_Cell Pyramidal_Cell

Protein

Neuron v ∃has.Compartment
Axon, Dendrite, Soma v Compartment
Spiny Neuron ≡ Neuron u ∃has.Spine
Purkinje Cell, Pyramidal Cell v Spiny Neuron
Dendrite v ∃has.Branch
Shaft v Branch u ∃has.Spine
Spine v ∃contains.Ion Binding Protein
Spine v Ion Regulating Component
Ion Activity v ∃subprocess of.Neurotransmission
Ion Binding Protein v Protein u ∃controls.Ion Activity
Ion Regulating Component ≡ ∃regulates.Ion Activity

Figure 6.1: A domain map for synapse and ncmir (unlabeled, gray edges ≈ “isa” ≈ “v”) and
its formalization in description logic

6.2 Scientific Data Integration Across Multiple Worlds:

Examples and Challenges from the Neurosciences

We illustrate some of the challenges of scientific data integration in complex multiple-world sce-
narios using examples that involve different “Neuroscience worlds”. Such examples occur regularly
when trying to federate brain data across multiple sites, scales, and even species [NPA01], and
have led to new research and development projects aimed at overcoming the current limitations
of biomedical data sharing and mediation [BIR01].

Example 1 (Two Neuroscience Worlds) Consider two Neuroscience laboratories synapse and
ncmir3 that perform experiments on two different brain regions. The first laboratory, synapse,
studies dendritic spines of pyramidal cells in the hippocampus. The primary schema elements are
thus the anatomical entities that are reconstructed from 3-dimensional serial-sections. For each
entity (e.g., spines, dendrites), researchers make a number of measurements, and study how these
measurements change across age and species under several experimental conditions.

In contrast, the ncmir laboratory studies a different cell type, the Purkinje cells of the cere-
bellum, inspecting the branching patterns from the dendrites of filled neurons, and localization of
various proteins in neuron compartments. The schema used by this group consists of a number
of measurements of the dendrite branches (e.g., segment diameter) and the amount of different
proteins found in each of these subdivisions. Let us assume each of the two schemas has a class C

having a location attribute which can have a value like "Pyramidal Cell dendrite" and "Purkinje

Cell", respectively.
How are the schemas of synapse and ncmir related? Evidently they carry distinctly different

information and do not even enter the purview of the schema conflicts usually studied in databases
[KS96]. To the scientist however, they are related because of the following reason: Like pyramidal
neurons, Purkinje cells also possess dendritic spines. Release of calcium in spiny dendrites occurs
as a result of neurotransmission and results in changes in spine morphology (sizes and shapes
obtained from synapse). Propagation of calcium signals throughout a neuron depends upon the
morphology of the dendrites, the distribution of calcium stores in a neuron and the distribution of
calcium binding proteins, whose subcellular distribution for Purkinje cells are measured by ncmir.

2

3see synapses.bu.edu and www-ncmir.ucsd.edu

Thus, a researcher who wanted to model the effects of neurotransmission in hippocampal spines
would get structural information on hippocampal spines from synapse and information about the
types of calcium binding proteins found in spines from ncmir. Note that neither of the sources
contains information that would allow a mediator system to bridge the “semantic gap” between
them. Therefore we need, independent of the observed experimental raw data of each source,
additional domain knowledge in order to connect the two sources. The domain expert, here a
neuroscientist has no problem providing us with the necessary “glue knowledge”:

Purkinje cells and Pyramidal cells have dendrites that have higher-order branches that
contain spines. Dendritic spines are ion (calcium) regulating components. Spines have
ion binding proteins. Neurotransmission involves ionic activity (release). Ion-binding
proteins control ion activity (propagation) in a cell. Ion-regulating components of cells
affect ionic activity (release).

In order to capture such domain knowledge and make it available to the system, we employ
two kinds of ontologies, called domain maps and process maps, respectively. While the former are
aimed at capturing the basic domain terminology, the latter are used to model different process
contexts (see below). Ontologies, such as the domain map in Figure 6.1 are often formalized in
logic (here statements in description logic [CGL+98]; see Section 6.4.1). Together with additional
inference rules (e.g. capturing transitivity of “has”), logic axioms like these formally capture the
domain knowledge and allow a mediator systems to work with this knowledge (e.g., a concept or
class hierarchy can be used to determine whether the system should retrieve objects of class C ′

when the user is looking for instances of C).
Domain maps not only provide a concept-oriented browsing and data exploration tool for

the end user, but – even more importantly – can be used for defining and executing integrated
view definitions (IVDs) at the mediator. The above real-world example illustrates a fundamental
difference in the nature of information integration as studied in most of the database literature and
as necessary for scientific data management. In the latter, seemingly unconnected schema can be
semantically close when situated in the scientific context, which in this case is the neuroanatomy
and neurophysiological setting described above. Therefore we call this mediation across multiple
worlds and facilitate it using domain maps as the one shown.

From Terminology and Static Knowledge to “Process Context”

While domain maps are useful to put data into a terminological and thus somewhat “static”
knowledge context, a different knowledge representation has to be devised when trying to put
data into a dynamic or “process context”. Consider, for example, groups of neuroscientists who
study the science of mammalian memory and learning. Many of these groups study a phenomena
called long-term potentiation (LTP) in nerve cells, where repeated or sustained input to nerves
in specific brain regions (such as the hippocampus) conditions them in such a manner that after
some time, the neuron produces a large output even with a small amount of “known” input. Given
this general commonality of purpose, however, individual scientists study and collect observational
data for very different aspects of the phenomena.

Example 2 (Capturing Process Knowledge) Consider a group [BST+00] that studies the
role of a specific protein N-Cadherin in the context of synpase formation during late-phase long-
term potentiation (L-LTP), a subprocess of LTP. The data collected by the group consists of
measurements that illustrate how the amount of N-Cadherin and the number of synapses (nerve
junctions) both simultaneously increase in cells during L-LTP. A different group, [KFM01], studies
a new enzyme called CAMK-IV and its impact on a chemical reaction called phosphorylation of a
protein called CREB. Their data is collected to show how modulating the amounts of CAMK-IV,
and other related enzymes affect the amount of CREB production, and how this in turn, affects
other products in the nucleus of the neurons. Ideally, the goal of “mediating” between experimental
information from these two sources would be to produce an integrated view that enables an end-
user scientist to get a deeper understanding of the LTP phenomena. Specifically, the end-user

0

1

r b
initial_input

2

rb
starts(synapse_activity)

6

b
abstract_27

b
forms(protein,synapse)

3

rb
E-LTP

4

r b
sustained_input

5

b
phosphorylates(CAMK-IV,CREB)

 b
transcribes(CREB,gene)

r
abstract_1

synthesizes(gene,protein)

Figure 6.2: A simple process map. Blue and red edges (marked “b” and “r”, respectively) depict
processes about which two data sources/research groups have observational data; dashed edges
indicate abstractions (“short cuts”).

should be able to ask queries (and get answers) that exploit the scientific interrelationship between
these experiments. In this way, the integrated access provided by a mediator system can lead to
new observations and questions thus eventually driving new experiments.

At the risk of oversimplification, we can state that the first source looks at synapse-formation,
and is only interested in the fact that some proteins (including N-Cadherin) bring about the
formation of synapses. They do not look at the processes leading to the production of these
proteins. The second source looks at a specific chain of events leading up to the production
of the proteins, but does not identify which proteins are produced. The semantic connection
between these two sources can be constructed in terms of the underlying “event structure” and
how they elaborate on different parts of it. Figure 6.2 depicts a simplified view of the relationship
explained above and shows the cyclic progression of events leading to synapse formation during
LTP: Red edges situate the first source with respect to the overall process, while blue edges situate
the second source. In either case, the dashed lines show the subsequence of events the sources
“glossed over” or abstracted. Thus the first source does not have any information pertaining
to phosphorylates(CAMK-IV, CREB), and the second source does not have any data related to
forms(protein, synapse). Neither source has any data about the (black) edge synthesizes(gene,
protein). 2

Domain maps allow data providers to put their source data into a static/terminological con-
text, while process maps allow them to do the same for a dynamic/process context. Together
they capture valuable “glue knowledge” that resides at the mediator and facilitates integration
of hard-to-correlate sources; in particular, concept-oriented data discovery (“semantic browsing”)
[GLM01], view definition, and semantic query optimization [CGM90]. To make model-based me-
diation effective, it is also necessary to “hook” the elements of the source schema to the domain
map and the process map. This process, which we call the contextualization mechanism, is central
to the MBM framework.

6.3 Model-Based Mediation

In mediator systems, differences in syntax and data models of sources S1, S2, . . . are resolved by
wrappers that translate the raw data into a common data format, typically XML. In most current

mediator systems, all other differences, in particular schema heterogeneities are then handled by
an appropriate integrated view definition (IVD) which is defined using an XML query language
[LPV00, PV01]. We extend this architecture by “lifting” exported source data from the level of
uninterpreted, semistructured data in XML syntax to the semantically rich level of conceptual
models with domain knowledge (CMs). Then, the mediator’s IVDs can be defined in terms of
CMs (global-as-view) and thus make use of a semantically richer model involving class hierarchies,
complex object structure, properties of relationships (relational constraints, cardinalities, ...) etc.

Model-Based Mediation: The Protagonists

The underlying methodology and procedures of MBM involve users in different roles and at dif-
ferent levels:

• Data providers are typically domain experts, e.g., bench scientists who would like to make
their data from experimental studies available to the community. In MBM, a data provider can
not only export an XML-queryable version of her data, but also domain semantics by lifting the
exported data and schema information from a structural level (e.g., XML DTDs) to the level
of conceptual models.4 Allowing data providers to situate or “contextualize” (Example 4) their
primary data themselves has significant benefits. First, data providers know best where their data
fits on the glue maps. Second, even without the IVDs defined by mediation engineers, data is
automatically associated across different sources via their domain/process map contexts.

• View providers specify integrated view definitions (IVDs), i.e., program complex views
in an expressive declarative rule-language. The IVDs are defined over the registered complex
sources CM(S1),CM(S2), . . . and the “glue knowledge” sources in the mediator’s repository. Thus
view providers are the actual mediation engineers and bring together (as a team or individually)
expertise in the application domain and in databases and knowledge-representation.

The new “fused” objects defined by an IVD can be contextualized, based on the contexts
provided by the source conceptual models (see right-hand side in Figure 6.6). In this way, an
integrated, virtual view exported by the mediator becomes a “first-class citizen” of the federation,
i.e., is considered a conceptual level source CM(M) itself and can be used just like any original
CM-wrapped source.

• End users can start by semantic browsing of GMs, i.e., by navigating the domain and
process ontologies in the style of topic maps, where a user navigates through a concept space by
following certain relationships, going up and down concept hierarchies etc. A user may also focus
her view by issuing graph queries over domain or process maps which return only the subgraphs
of interest. Eventually, the user can access raw data from different sources, which is (due to
contextualization) automatically organized by context [GLM01], and access derived data resulting
from user queries against the mediated views.

Conceptual Models and Registration of Sources at the Mediator

We can distinguish the following components of the conceptual model CM of a source S:

CM(S) = OM(S) ∪ ONT(S) ∪ CON(S)

The different logical components an their dependencies are depicted in Figure 6.3:

• OM(S) is the object model of the source S and provides signatures for classes, associations
between classes, and functions. OM(S) structures can be defined extensionally by facts
(EDB), or intensionally via rules (IDB).

• ONT(S) is the local ontology of the source S, i.e., defines concepts and their relationships
from the source’s perspective.

4XML Schema and similar efforts like RELAX NG play an intermediate role between purely structure-based
models (DTDs) and richer semantic models with constraint mechanisms etc.

Object Model
OM(S)

IDB(S) EDB(S)

Source Ontology
ONT(S)

Conceptual Model
CM(S)

Contextualization
 CON(S) in CSL

Ontological Grounding
ONTG(S)

Mediator Ontology
ONT(M)

Integrated View Definition
IVD(M)

GAV

LAV

Figure 6.3: Model-based mediation: dependencies between logical components

• ONTG(S) is the ontological grounding of OM(S) in ONT(S), i.e., a mapping between the
object model OM(S) (classes, attributes, associations) and the concepts and relationships of
ONT(S).

• CON(S) is the contextualization of the local source ontology relative to a mediator ontology
ONT(M).

• IVD(M) is the mediator’s integrated view definition and comprises logic view definitions in
terms of the sources’ object models OM(S) and the mediator’s ontology ONT(M). By posing
queries against the mediator’s IVD(M), the user has the illusion to interact with a single,
semantically integrated source instead of interacting with independent, unrelated sources.

In the following, we present the local parts of CM(S), i.e., OM(S), ONT(S), and ONTG(S) through
a running example. For details on the contextualization CON(S) see Example 4 and [GLM02a].

Example 3 (Cell-Centered Database: CCDB) Figure 6.4 shows pieces of a simplified ver-
sion of the conceptual model CM(CCDB) of a real-world scientific information source called the
Cell-Centered Database, [MGW+02]. The database consists of a set of experiment objects.
Each experiment collects a number of cell images from one or more instruments. For each image,
the scientists mark out cellular structures in the image and perform measurements on them
[MGW+02]. They also identify a second set of regions, called deposits, in images that show the
deposition of molecules of proteins or genetic markers. In general, a region marked as deposit does
not necessarily coincide with a region marked as a structure. 2

Note that OM(CCDB) in Figure 6.4 includes classes that are instantiated with observed data,
i.e., the extensional database EDB(CCDB). In addition to classes, OM(CCDB) stores associations,
which are n-ary relationships between object classes. The association co localizes with specifies
which pairs of substances occur together in a specific structure. The object model also contains
functions, such as the domain specific methods that can be invoked by a user as part of a query.
For example, when the mediator or another client calls the function CCDB.deposit in structure(),
and supplies the id of a deposit object, the function returns a set of structure objects that
spatially overlap with the specified deposit object.

Next, we describe the source’s local ontology, ONT(CCDB). Here, an ontology ONT(S) consists
of a set of concepts and inter-concept relationships5, possibly augmented with additional inference
rules and constraints.6 The ontological grounding ONTG(S) links the object model OM(S) to the
source ontology ONT(S). The source ontology serves a number of different purposes:

5most formal approaches, e.g., based on description logic, consider binary relationships only
6e.g., ONT4, ONT5 in Figure 6.4 define virtual relations such as transitive closure over the base relations

Classes in OM(CCDB)

experiment(id:id, date:date, cell type:string, images:set(image)).
image(id:id, instrument:enum{c microscope, e microscope}, resolution:float, size x:int, size y:int,

depth:int, structures:set(structure), regions:set(deposit)).
structure(id:id, name:string, length:float, surface area:float, volume:float, bounding box:Cube).
deposit(id:id, substance name:string, deposit type:string, relative intesity:enum{dark,normal,bright},

amount:float, bounding box:Cube).
· · ·

Associations in OM(CCDB)

co localizes with(deposit.substance name, deposit.substance name, structure.name).
surrounds(s1:structure, s2:structure).
· · ·

Functions in OM(CCDB)

deposit in structure(deposit.id) → set(structure.name)
· · ·

Source Ontology – ONT(CCDB)

brain
has(co)
−→ cerebellum

has(co)
−→ cerebellar cortex

has(co)
−→ vermis (ONT1)

dendrite
has(co)
−→ spine process

has(pm)
−→ spine (ONT2)

cell
projects to

−→ brain region

globus pallidus
isa
−→brain region. . . . denaturation

isa
−→process. (ONT3)

tc has(co) := transitive closure(has(co)). tc has(pm) := transitive closure(has(pm)). (ONT4)
has co pm := chain(tc has(co), tc has(pm)) (ONT5)
· · ·

Ontological Grounding – ONTG(CCDB)

domain(structure.volume) in [0,300]
domain(structure.name) in tc has(co)(cerebellum) (OG1)
domain(experiment.cell type) in tc has(co)(cerebellum) (OG2)

experiment.cell type
projects to

−→ globus pallidus (OG3)

denatured protein
exhibits
−→ denaturation. (OG4)

· · ·

Figure 6.4: Conceptual model for registering the Cell-Centered Database [MGW+02]

Creating a Terminological Frame of Reference. For defining the terminology of a specific
scientific information source, the source declares its own controlled vocabulary through ONT(S).
More precisely, ONT(S) comprises the terms (i.e., concepts) of this vocabulary and the relation-
ships among them. The concepts and relationships are often represented as nodes and edges of
a directed graph, respectively. Two examples of interconcept relations are has(co) and has(pm)
which are different kinds of part-whole relationships 7. In Figure 6.4, items ONT1 and ONT2
show fragments of such a concept graph. Once a concept graph is created for a source, one may
use it to define additional constraints on object classes and associations.

Semantics of Relationships. The edges in the concept graph of the source ontology represent
inter-concept relationships. Often these relationships have their own semantics that have to be
specified within ONT(S). Item ONT4 declares two new relationships tc has(co) and tc has(pm).
After registration, the mediator interprets this declaration and creates the new (possibly materi-
alized) transitive relations on top of the base relations has(co) and has(pm) provided by the source
S. Similarly, the item ONT5 is interpreted by the mediator using a higher-order rule for chaining
binary relations:

• chain(R1,R2)(X,Y) if R1(X,Z), R2(Z,Y)

With this, ONT5 creates a new relationship has co pm(X,Y) provided that there is a Z such that
tc has(co)(X,Z), and tc has(pm)(Z,Y).

7By standards of meronyms, there are different kinds of the has relation: component-object has(co), portion-mass
has(pm), member-collection has(mc), stuff-object has(so), place-area has(pa) etc. [AFGP96]

Ontological Grounding of OM(S). A local domain constraint specifies additional properties
of the given extensional database, and thereby establishes an ontological grounding ONTG(S)
between the local ontology ONT(S) and the object model OM(S) (Figure 6.3). Items (OG1–OG2)
in Figure 6.4 refines the domains of the attributes experiment.cell type and structure.name
from the original type declaration (string). The refinement constrains them to take values from
those nodes of the concept graph that are descendants of the concept cerebellum through the
has(co) relationship.

This constraint illustrates an important role of the local ontology in a “conceptually lifted”
source. By constraining the domain of an attribute to be concept name C, the corresponding object
instance o is “semantically about” C. In addition, this also implies that o is about any ancestor
concept C ′ of C where ancestor is defined via has(co) edges only. Similarly, if a specific instance,
structure.name has the value ‘spine process’, it is also about ‘dendrite’ (ONT2 in Figure 6.4).

In addition to linking attributes to concept names, a constraint may also involve inter-concept
relationships. Let us assume projects to(cell, brain region) is a relationship in the source on-
tology ONT(CCDB). A constraint may assert that for all instances e of class experiment,
projects to(e.cell type, ’globus pallidus’) holds (OG3). The constraint thus refines the original re-
lationship projects to to suit the specific semantics of OM(CCDB). Such constraint-defined corre-
spondences between OM(S) and ONT(S) are used in the contextualization process [GLM02a].

Intensional Definitions. In the CM wrapper of a source S, we can define virtual classes and
associations that can be exported to the mediator as first-class, queriable items by means of an
intensional database (view definition) IDB(S). For example, we can create a new virtual class
called denatured protein in IDB(CCDB) via the rule:

denatured protein(ProtName) if

deposit(ID, ProtName, protein, dark, ,), deposit in structure(ID) 6= ∅

Thus, an instance of a denatured protein is created when a “dark” protein deposit is recorded
in an instance of deposit, and there is some structure in which this deposit is found. As a
general principle of creating a CM wrapper, such a definition will be supplemented by additional
constraints to connect it to the local ontology. For example, assume that ONT(CCDB) already
contains a concept called process. Item (ONT3) defines denaturation as a specialization of process.
We can now add the constraint (OG4) to complete the semantic specification about the new
denatured protein object.

Contextual References. It is a standard practice for scientific data sources to tag object
instances with attributes from a public standard, and to use controlled vocabularies for the values
of some of these attributes. For example, the source can specify that the domain of the deposit.id
field can be accessed through an internal method, which, given a protein name, gets its id from
a specific database. For example, we can use get expasy protein id to retrieve this information
from the SWISS-PROT database on the web.8 How the source enforces this integrity constraint
is internal to the source and not part of its conceptual export schema.

Interplay between Mediator and Sources

In order to address the source registration issue, we have to specify which components of an
existing n-source federation can be “seen”, i.e., accessed by the new, n+1st source. A federation
at the mediator consists of: (i) currently registered conceptual models CM(S) of each participating
source S, (ii) one or more global ontologies ONT(M) residing at the mediator that have been used
in the federation, and (iii) integrated views IVD(M) defined in a global-as-view (GAV) fashion.

Typical mediator ontologies ONT(M) are public, i.e., serve as domain-specific expert knowledge
and thus can be used to “glue” conceptual models from multiple sources. Examples of such ontolo-

8http://www.expasy.ch

Neostriatum

Medium_Spiny_Neuron

has

OR GABA

exp

Substance_P

exp

Dopamine_R

exp

Neuron

Spiny_Neuron

Compartment

has

DendriteAxonSoma

Substantia_nigra_pr

proj

Substantia_nigra_pc

proj

Globus_Pallidus_External

proj

Globus_Pallidus_Internal

proj

Neurotransmitter

MyNeuron

proj

MyDendrite

ALL: has

AND

=

exp

Figure 6.5: A domain map DM after situating new concepts MyNeuron and MyDendrite (dark)

gies are the Unified Medical Language System (UMLS) from the National Library of Medicine9

and the Biological Process Ontology from the GeneOntology Consortium10. In the presence of
multiple ontologies, articulations, i.e., mappings between different source ontologies [MWK00] can
be used to register with the mediator information about inter-source relationships. Note that a
source S usually cannot see all of the above components (i–iii) when defining its conceptual model:
While S sees the mediator’s ontologies ONT(M) and thus can define its own conceptual model
CM(S) relative to the mediator’s ontology in a local-as-view (LAV) fashion, it cannot directly
employ another source’s conceptual model CM(S ′), nor can it query the mediator’s integrated
view IVD(M) which is defined global-as-view (GAV) on top of the sources. The former is no re-
striction, since S′ can register CM(S′), in particular ONT(S′) with the mediator, at which point
S can indirectly refer to registered concepts of S ′ via ONT(M). The latter guarantees that query
processing in this setting does not involve “recursion through the web”, i.e., between a source S
and the mediator M (the dependency graph in Figure 6.3 is acyclic).11

Example 4 (Contextualization: Local-as-View)
Consider the domain map in Figure 6.5. Lighter-colored nodes correspond to concepts that the
mediator “understands” and which a source can see. Now assume a source S wants to register
information about specific neurons and their dendrites, but the mediator ontology (domain map)
does not have dedicated names for those specific kinds of neurons and dendrites. In MBM this
problem is solved by contextualising the new local source concepts as views on the mediator’s
global concepts: In Figure 6.5 the darker-colored source concepts are “hooked” to the mediator’s
domain map, thereby defining their meaning relative to the mediator’s concepts. This is achieved
by sending the following first-order axioms (here in description logic syntax) to the mediator:

MyDendrite ≡ Dendrite u ∃exp.Dopamine R

MyNeuron v Medium Spiny Neuron

u ∃proj.Globus pallidus external

u ∀has.MyDendrite

Thus instances of MyDendrite are exactly those dendrites that express Dopamine R(eceptor), and
MyNeuron objects are medium spiny neurons projecting to Globus Pallidus External and only have
MyDendrites. Assuming properties are inherited along the transitive closure of isa, it follows that
MyNeuron, like any Medium Spiny Neuron projects to certain structures (OR in Figure 6.5). With
the newly registered knowledge, it follows that MyNeuron definitely projects to Globus Pallidus
External. If we want to specify that it only projects to the latter, a nonmonotonic inheritance,
e.g., using FL with well-founded semantics can be employed. 2

9http://www.nlm.nih.gov/research/umls/; strictly speaking a metathesaurus, i.e., a “semi-formal” ontology
with a limited set of predefined relationships such as broader-term/narrower-term

10http://www.geneontology.org/process.ontology
11At the cost of loss of efficiency, the restriction “no recursion through the web” could be lifted.

Note that the intuitive graphical contextualization depicted in Figure 6.5 is not unique, i.e.,
logically equivalent domain maps may have different graph representations.12 For domain maps
that can be completely axiomatized using a description logic, a reasoning system such as FaCT
[Hor98] can be employed in order to compute the deductive closure, in particular, to derive a
unique concept hierarchy and to check consistency of a domain map.

6.4 Knowledge Representation for Model-Based Mediation

We now take a closer look at the principal mechanisms for specifying “glue knowledge”, i.e.,
ontologies in the form of domain maps (DMs) and process maps (PMs).

6.4.1 Domain Maps

As is standard for ontologies, domain maps name and specify relevant concepts by describing the
characteristic relationships among them [LGM01]. In this way, DMs provide the basic domain
semantics which is needed to glue data across different sources in multiple-world scenarios. DMs
can be depicted more intuitively in the form of labeled directed graphs. In contrast to many other
graph-based notations, however, DMs have a solid formal semantics via a translation to logic rules
(see below). The graph form of DMs is defined as follows.

Definition 1 (Domain Maps) Let C be a set of symbols called concepts, R a set of roles. A
domain map DM is a directed labeled graph with nodes C. A concept C ∈ C can be understood
as denoting a class of objects sharing a set of common properties. In order to understand how a
concept C is defined relative to other concepts, we have to inspect its outgoing edges. We write
c ∈ C to denote that c is an instance of concept C.13 We distinguish the following types of edges
in DMs:

1. C
isa
→ D (short: C → D) defines that every C isa D, i.e., c ∈ C implies c ∈ D.

Since this subconcept/subclass relation is very common in DMs, we usually omit the isa
label and use the shorthand notation C → D instead.

2. C
ex :r
→ D defines that for every c ∈ C, there exists some r-related d ∈ D.

Here, r ∈ R is a role, i.e., a binary relation r(c, d) between instances of C and D.

3. C
all:r
→ D defines that for every c ∈ C and all x which are r-related to c (i.e., for which

r(c, x) holds), we have x ∈ D.

4. C
r
→ D defines that if c ∈ C and d ∈ D, then they are r-related, i.e., r(c, d) holds.

5. AND→i{D1, . . . , Dn}, i.e., an AND-node with n outgoing edges to D1, . . . , Dn, respectively,
defines an anonymous concept, the intersection of concepts D1, . . . , Dn.

6. OR→i{D1, . . . , Dn}, i.e., an OR-node with n outgoing edges to D1, . . . , Dn, respectively, de-
fines an anonymous concept, the union of concepts D1, . . . , Dn.

7. C
=
→ D defines that C is equivalent to D, i.e., every C isa D and vice versa. We could have

denoted this also as “C↔D”, however, the directed edge keeps the distinction between C
(the definiendum) and its definition D (definiens). 2

Note that D can be an atomic or a defined concept. When unique, AND nodes are omitted and
outgoing arcs directly attached to the concept being defined. In Figure 6.5, unlabeled, grey edges
and edges labeled “proj” (projects-to) correspond to “isa”-edges and “ex :proj”-edges, respectively.

12Similar to the fact that the same query can have many different syntactic representations. In general, equivalence
of first-order (or SQL) queries is not decidable.

13Thus, we can view C and D as unary predicates.

Reified Roles as Concepts. In DMs, as in description logics, it is the concepts that are being
defined, whereas the roles are only a means to that end. In order capture the semantics of roles,
i.e., define their properties in terms of each other, we have to turn them into concepts themselves.
In logic this “quoting mechanism” is known as reification.

Example 5 (Roles as Concepts) Consider a DM involving the roles regulates, activates, and
inhibits and assume that in the given domain, activates(C,D) and inhibits(C,D) are special cases
of regulates(C,D). Instead of introducing a special notation for “sub-roles”14, and then defining
the mechanics of how roles can be related to one another, we turn roles into “first-class citizens”
by making them concepts using a operator mc (“make-concept”). Now we can apply the modeling

capabilities of DMs to roles and, e.g., simply state that mc(activates)
isa
→ mc(regulates). 2

By modeling roles a concepts, more domain semantics can be formalized, leading to better “knowl-
edge engineering”. In particular, during query processing, such formalized knowledge can be au-
tomatically employed by the system: Given a DM (formalized as logic rules), an MBM query
or view definition involving activates and regulates “knows” that the former is a subconcept of
the later. If during query processing, e.g., a goal regulates(’cAMP’,Protein) is evaluated, the
logic rules corresponding to the DM knowledge allow the system to deduce that any result for
activates(’cAMP’,Protein) is also an answer for regulates(’cAMP’,Protein). This is correct since
a substitutability principle holds which allows the system to replace a concept D with any of its

subconcepts C, i.e., for which C
isa
→ D holds.

Generating the Role Hierarchy. When making a role into a concept, the isa hierarchy15 on
concepts induces an isa hierarchy on roles.

Example 6 (Roles as Concepts, Cont’d) Consider a DM stating that NProt
isa
→ Protein, NProt

regulates some Gene, and cfos
isa
→ Gene.16 The role regulates is conceptualized by asserting

mc(regulates). When making its hidden arguments visible, we note that mc(regulates(C,D))
really denotes a family of regulates concepts. The isa hierarchy on regulates concepts is derived
from the isa hierarchy of its arguments. For example, we have:

mc(regulates(NProt,cfos))
isa
→ mc(regulates(NProt,Gene))

isa
→ mc(regulates(Protein,Gene))

2

Deriving the Role Hierarchy. Above we introduced the unary operator mc which turns role
literals into concepts. We implement it in FL as a subclass of the (meta-)class concept by asserting
“mc :: concept” and adding further rules for deriving the role hierarchy from the concept hierarchy,
given as set of mc-declarations such as r(C, D): mc by the user:

• r(C, D): mc, r(C′, D′): mc, r(C, D) :: r(C′, D′) if (r(C, D): mc ∨ r(C′, D′): mc), C :: C′, D :: D′ (up/down)

• r(C, D): mc, r(C′, D′): mc, r(C, D) :: r(C′, D′) if (r(C, D′): mc ∨ r(C′, D): mc), C :: C′, D :: D′ (mixed)

Observe that with the rules, we get indeed the desired result in Example 6.

Recursive Concepts. Consider the part-of relationship has a and its interaction with isa. For
example, since MyNeuron isa Medium Spiny Neuron which in turn has a Neostriatum, we conclude
that MyNeuron has a Neostriatum (Figure 6.5). In the general case, this gives rise to a recursive

rule “if C
isa
→ D and D

has a
→ E then C

has a
→ E”. Similarly, one can define that isa and has a

are independently transitive and that isa is antisymmetric. For such recursive definitions, an
intuitive graph notation can be devised, e.g., using a dashed edge for the concept being defined
(cf. [LHL+98, pp.601]) to its recursive definition. In a declarative rule-based query language like
FL, an executable specification is:

14RDF(S) has such a notion called subproperty.
15Strictly speaking, the isa does not have to be a hierarchy but can be any directed acyclic graph.
16Here, NProt stands for nuclear protein.

• has a(X, Z) if X :: Y, has a(Y, Z).

Note that here X, Y, Z are concept variables. Such FL rules can also be used at the mediator to
handle inductive definitions such as (ONT4) in Figure 6.4, in particular, when the source does not
have the capability to evaluate recursive definitions.

Parameterized Roles and Concepts. Part-of relationships like has a come in different flavors
F , e.g., F ∈ {member/collection, portion/mass, phase/activity, . . .} and transitivity does not nec-
essarily carry over across flavors [AFGP96].17 This is most naturally modeled by a parameterized
role has a(F) which is transitive within each flavor F but which may interact in other ways across
flavors. It is straightforward to extend Definition 2 for parameterized roles and concepts: e.g.,
assume the parameterized role has a(F) should hold between concepts C and D only for some
flavors F satisfying a condition ϕ(F). We can extend Ψ and compile such a parameterized DM
edge into FL as follows:

• Ψ(C
has a(F)‖ϕ(F)

−→ D) = {has a(F)(c, d) if c: C, d: Φ(D), ϕ(F)} ∪ Ψ(D).

Note that a parameterized role like has a(F) has a first-order semantics in FL despite its higher-
order syntax [KLW95].

6.4.2 Process Maps

Process maps (PMs) provide abstractions of “process knowledge”, i.e., temporal and/or causal
relationships between events that can be used for situating and linking data across different sources.
Like DMs, PMs are directed labeled graphs, albeit with a very different semantics: Nodes are used
to model states while edges correspond to state transitions which are labeled with a process name
describing the transition. In this way, data providers, e.g., bench scientists can not only hook
their raw data to the (given or refined) DMs, but also to processes that are witnessed in their
experimental studies databases (cf. Figure 6.2 and Figure 6.8).

Initial Process Semantics PM0. Intuitively, an edge of the form eπ = s
{ϕ}π{ψ}
−→ s′ of a PM

means that the process π leads from state s to s′; ϕ is a necessary precondition that must hold in
s for π to happen, ψ is a postcondition which holds in s′ as a result of π. By PM0 we denote the
set of all initial process semantics.

We call the edge eπ of a PM, a process occurrence of π in PM. Thus, a process occurrence
specifies where in a PM a process occurs, and which pre- and postconditions ϕ and ψ this occur-
rence satisfies. In addition to the semantics implied by the occurrence of eπ in PM, a process π
can have an initial semantics associated with the process name π.

To allow for parameterization of processes, we consider edge labels where process names are
first-order atoms, i.e., π = π(T1, . . . , Tn) where each term Ti is a logic variable or constant. For
example, consider π = opens(Channel) describing the opening process of an ion channel. We can
define its initial semantics by the expression

{¬ open(Channel)} opens(Channel) {open(Channel)}

meaning that any transition along a process occurrence of π = opens(Channel) in a PM must
be from a state where open(Channel) was false. In the successor state, however, i.e., after π has
happened, we have that open(Channel) is true.

From Process Maps to Domain Maps. We call the first-order predicates occurring in ϕ and
ψ like “open(Channel)” fluents, since their truth is state dependent. We require that the set of
fluent predicate symbols F is disjoint from the set P of process names and the sets of concept and

17For example, orchestra has a musician and musician has a arm, but not orchestra has a arm.

role names C and R, respectively. In contrast, the constant parameters used in process occurrences,
like “Channel” are allowed to be concepts from C.

For example, a DM may have that NMDA receptor
isa
→ Calcium channel

isa
→ Channel in which

case the process knowledge about the opening of channels and the “static” knowledge from a DM
are directly linked through the common concept Channel.

Similarly, just as we have made roles “first-class” citizens by reifying them into concepts, we
can do the same for processes, thereby being able to specify additional semantics of processes
using domain maps.

Example 7 (Processes as Concepts) Consider the binds to(X, Y) process with the initial se-
mantics

{¬ bound(X, Y)} binds to(X, Y) {bound(X, Y)}

Now consider a DM in which we have reified processes as concepts as follows:

dimerizes(X)
isa‖X=Y
−→ binds to(X, Y)

It is easy to see that this (parameterized) DM edge, when translated into FL, allows the system
to conclude in the combined knowledge base DM ∪ PM0 that

{¬ bound(X, X)} dimerizes(X) {bound(X, X)}.
2

Process Elaboration and Abstraction. The edge eπ of a process occurrence can be seen
as an abstraction of a real process. In addition to its initial semantics PM0, and the semantics
induced by its concrete occurrence in a specific PM, we can elaborate this abstraction by replacing
the eπ with a (sub-)process map elab(eπ) whose initial and final states are s and s′. The newly
created nodes and edges of the elaboration elab(eπ) are annotated with the same unique elaboration
identifier eid. The eid includes at least a reference to eπ indicating the edge being elaborated,
and the author (e.g., data provider) of the elaboration.

The converse of elaboration, abstraction, takes a connected subgraph Π(S, s0, sf , E) with nodes
S, edges E, and distinguished nodes s0, sf ∈ S (initial and final state), and abstracts Π into a
single edge eπ = abstract(Π(S, s0, sf , E)). The abstracted edges E of Π are marked with a unique
abstraction identifier aid, which includes a reference to the new abstraction edge eπ, and the
author of the abstraction. See Appendix A.2 for further details on process maps.

6.5 Model-Based Mediator System and Tools

At the core of the model-based mediation framework is the KIND mediator system. Other impor-
tant components are the SMART Atlas for annotating, displaying, and relating data with brain
atlases, the Cell-Centered Database CCDB as our primary source of experimental data, and the
Know-ME tool for concept-based navigation of source and mediated views. For a description of
the latter see [QLMG02]; the other components are described next.

The KIND Mediator Prototype

The architecture of the KIND (Knowledge-based Integration of Neuroscience Data) mediator sys-
tem is depicted on the left in Figure 6.6. On the right a snapshot of the prototype execution is
shown: after the user issues a query against the integrated view, the system situates the results on
a domain map, in this case Anatom (simple ontology of brain anatomy). By clicking on the orange
“diamonds”, the user can retrieve the actual result objects, grouped by concept (foreground).

In our first prototype [LGM00, GLM01] we have used the F-logic implementation Flora

[YK00] as the only query processing and deduction engine. As part of a large collaborative project
[BIR01] we are currently reimplementing our prototype as a modular, distributed mediator system
that includes several additional components, for example:

Figure 6.6: Left: architecture of the KIND model-based mediator. Right: snapshot of the prototype: background

left : meditor shell for issuing ad-hoc queries against CM(M); background right : generated subgraph having the
requested result data shown in its anatomical context; clicking on a (diamond) result node retrieves the actual
result data (foreground center).

• Logic plan generator : Given a user query Q and an integrated view definition IVD, Q ◦ IVD
is translated into a plan generator program PG(Q ◦ IVD) which, when executed, produces
an initial logic query plan for Q ◦ IVD.

• Query rewriter : This module takes a logic query plan and rewrites it into an executable,
distributed plan based on the capabilities of a source (e.g., conjunctive queries with binding
patterns or complete SQL).

• Execution plan compiler : For final execution, the rewritten plan is compiled into a logic
program whose runtime execution sends the corresponding subqueries to wrapped sources,
retrieves results, and post-processes them (e.g., joins, group-bys, and unions across sources)
before sending them to the user.

• SQL plan generator : For relational sources, i.e., having SQL query capabilities, this wrapper
module translates a logic query plan into an equivalent SQL statement, similar to [Dra92].

A preliminary version of this new system has been recently demonstrated [GLM02a] and includes
all of the above modules. Plan generation and rewriting is implemented using logic programming
technology [Lud02], the SQL plan generator has been implemented in Java. It is planned that
the final system will include specialized inference engines such as Flora and Xsb [SSW94] for
handling deductive and object-oriented database capabilities, and FaCT [Hor98] for reasoning
tasks over domain maps which are formalized in description logics.

The Cell-Centered Database and SMART Atlas: Retrieval and Navigation Through
Multi-Scale Data

The Cell-Centered Database (CCDB) mentioned earlier in Example 3 houses different types of
high resolution 3D light and electron microscopic reconstructions of cells and subcellular struc-
tures produced at the National Center for Microscopy and Imaging Research18 [MGW+02]. It
contains structural and protein distribution information derived from confocal, multiphoton and
electron microscopy, including correlated microscopy. Many of the data sets are derived from
electron tomography, a powerful technique for deriving 3D information from electron microscopic

18http://www.ncmir.ucsd.edu

Figure 6.7: Left: Examples of tomographic data sets in the CCDB. A and B show a selectively stained spiny
dendrite from a Purkinje cell. A is a projection of the volume reconstruction (dendrite appears as white against dark
background). B is the segmented dendrite. C and D show a tomographic reconstruction of the node of Ranvier. C
is a single computed slice through the volume. D is a surface reconstruction of the various components comprising
the node. Scale bar in B= 1µm; in C = 0.5µm. Right: Registration of a data set with the Smart Atlas. The user
draws a polygon representing the location of a data set, in this case a filled Purkinje neuron. The user specifies
the data base containing this data, then enters an annotation and selects a concept from the UMLS or some other
ontology. The concept ID is stored back in the database.

specimens. Electron tomography is similar in concept to medical imaging techniques like CAT
scans and MRI in that it derives a 3D volume from a series of 2D projections through a structure.
In this case, the structures are contained in sections prepared for electron microscopy, which are
tilted through a limited angular range. On the left of Figure 6.7 examples of datasets in the CCDB
are shown.

A screenshot of the Smart Atlas (Spatial Markup and Rendering Tool) is shown on the
right of Figure 6.7. The tool is based on a geographic mapping tool [Zas00] and allows users to
define polygons on a series of 2D vector images and annotate them with names, relationships,
and concept IDs from an ontology such as UMLS. This tool provides another kind of “glue map”
(in addition to domain and process maps); here, in the literal sense: First, a brain atlas such as
Paxinos and Watson [PW98] is translated into a spatial format (e.g., Scalable Vector Graphics:
SVG). The user then “marks up” the atlas using the Smart Atlas tool, e.g., with concepts
names from UMLS. Once the atlas has been (partially) marked up, it can be queried from the
same browser: Clicking on any point in the atlas will return the stereotaxic coordinates; clicking
on a brain region will return the name of that region, along with any synonyms, and highlight all
planes containing that structure. The Smart Atlas can now be used to register a researcher’s
data to a specific spatial location. This also links the registered data automatically to the UMLS
ontology by virtue of the earlier semantic markup of spatial objects. To register source data, the
user draws an arbitrary polygon representing the approximate data location on one of the atlas
planes (Figure 6.7: right). The user is then presented with a form which can be used to add
annotations or to provide additional links to concepts of an ontology. Although the UMLS is used
in the examples shown here, the user will eventually be able to use multiple ontologies, including
those of their own creation, for semantically indexing data. Tools are also being developed to
define new terms and relationships in existing ontologies. In [GLM+02b] we have shown how
spatial and conceptual information can be used together in a mediator system; see also [MGL+02]
for further details on the use of the Smart Atlas.

6.6 Related Work and Conclusions

Related Work

Significant progress has been made in the general area of data mediation in recent years, and several
prototype mediator architectures have been designed by projects like TSIMMIS [GMPQ+95], SIMS
[KMA+98], Information Manifold [LRO96], Garlic [HKWY97], and MIX [BGL+99]. While these
approaches focus mostly on structural and schema aspects, the problem of semantic mediation
has also been addressed: In the DIKE system [PTU00], the focus is on automatic extraction of
mappings between semantically analogous elements from different schemas. A global schema is
defined in terms of a conceptual model (SDR network) where the nodes represent concepts and
the (directed) edge labels represent their semantic distances and a score called semantic relevance
that measures the number of instances of the target node that are also instances of the source
node. The correspondence between objects are defined in terms of synonymies, homonymies and
sub-source similarities, defined by finding maximal matching between the two graphs.

ODB-Tools [BB01] is a system developed on top of the MOMIS [BCV99] system for modeling
and reasoning about the common knowledge between two to-be-integrated schemas. They present
the object-oriented language ODLI3 derived from a description logic (OCDL). The language allows
a user to create complex objects with finite nesting of values, union and intersection types, integrity
constraints and quantified paths. These constructs are used to define a class in one schema as
a generalization, aggregation, or equivalent with respect to another; subsumption of a class by
another can be inferred. An integrated schema is obtained by clustering schema elements that are
close to one another in terms of an affinity metric.

Calvanese et al. [CCG+01] perform semantic information integration using an LAV approach
by expressing the conceptual schema by a description logic language called DLR, and subsequently
defining non-recursive Datalog views to express source data elements in terms of the conceptual
model. The language DLR represents concepts C, relations R, and a set of assertions of the
form C1 @ C2 or R1 ⊂ R2, where R1, R2 are DLR relations with the same arity. Mediation
is accomplished by defining “reconciliation correspondences”, specifications that a query rewriter
uses to match a conceptual level term to data in different sources.

Recently Peim et al. [PFPG02] have proposed an extension to the well-known TAMBIS system
[GSN+01]. Their approach is similar to ours [GLM00, LGM01] in that a logic-based ontology
(in their case the ALCQI description logic) interfaces with an “object-wrapped” source. While
we use F-logic [KLW95] as the internal knowledge representation and query language, their work
focuses on how a query on the ontology is transformed to monoid comprehensions for semantic
query optimization.

Summary: Model-Based Mediation and “Reason-able” Metadata

We have presented model-based mediation as a methodology that supports information integration
of scientific data across complex multiple-world scenarios as found, e.g., in the Neuroscience do-
main. In this framework, object-oriented and conceptual models, domain maps and process maps
all provide means to capture more domain semantics and thus can act as “glue knowledge sources”
to link hard-to-correlate sources. We have presented mechanisms to formally contextualize source
data. The graph structures thus constructed have been shown to be useful for navigating across
related concepts and querying local data during navigation [QLMG02].

Logic formalizations of domain and process maps can be seen as “reason-able” or “executable”
metadata (cf. [Hor02]): Unlike conventional, descriptive metadata which is primarily used for
data discovery, formal ontologies such as domain maps and process maps can support much more
versatile computational tasks in a mediator system as illustrated in this chapter. For example,
different and apparently unrelated data objects can be associated and retrieved together or even
“fused” by the mediator’s integrated view definition (IVD), since IVDs can be defined as deductive
rules over domain maps and process maps (Figure 6.3). In this way, in model-based mediation, logic
rules play the role of “executable” or “computational” metadata for scientific data integration.

The latter is a challenging application and benchmark for combined database and knowledge
representation techniques.

Acknowledgements. This work has been supported by NIH/NCRR 3 P41 RR08605-08S1
(BIRN) and NSF-NPACI Neurosciences Thrust ACI 9619020. The authors thank their colleagues
and students involved in the BIRN project for their contributions, in particular, Xufei Qian,
Edward Ross, Joshua Tran, and Ilya Zaslavsky.

Bibliography

[AFGP96] A. Artale, E. Franconi, N. Guarino, and L. Pazzi. Part-whole Relations in Object-Centered
Systems: An Overview. Data & Knowledge Engineering, 20:347–383, 1996.

[BB01] D. Beneventano and S. Bergamaschi. Extensional Knowledge for semantic query optimization
in a mediator based system. In Intl. Workshop on Foundations of Models for Information
Integration (FMII-2001), 2001.

[BCV99] S. Bergamaschi, S. Castano, and M. Vincini. Semantic Integration of Semistructured and
Structured Data Sources. SIGMOD Record, 28(1):54–59, 1999.

[BGL+99] C. Baru, A. Gupta, B. Ludäscher, R. Marciano, Y. Papakonstantinou, P. Velikhov, and
V. Chu. XML-Based Information Mediation with MIX. In ACM Intl. Conference on Man-
agement of Data (SIGMOD), pp. 597–599, Philadelphia, PA, 1999. exhibition program.

[BIR01] Biomedical Informatics Research Network Coordinating Center (BIRN-CC), University of
California, San Diego. http://nbirn.net/, 2001.

[BST+00] O. Bozdagi, W. Shan, H. Tanaka, D. Benson, and G. Huntley. Increasing Numbers of
Synaptic Puncta During Late-Phase LTP: N-Cadherin Is Synthesized, Recruited to Synaptic
Sites, and Required for Potentiation. Neuron, 28(1):245–259, 2000.

[CCG+01] D. Calvanese, S. Castano, F. Guerra, D. Lembo, M. Melchiori, G. Terracina, D. Ursino, and
M. Vincini. Towards a Comprehensive Methodological Framework for Semantic Integration
of Heterogeneous Data Sources. In 8th Int. Workshop on Knowledge Representation meets
Databases (KRDB), 2001.

[CGL+98] D. Calvanese, G. D. Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Description Logic
Framework for Information Integration. In Principles of Knowledge Representation and
Reasoning, pp. 2–13, 1998.

[CGM90] S. Chakravarthy, J. Grant, and J. Minker. Logic-Based Approach to Semantic Query Opti-
mization. ACM Transactions on Database Systems (TODS), 15(2):162–207, 1990.

[Dra92] C. Draxler. A Powerful Prolog to SQL Compiler. Technical report, Centre for Information
and Language Processing, Ludwigs-Maximillians-Universität München, 1992.

[FLOa] Flora Homepage. www.cs.sunysb.edu/~sbprolog/flora/.

[FLOb] Florid Homepage. www.informatik.uni-freiburg.de/~dbis/florid/.

[GLM00] A. Gupta, B. Ludäscher, and M. E. Martone. Knowledge-Based Integration of Neuroscience
Data Sources. In 12th Intl. Conference on Scientific and Statistical Database Management
(SSDBM), pp. 39–52, Berlin, Germany, July 2000. IEEE Computer Society.

[GLM01] A. Gupta, B. Ludäscher, and M. E. Martone. An Extensible Model-Based Mediator System
with Domain Maps. In 17th Intl. Conf. on Data Engineering (ICDE), Heidelberg, Germany,
2001. exhibition program.

[GLM02a] A. Gupta, B. Ludäscher, and M. E. Martone. Registering Scientific Information Sources
for Semantic Mediation. In 21st Intl. Conference on Conceptual Modeling (ER), Tampere,
Finland, 2002.

[GLM+02b] A. Gupta, B. Ludäscher, M. E. Martone, X. Qian, E. Ross, J. Tran, and I. Zaslavsky. A
System for Managing Alternate Models in Model-based Mediation. In 19th British Natl.
Conf. on Databases (BNCOD), LNCS, Sheffield, UK, July 2002. Springer.

21

[GMPQ+95] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, and
J. Widom. The TSIMMIS Approach to Mediation: Data Models and Languages (Extended
Abstract). In Next Generation Information Technologies and Systems, 1995.

[GSN+01] C. Goble, R. Stevens, G. Ng, S. Bechhofer, N. Paton, P. Baker, M. Peim, and A. Brass.
Transparent Access to Multiple Bioinformatics Information Sources. IBM Systems Journal,
40(2):534–551, 2001.

[HKWY97] L. M. Haas, D. Kossmann, E. L. Wimmers, and J. Yang. Optimizing Queries Across Diverse
Data Sources. In Intl. Conference on Very Large Data Bases (VLDB), pp. 276–285, Athens,
Greece, 1997.

[HLLS98] R. Himmeröder, G. Lausen, B. Ludäscher, and C. Schlepphorst. FLORID: A DOOD-System
for Querying the Web. In Demonstration Session at EDBT, Valencia, Spain, 1998.

[Hor98] I. R. Horrocks. Using an Expressive Description Logic: FaCT or Fiction? In A. G. Cohn,
L. Schubert, and S. C. Shapiro, editors, KR’98: Principles of Knowledge Representation and
Reasoning, pp. 636–645. Morgan Kaufmann, San Francisco, California, 1998.

[Hor02] I. Horrocks. DAML+OIL: A Reason-able Web Ontology Language. In Intl. Conference on
Extending Database Technology (EDBT), pp. 2–13, 2002. keynote talk.

[KFM01] J. Kasahara, K. Fukunaga, and E. Miyamoto. Activation of Calcium/Calmodulin-dependent
Protein Kinase IV in Long Term Potentiation in the Rat Hippocampal CA1 Region. The
Journal of Biological Chemistry, 276(26):24044–24050, 2001.

[KLW95] M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented and Frame-Based
Languages. Journal of the ACM, 42(4):741–843, July 1995.

[KMA+98] C. A. Knoblock, S. Minton, J. L. Ambite, P. J. M. N. Ashish, I. Muslea, A. G. Philpot, and
S. Tejada. Modeling Web Sources for Information Integration”. In Proc. Fifteenth National
Conference on Artificial Intelligence, 1998.

[KS96] V. Kashyap and A. Sheth. Semantic and Schematic Similarities between Database Objects:
A Context-based Approach. VLDB Journal, 5(4):276–304, 1996.

[LGM00] B. Ludäscher, A. Gupta, and M. E. Martone. Model-Based Information Integration in a
Neuroscience Mediator System. In 26th Intl. Conf. on Very Large Data Bases (VLDB), pp.
639–642, Cairo, Egypt, 2000. Morgan Kaufmann. demonstration session.

[LGM01] B. Ludäscher, A. Gupta, and M. E. Martone. Model-Based Mediation with Domain Maps. In
17th Intl. Conf. on Data Engineering (ICDE), Heidelberg, Germany, 2001. IEEE Computer
Society.

[LHL+98] B. Ludäscher, R. Himmeröder, G. Lausen, W. May, and C. Schlepphorst. Managing
Semistructured Data with FLORID: A Deductive Object-Oriented Perspective. Informa-
tion Systems, 23(8):589–613, 1998. Elsevier/Pergamon.

[LLM98] G. Lausen, B. Ludäscher, and W. May. On Active Deductive Databases: The Statelog
Approach. In B. Freitag, H. Decker, M. Kifer, and A. Voronkov, editors, Transactions and
Change in Logic Databases, number 1472 in LNCS. Springer, 1998.

[LPV00] B. Ludäscher, Y. Papakonstantinou, and P. Velikhov. Navigation-Driven Evaluation of Vir-
tual Mediated Views. In Intl. Conference on Extending Database Technology (EDBT), LNCS
1777, pp. 150–165, Konstanz, Germany, 2000. Springer.

[LRO96] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying Heterogeneous Information Sources
Using Source Descriptions. In Intl. Conference on Very Large Data Bases (VLDB), pp.
251–262, 1996.

[Lud02] B. Ludäscher. Mediator Query Processing with Prolog Technology. Technical Note, 2002. in
preparation, Biomedical Informatics Research Network; preliminary version: BIRN-DI-TN-
2002-01.

[LYV+98] C. Li, R. Yerneni, V. Vassalos, H. Garcia-Molina, Y. Papakonstantinou, J. D. Ullman, and
M. Valiveti. Capability Based Mediation in TSIMMIS. In ACM Intl. Conference on Man-
agement of Data (SIGMOD), pp. 564–566, 1998.

[MGL+02] M. E. Martone, A. Gupta, B. Ludäscher, I. Zaslavsky, and M. H. Ellisman. Federation
of Brain Data through Knowledge-Guided Mediation. In R. Kötter, editor, Neuroscience
Databases – A Practical Guide. Kluwer Academic Publishers, 2002. to appear.

[MGW+02] M. E. Martone, A. Gupta, M. Wong, X. Qian, G. Sosinsky, S. Lamont, B. Ludäscher, and
M. H. Ellisman. A Cell-Centered Database for Electron Tomographic Data. Journal of
Structural Biology, 138:145–155, 2002. see also http://ncmir.ucsd.edu/CCDB/.

[MWK00] P. Mitra, G. Wiederhold, and M. L. Kersten. A Graph-Oriented Model for Articulation of
Ontology Interdependencies. In Intl. Conference on Extending Database Technology (EDBT),
pp. 86–100, 2000.

[NPA01] National Partnership for Computational Infrastructure (NPACI) – Neuroscience Thrust
Area, 2001. http://www.npaci.edu/Thrusts/Neuro/.

[PFPG02] M. Peim, E. Franconi, N. Paton, and C. Goble. Query Processing with Description Logic
Ontologies Over Object-Wrapped Databases. In Intl. Conference on Scientific and Statistical
Database Management (SSDBM), 2002.

[PGH98] Y. Papakonstantinou, A. Gupta, and L. M. Haas. Capabilities-Based Query Rewriting in
Mediator Systems. Distributed and Parallel Databases, 6(1):73–110, 1998.

[PTU00] L. Palopoli, G. Terracina, and D. Ursino. The System DIKE: Towards the Semi-Automatic
Synthesis of Cooperative Information Systems and Data Warehouses. In Proc. ADBIS-
DASFAA Symposium, pp. 108–117, 2000.

[PV01] Y. Papakonstantinou and V. Vassalos. The Enosys Markets Data Integration Platform:
Lessons from the Trenches. In Intl. Conference on Information and Knowledge Management
(CIKM), 2001.

[PW98] G. Paxinos and C. Watson. The Rat Brain in Stereotaxic Coordinates. Academic Press, San
Diego, 1998.

[QLMG02] X. Qian, B. Ludäscher, M. E. Martone, and A. Gupta. Navigating Virtual Information
Sources with Know-ME. In EDBT, number 2287 in LNCS, Prague, Czech Republic, March
2002.

[SSW94] K. F. Sagonas, T. Swift, and D. S. Warren. XSB as an Efficient Deductive Database Engine.
In ACM Intl. Conference on Management of Data (SIGMOD), pp. 442–453, 1994.

[YK00] G. Yang and M. Kifer. FLORA: Implementing an Efficient DOOD System Using a Tabling
Logic Engine. In 6th International Conference on Rules and Objects in Databases (DOOD),
2000.

[Zas00] I. Zaslavsky. A New Technology for Interactive Online Mapping. Cartographic Perspectives,
(37):65–77, 2000.

Appendix A

A.1 Domain Maps as Logic Rules

Domain maps borrow from description logics [CGL+98] the notions of concept and roles. In-
deed, while some of the above constructs of DMs have equivalent formalizations in description
logic [LGM01], the fact that we need additional mechanisms like roles as concepts, recursive and
parameterized roles and concepts, and the fact that we want “executable” DMs during query
processing, requires a translation into a more general logic framework.

In the following, we formalize DMs in a minimal subset of F-logic (FL) [KLW95]. The se-
mantics of DMs could be formalized in other languages, in particular in other deductive database
languages. The use of FL is convenient since a small subset of it already matches nicely the
minimal requirements established for a model-based mediator system [LGM01]. Moreover, im-
plementations of FL are readily available [FLOa, FLOb] and have been used by the authors in
different mediator prototypes before [LGM00, HLLS98, LHL+98].

In FL, “c:C” and “C ::D” denote class membership (c ∈ C) and subclassing (C ⊆ D), respec-
tively. Thus, there are logic rules of the form “head if body” that express the FL semantics of “: ”
and “ :: ”, say that “ :: ” is a reflexive, transitive, and antisymmetric19 relation.

19Since concepts are implemented as FL classes, this avoids terminological cycles.

Definition 2 (Compilation of Domain Maps) The mapping Ψ : DM → FL of domain maps
to F-logic is defined as follows:

1. Ψ(C) := {C: concept}, for all atomic concepts C ∈ C

2. Ψ(r) := {r: role}, for all roles r ∈ R

3. Ψ(C
isa
→ D) := {C :: Φ(D)} ∪ Ψ(D)

4. Ψ(C
ex :r
→ D) :=

(a) {r(c, d), d: Φ(D) if c: C, d = skolD(c)} ∪ Ψ(D)

(b) {False if c: C,¬ (r(c, d), d: Φ(D))} ∪ Ψ(D)

5. Ψ(C
all:r
→ D) :=

(a) {d: Φ(D) if c: C, r(c, d)} ∪ Ψ(D)

(b) {False if c: C, r(c, d),¬ d: Φ(D)} ∪ Ψ(D)

6. Ψ(C
r
→ D) := {r(c, d) if c: C, d: Φ(D)} ∪ Ψ(D)

7. Ψ(AND→i{D1, . . . , Dn}) := {d: skolAND if d: Φ(D1), . . . , d: Φ(Dn)} ∪ Ψ(D1) ∪ · · · ∪ Ψ(Dn)

8. Ψ(OR→i{D1, . . . , Dn}) := {d: skolOR if d: Φ(D1) ∨ . . . ∨ d: Φ(Dn)} ∪ Ψ(D1) ∪ · · · ∪ Ψ(Dn)

9. Ψ(C
=
→ D) := {C :: Φ(D), Φ(D) :: C if Φ(D)} ∪ Ψ(D) 2

Remarks. Here, Φ(D) is defined similar to Ψ(D), but returns for a compound concept descrip-
tion D, a new auxiliary symbol Φ(D) representing the compound. For atomic D, we simply have
Φ(D) = Ψ(D). The symbols “skolX” produce new Skolem function symbols everytime they are
used in the translation Ψ: e.g., in (4a), we invent a symbolic representation for the existentially
quantified variable “ d”. Note that c, d, d are logic variables, while C, D, Di, False are constants.20

The different variants (a) and (b) in the translations of DMs correspond to different intended uses:
in (4a), we create an anonymous object for the ∃-quantified variable, in (5a), we type coerce all C.r
objects into instances of D. In contrast, the (b) translations only check whether the constraints
induced by the DM edges are indeed satisfied, and signal an inconsistency (“False”) otherwise.

A.2 Process Maps

Definition 3 (Process Maps) A process map Π(S, s0, sf , E) is a connected, directed graph with
nodes S, labeled edges E, and initial and final states s0, sf ∈ S. The edges eπ of E are of the form

• s
{ϕ}π{ψ}

→ s′ (eπ)

where the process name π is a first-order atom and ϕ and ψ are first-order formulas, called the
precondition and postcondition of eπ, respectively.

Given an edge e = sa
...
→ sb of a process map Π(S, s0, sf , E), the elaboration elab(e) of e is a

process map Π′(S′, sa, sb, E
′) such that (i) the initial and final states are sa, sb, (ii) S′∩S = {sa, sb},

and (iii) all e′ ∈ E′ are linked to e via a common, unique identifier eid(e′, e).
A connected subgraph of a PM with distinguished initial and final state is called a subprocess

map (sub-PM). Given a PM Π(S, s0, sf , E), the abstraction of a sub-PM Π′(S′, sa, sb, E
′) of Π,

denoted abstract(Π′), is a new edge eπ′ = sa
...
→ sb, where (i) eπ′ /∈ E, and (ii) all e′ ∈ E′ are linked

to eπ′ via a common, unique identifier aid(e′, eπ′). 2

Marking edges with elaboration and abstraction identifiers, guarantees one-to-one mappings be-
tween an edge and its elaboration, and similarly, between a subprocess map and its abstraction. In
this way, a data provider can “double-click” on an edge eπ and elaborate the processes into a PM
Π in order to provide more precise links to her data. Conversely, she may “collapse” a subprocess
map Π into a single edge eπ, if her data does not provide information at the detailed level of Π,
hence is more adequately hooked to the overall process eπ.

20This is reversed from the usual convention used in the rest of the paper in order to match our DM notation.

S

0

initial_input

15

forms(protein, synapse)

8

open(NMDA)

4

E-LTP

17

sustained_input

L-LTP

S

0

initial_input

1

{open(AMPA)}
enters_Na[ion=sodium]

{measure_of(depolarized_synapse,EPSP)}

2

binds_to(glutamate,NMDA)

8

{removed_magnesium}
unplugs_NMDA

8

3

enters_Ca[ion=calcium]

9

opens(AMPA)
{open(AMPA)}

4

binds_to(Ca,CCal)
{active(CCal)} 5

activates(CCal,CaMKII)
{active(CaMKII)}

phosphorylates(AMPA)
{increased(sensitivity(AMPA))}

15

17

11

activates(CCal,adenylyl cyclase)
{active(adenylyl cyclase)}

12

creates_cAMP
{active(cAMP)}

13

activates(cAMP,PKA)
{active(PKA)}

6

translocates(PKA,nucleus)

14

activates(PKA,MAPK)
{active(MAPK)}

phosphorylates(PKA, CREB)
{active(CREB)}

7

dimerizes(MAPK)
{dimerized(MAPK)}

16

translocates(dimerized(MAPK),nucleus)

phosphorylates(dimerized(MAPK),CREB)
{active(CREB)}

15

18

transcribes(CREB, gg:set(gene))
{active(gg)}

19

synthesizes(g:member_of(gg), pp:set(protein))

S

forms(p:member_of(pp), synapse)
{more_synapses}

Figure 6.8: Process maps with elaborations and abstractions

Process Maps as Logic Rules

Similar to DMs, we can translate PMs into a logic representation Ψ(PM). The difference is that
for DMs our formalization in description logic or F-logic yields a first-order logic semantics, whose
unique minimal model M(DM), interprets concepts and roles as unary and binary predicates
over a set of individuals. The model M implies that data objects, which are linked as concept
instances to a DM, have the properties defined by the domain map (e.g., the neurons in the
images linked to MyNeuron in Example 4 project to Globus Pallidus External). In constrast, the
logic representation of a PM specifies only some process properties via pre- and postconditions in
PM, and PM’s graph structure. We omit the details of the semantics, due to lack of space. The
basic idea is that the graph structure of PMs (with its embedded hierarchy of elaborations and
abstractions) is formalized via a nested Kripke structure in which the nodes of PM (states) have
associated first-order models, and in which labeled process edges specify a temporal accessibility
relation between states.21 In particular, a process elaboration of an edge eπ adds to the initial
semantics PM0, and the semantics of the pre- and postconditions of the concrete occurrence of eπ
in PM, an elaboration semantics, i.e., a sequence of intermediate states with first-order constraints
along the paths of the elaboration.

21see, e.g., [LLM98, Sec. 6] for a formalization of hierarchical processes using nested Kripke structures.

