Declarative Specification of Gene Regulatory
Networks and Query Evaluation in PathSys*
(Extended Abstract)

Amarnath Gupta! Yang Yang Aditya Bagchi Animesh Ray
University of California Indian Statistical Keck Graduate
San Diego Institute, Calcutta Institute
{gupta,yyang}@sdsc.edu aditya@isical.ac.in Animesh Ray@kgi.edu

1 Introduction

Biological pathways depict how biological entities interact among themselves to perform a
certain task. Metabolic pathways present the complex cascade of reactions that occur to
break down a metabolite into constituent chemicals for eventual uptake by the organism.
Signal transduction pathways describe how activation of proteins and genes are carried
out by a complex network of chemical information-passing that take place through events
like transcription of genes and translocation of chemical objects from one compartment to
another. Since these interactions are very complex, and may include a large number of
smaller steps, a wide variety of modeling paradigms have been used to study and analyze
pathways. Some scientists study them as compactly represented Boolean circuits where
elements are activated and deactivated like binary switches. Discrete and hybrid Petri Net
models of pathways have been proposed to study the state-transition, reachability, deadlock
and liveliness properties of a biological network. Many computational cell biologists create
deep models of biochemical reactions as ordinary differential equations involving the rate of
production and consumption of the individual reactants and reaction products. The nature
of model used to study a pathway depends heavily on the degree of available information
and the purpose of analysis. Very often even for one pathway, information about different
parts is known to scientists at different levels of detail — while some reactions in a large,
intricate pathway can be modeled quantitatively, some other reactions may be known only
superficially, and are easier to model as discrete events.

The PathSys system aims to develop a general-purpose environment to construct, query,
simulate and analyze biological networks by using multiple levels and paradigms. Toward
this end, we have developed a graph-based data model to capture the inter-connectivity and
nature of interactions between elements of a biological network. The graph-model is con-
nected to a customized Petri Net engine that simulates the behavior of the network. A query
engine sits atop both these modules to enable a user to query on both the graph-structured
network as well as the states and transitions initiated by a simulation. A simulation can
be run independently of the query module, and its results can be stored in a database.
Alternatively, it can be invoked as part of a query execution.

*work supported by NSF QuBIC Grant and NSF ITR Grant
fContact author

In this paper, we first describe BioNetL, a graph-based specification language by which
the properties of network elements and their connectivity are declared to the system. The
BioNetLL compiler converts the network to a graph-structured database schema and in-
stance. We then describe TransGen, a transformation language that uses a set of rules
to convert a BioNetL specification into a state-transition model, specifically a Perti Net.
Finally, we describe how a network developed using BioNetL can be queried through BioNet-
SQL, a version of SQL extended to perform graph operations on both the network and its
state transition graph.

2 BioNetL: a Specification Language for Biological Networks

Informally, the vocabulary of a BioNetL. model is based upon the notions of objects,
object-sites, object properties, object interactions, and object states. A BioNetL
model specifies a graph of when and how different sites of each object interact with corre-
sponding sites of other objects, that lead to a change in the states of all interacting objects.
To formalize this, BioNetL admits the following type structure:

i. atomic types: An atomic type is standard, and represents basic types like integer,
float, string and Boolean. Typically, the value of an object property has an atomic
type. For example, for the enzyme phosphatase, the property concentration may be
declared as a float.

ii. structured types: A structured (or collection) type is also standard, and contains
sets, bags, totally-ordered sets and record (defined as the product of other atomic or
structured types). While other, more complex, types can be added, we find this set
to be sufficient for our purposes.

iii. site types: A site type is an atomic or structured type with the special semantics that
it represents a location, and that an interaction may occur at a site instance. A site is
typically attached to an object. One could state that protein P has a phosphorylation
site P.ph1. But in general, a site can be declared independently. For example, one
may model extracellular _space as an instance of a site type with no associated
object. A more complex site such as the Polymerase-II binding site of a gene G can be
specified as a range-restriction over a chromosome, which is a string over the alphabet

{ACTG}.

iv. object: An object type is a record containing an object identifier, a number of object
properties and optionally a set of sites belonging to the object. For example, one may
declare an enzyme as:

object type enzyme {
name: string
EC_Number: string
catalyzed_reaction: equation
reaction_type: string
natural_substrate: string

e subtype: An object type can be declared as a subtype of another (using the :
symbol). For example, one can specify kinase as an enzyme that has a special
site for kinase activity,
object type kinase::enzyme {

k1: kinase_action_site: site

}

The “double declaration” in line 2 is a shortcut, but typical way of declaring
that kinase_action_site is an instance of site. If a new kinase called mykinase
has an additional kinase site, mykinase: :kinase can be declared similarly.

v. relationship typing: A relationship has the default type string that can either
be explicitly of implicitly declared. The sites declared with an object are internally
recognized as instances of the system-defined part_of (system-defined types are ex-
plained later) relation. Thus, the previous declaration of the kinase is equivalent to
the declaration:
relationship part_of::part_of (kl:kinase action_site:site, kinase)
where the type of the part_of relationship is a primitive system-defined type called
part-of, which has the properties of being antisymmetric, non-reflexive and transi-
tive. On the other hand, the relationship phosphorylates is declared as:
relationship phosphorylates::event(kinase.kinase action_site,
molecule.phosphorylation_site)
where subtyping the event type (a system-defined type) entitles phosphorylates to
a state-transition description and a precondition-postcondition description (see later)
thus making it a temporal entity.

Relationships may also be associated with state-transition axioms. Let us assume we
want to define a new relationship between two sites on two different molecules called
bind_occupy after Cook’s BioD [1]. In addition to declaring the basic relationship
signature, we want to capture the semantics of the bind_occupy event. Specifically,
we want to specify that when the bind_occupy event occurs, the second argument’s
state variable increases (decreases) with the increase (decrease) of the first molecule’s
variable. This is expressed in BioNetL as:

relationship bind occupy::event(molecule.site,molecule.site){
axiom: {
increases(self.$1.StateVar) =>
increases(self.$2.StateVar)

}

where the symbol => denotes logical implication!. The BioNetL also allows system

designers to define implicit rules on predicates within axioms (called axiomPredicates
later), to state for example, that decrease is the inverse of increase. Note that this
specification is completely declarative and independent of whether the underlying
simulation machinery is implemented by Petri Nets, hybrid Petri Nets or differential
equations. Further, notice that the choice of the predicate increases in the axiom
restricts the potentially interacting molecules to those that have linear state variables.

!The language also allows bidirectional implication <=>

A relationship type can be conditional, implying that for any instance of the relation-
ship the condition must hold. The scope of the condition can be within the axiom,
specifying when the axiom holds. Alternatively, it can be within the body of the
relationship, denoting that the relationship itself is subject to the specified condition.
Consider the event of phosphorylation:

relationship phosphorylates::event(kinase.kinase_action_site,
molecule.phosphorylation_site){
axiom: {
flows_out(self.$1.StateVar, ’phosphoryl_group’) =>
flows_in(self.$2.StateVar, ’phosphoryl group’)

}

condition: occurs(process(ATP2ADP)). }

Here the modeler treats the ATP to ADP conversion as just a named process without
detailing its characteristics. This shows how BioNetLn can be used at “variable”
degrees of resolution where not everything has to be modeled in the same paradigm,
at the same level of detail.

vi. process: The process type represents a named event with a possibly null attribute
called duration. In terms of a graph, a process can be thought of as a non-object node
that possibly acts as a proxy for a complex subgraph. In addition to being declared
as an opaque type, process instances can be produced by “skolemizing” a relationship
instance. For example, the relationship instance phosphorylates(cdk4, ’Rb2’) can
be converted to a process instance by the construct process(phosphorylates(cdk4,
’Rb2°)), which refers to the phosphorylation process of 'Rb2’ by cdk4. This enables
us to create an inter-edge relationship. For example, in Figure 1 the fact “the binding
of 'p15’ to ’cdk4’ inhibits phosphorylation of Rb2 by cdk4” will be represented as
inhibits(process(bind occupy(’p15’, cdk4)), process(phosphorylates(cdk4, ’Rb2’)))

Instance declaration in BioNetL internally? uses a similar syntax as type declaration.
Figure 1 shows a small regulatory network and its instance declarations using the types
described before. During instance creation, a number of additional constructs can be added.

i. object states: The declaration of objects in BioNetL can be supplemented by the
declaration of states they can go through. Every object can have a set of attributes
designated as the state variable. Currently, one state variable can be associated with
each site declared for the object. The syntax for state declaration is illustrated as
follows:

object cdc4:kinase {

phl: phosphorylation_site: site

rl: regulation_site: site

stateVar occupancy: boolean at rl {
states=[occupied, unoccupied]
initial=unoccupied

}

stateVar concentration: float at phl {
states=linear(0,20)

2An end-user will ultimately use a GUT like that in JDesigner from the SBML [2] group available at
http://www.cds.caltech.edu/ hsauro/JDesigner.htm

object P15:gene{

@ import geneCardwrapper(CDKN2B)
i~ .

P al:site

= }.

object cdk4:enzyme{
import geneCardwrapper(CDK4)
p2:phsophorylation_site:site
a2:site

}.

relationship

bind_occupy(pl5.al,cdk4.a2).

PP:phosphatase_site.

object Rb2:gene{

ClbPDF - voww . fastio.com

Figure 1: The left panel shows a small regulatory network adapted from [1]. The right panel
shows a fragment of BioNetL description that would be compiled by PathSys to populate
the database. Some standard properties of the gene are imported by wrapping a website.

initial=0

}

In this declaration, first note that the instance (identified by the : symbol) can
add more properties, especially the state variables. For Boolean state variables,
the state names can be used as state-inquiry predicates — thus, exists (s:state,
occupied(cdc4.rl, atState(s))) is a valid query expression using the predicate
occupied. For linear state variables, predicates increasing, decreasing, constant,
and functions valueOf, min, max are permitted at this time. The initial values are
optional.

2.1 The BioNetL Graph Database

The objects, sites and The BioNetL specification is mapped into a database schema using
the following principles:

e Every object type (being specializations of record) becomes a relation. However the
additional attribute and site information is not part of this record.

e Every site type is associated with a set of site instances, each of which refers to an
object instance it belongs to, and a set of state variables that is watched at every site.
Each state variable may have an initial value. This is modeled as a tree-structured
data object represented here in XML syntax:
<sites>

<phosphorylation_sites>
<pl>
<object name="cdk4">
<statevar name="occupancy" initial="unoccupied">

<value>unoccupied</>
<value>occupied</>
</statevar>

</object>
</pl>

</sites >

In the implementation, this semistructured object is remapped to a relational schema
using the node numbering technique described in [3, 4]. An additional relation-
ship called part_of is created between the object identifier and the site id (here
/ /sites/phosphorylation_sites/pl) to provide a more direct access from the object to
its sites.

At present system-defined relationships specified in BioNetL represent either binary
ontological relationships (like is_a or part_of) or biological network relationships.
The first category is represented in a table ontoBinRel:

ontoBinRel (
name string,
roleHead ID,
headRoleName string,
roleTail 1D,
tailRoleName string,
reflexive [true, false, antil,
symmetric [true, false, anti],
transitive [true, false, antil,
rules Predicate

).

The roleHead and roleTail attributes represent the node ids which are on the
“arrow-end” and the “tail-end” of the directional edge. The headRoleName and
tailRoleName attributes represent the name of the corresponding roles. For example,
for phosphorylates, these role names may be phosphorylator and phosphorylated
respectively. The standard properties of the relationships are directly specified. The
rules attribute is a predicate logic expression, which can be evaluated for intensional
properties other than the standard properties. For example, the rule if event(A) and
part_of(B,A) then duration(B) < duration(A) should be specified as a predicate.
We used [1], SBML [2] and Cell-ML [5] as the references to design the biological
relationships. Consequently, we model four basic types of relationships: representing
one or two headed and one or two tailed arrows respectively®. For example, the basic
two-headed, two-tailed relationship is internally represented as: bi_bi Rel:

bi_bi_ Rel(

name string,
roleHeadl site,
roleHead2 site,
roleTaill site,
roleTail?2 site,

condition_global Predicate,

3We thank Herbert Sauro from the SBML group for suggesting the sufficiency of these relationships.

cntl_ine(A) entl me(B)

sink(A) sink(B)

Figure 2: The Petri Net model for the bind_occupy relationship

condition_1_1 Predicate, /* the first arm of the edge */
condition_2_2 Predicate, /* the second arm of the edge */
modelType [LogicEngine, PetriNet, ...]

The modelType refers to the type of modeling tools that are available for the instance.
More specialized relationships like phosphorylates are defined as specializations of
these base biological relations. We present more details of the biological relationships
in the next section.

3 TransGen: Transforming BioNetL Declarations to Petri
Nets

Given a BioNetL declaration, the goal of TransGen is to produce a a Petri Net to model the
behavior of the network. In itself, TransGen is a metalanguage that specifies how to make
the transformation. Thus TransGen is not a user’s language, but a system-designer’s tool.
The rationale for having a metalanguage rather than creating a single hardcoded method
to construct the Petri Net is that we believe there is no unique, optimal way to make the
transformation, and the system designer should have some control over the construction of
the target specifications. We illustrate this by a few examples.

Consider the bind_occupy edge between pl5 and cdk4 in Figure 1. The axiom in the
model specifies that increasing the concentration of p15 will increase the occupancy of the
binding site of cdk4. To construct a Petri Net from this however, one has to consider the
same fact in terms of token flow. We can reinterpret the axiom as follows. As more tokens
flow out of pl5, more tokens flow into the binding site of cdk4. Thus, we first model cdk4
and pld to have three places each, one for the “amount” of tokens in the gene, a second
for controlling the “increase” event of gene’s concentration and the third for controlling
its “decrease” event. For book-keeping purposes a sink place is added to each to avoid
accumulating tokens in places. The resulting sub-network for bind_occupy(A,B) is shown
in Figure 2. The basic form of rules in Transgen can be seen from the following general-
purpose directives:
forall $x in Bionetl.site mapto($x, PN.place).
forall $x in Bionetl.site {

forall $y in derive($x.statevar.axiomPredicate) do {
mapto($y, PN.place)
create(transition, $t)
connect (place($x), place($y), $t.input)

}.

The derive directive creates indirect axiomPredicates — consequently, a place for decreases
is created while the user has only specified the axiomPredicate increases. Rules specific to
axiomPredicates can also be added — if there exists an axiomPredicate called “increases”
for a site, add a sink place to the site.

forall $x in Bionetl.site {
if exists($y in $x.statevar.axiomPredicate and $y="increases") do {
create(place, $p:sink)
connect ($x, $p)

For the purpose of PathSys, we have created a set of Transgen rules to model specific
forms of biological relationships of Figure 1. Their Petri Net definitions are included in
Table 1.

The Petri Net generated by Transgen is stored using a persistent adjacency list and
a vector indicating the initial marking. Figure 3 shows the complete Petri Net produced
from Figure 1. While we leave the details out of this paper, in constructing a Petri Net,
Transgen would often find conflicting choices — at this point the designer needs to resolve
them. Techniques to generate correct and consistent Petri Nets automatically is still an
unsolved problem.

Figure 3: The Petri Net model for the small gene regulatory network for controling the Rb2 gene

4 Querying the Network with BioNetSQL

BioNetSQL extends SQL to query over paths, graphs, and state transition systems. In
this extended abstract, we shall introduce the language through examples on our small
gene regulatory network, and the secondary networks derived from it. These examples also
illustrate the logical schema of these networks:

Example 1 [Path Query]: Find the chain of genes or proteins downstream of P15 that
has a phosphorylation site that is also acted upon by a Phosphatase.

select path P:(gene or protein) from GeneReg

where P.start.name=’P15’ and type(P.end)=’gene’ or type(P.end)=’protein’ and
exists(select S:phosphorylation_site, ph:phosphatase from GeneReg

where flows_from(ph,S)and part_of(S,P.end)).

Note that a query can specify the type(s) (the default is all types) of the path elements in
the projection clause, as well as in the body of the query. The attributes start and end
are query variables associated with a path.

Example 2 [Subgraph Query|: Find the regulatory (sub)network rooted at Mitogen
that controls the import of cyclin D1 into the nucleus but does not include the sequence
Ras-Raf-MEK-ERK.

select graph G from GeneReg where G.root=’Mitogen’ and

exists(select edge E from GeneReg where E.name like ’Ycyclin importy’

and located_in(E,’nucleus’) and E=G.element)

and not contains(G,’Ras’->’Raf’->’MEK’->’ERK’).

The — symbol denotes a sequence of nodes. The keyword is assigns a path constant to the
variable P, and the graph attribute element means that the desired edge E should be part
of the projected graph G. The predicate located_in is reserved and stands for an anatom-
ical location where the corresponding object (or process) is situated, while contains(X,Y)
is true if Y € nodes(X) U edges(X).

Example 3 [Subgraph Query with Joins|: Find the subnetwork of the Petri Net that
either belongs to cdk4 or any site connected to it. This needs the GeneReg graph and
PN_GeneReg, its Petri Net graph to be joined.

select graph G from GeneReg GG, PN_GeneReg PG

where G.node=PG.node and G.edge=PG.edge and

Pl is PN_mapsto((’cdk4’:protein).site) and G.place=Pl and G.transition=connects_to(P1l)
union

select graph G from GeneReg GG, PN_GeneReg PG

where G.node=PG.node and G.edge=PG.edge and

Tr is PN_mapsto(edge_of (’cdk4’:protein)) and G.Transition=Tr and G.place=connects_to(Tr)
The join is effected through the PN_mapsto() function that returns the graph element (node

or edge) corresponding to a Petri Net. The union operation operates on both nodes and
edges and is used here to guarantee that no graph element belonging to cdk4 is missed.

Example 4 [Querying the Reachability Set of Petri Net]: What effect does in-
creasing P15 concentration have on the occupancy of Rb2¢ This “user query” is essentially
a program, i.e., sequence of subqueries that first need to construct the reachability set of the

Petri Net, give it two different query conditions (a nominal concentration and an increased
condition) for the state variable called concentration at the place for the P15 site, run
the Petri Net engine for each of them, gather the results for the occupancy variable at the
target phosphorylation site of Rb2, and finally compare them.

select token_count(Rb2.phosphorylation_site.occupancy) from PN_run

where initially (P15.site.concnetration=1 and P15.site.increasing control=0 and
Rb2.phosphorylation_site.occupancy=0), and steps=5 into :T1

select token_count(Rb2.phosphorylation_site.occupancy) from PN_run

where initially (P15.site.concnetration=1 and P15.site.increasing control=1 and
Rb2.phosphorylation_site.occupancy=0) and steps=5 into :T2

select compare_tokens(T1,T2) from T1,T2.

The reserved word initially specifies the token assignment for the initial marking of the
Petri Net, and steps is a variable that controls the number of time steps for the network.
In our example, the first segment produces a reachability set of 6 states, where the Rb2
site has 5 tokens at the end. In the second case, there are 12 states in the reachability
set and the same place has 1 token after the same number of steps - consequently the
compare_tokens function that accepts the time-trace of the tokens in the target place, re-
ports that the occupancy at the phosphorylation site of Rb2 decreases with the increase
compared to the first condition in the query.

5 Conclusion

The PathSys system attempts to bridge the gap between the data management view and
modeling-for-simulation view of biological networks by considering them as both a queriable
graph-structured database as well as an executable network, produced semi-automatically.
The system can be queried and “run” under the control of an extended SQL language.
While the implementation of the system is not yet complete, the initial results indicate
that both structural and behavior analysis can be addressed in the PathSys framework.

References

[1] D. L. Cook, J. F. Farley, S. J. Tapscott, “A basis for a visual language for describing,
archiving and analyzing functional models of complex biological systems”, Genome
Biology, 2(4), 2001.

[2] M. Hucka, A. Finney, H. Sauro, H. Bolouri, “Systems Biology Markup Language
(SBML) Level 1: Structures and Facilities for Basic Model Definitions”, March, 2001
available at http://www.cds.caltech.edu/erato/sbml/docs/.

[3] D. Shasha, J. T. Wang, R. Giugno, “Algorithmics and Applications of Tree and Graph Search-
ing”, Proc. ACM Princ. of Database Syst. (PODS), 39-52, 2002.

[4] Q. Li, B. Moon, “Indexing and Querying XML Data for Regular Path Expressions”, In Proc.
of VLDB, Roma, Italy, September, 361-370, 2001.

[5] W. Hedley, M. Nelson, CellML Specification, available at
http://www.cellml.org/public/specification/20010810/cellml_specification.html, August,
2001.

10

Pattern Name

Petri Net

Explanation

inhibits(A,B,(n,t1)) A
inhibits(A,B,(m, t2))

A inhibits B on reac-
tion t1 when n or more
tokens have from A to
B, A inhibits B on re-
action t2 when m or
more tokens have from

A toB

flows_to(A,B,nosat)

tokens pass from A to
B, but increasing the
flow does not saturate
the occupancy of B

activates(A,B)

tokens from A en-
able all outgoing tran-
sitions of B

increases(A,B,nosat)

tokens from A get
added to the number of
input tokens to B

decreases(A, B, n)

like inhibits, but after
the number of tokens
in A reaches n, the
number of tokens in B
will diminish

Table 1: The edge patterns used for biological networks in PathSys

11

