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Abstract

An information model is defined to support sharing of composite-media scientific data. The model consists ofdata objects
andlinks. Data objects are associated withdescriptorswhich contain all the metadata related to the object. A novel aspect of the
information model is that both the data and metadata associated with a data object can be in structured or semistructured form.
The links in the model are typed, and contain several built-in types such asresolutionandderivationlink types, to adequately
model object relationships in scientific data. The model is extensible in the sense that users are allowed to define new object
types and new link types. At the San Diego Supercomputer Center, we are currently investigating issues in providing the
necessary infrastructure to implement this model. ©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

There is growing consensus among computational
scientists that observational data, results of computa-
tion and other forms of information produced by an in-
dividual or a research group need to be shared and used
by other authorized groups across the world through
the entire life cycle of the information [1]. Ideally,
the scientist would have a technological infrastructure,
implemented as a software architecture, which can be
used to accomplish any mode of information sharing
such as a database system that can be queried, a dis-
semination channel like the World Wide Web where
information can be published and browsed, and col-
laboration software for simultaneous access. To create
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this information sharing infrastructure, it is necessary
to develop a model to characterize both the nature of
scientific information and the manner in which it is
used. The model must be general enough to span the
information sharing needs of multiple scientific disci-
plines, and yet efficient enough to satisfy any special
requirements for a specific type of data. In particular,
the model must be able to capture four interesting as-
pects of scientific information which set it apart from
usual business information:
• Scientific information is typicallycomposite in

nature. In addition to regular, structured data, sci-
entific information includes documents, images,
videos, three-dimensional volumes, visualized
simulation experiments and any combinations of
these.

• In the scientific world, one needs to deal with both
data-centricandprocess-centricviews of informa-
tion. In other words, while it is important to have
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access to information, often it is also important to
know how the information was derived.

• A given item of information is generally associated
with several other diverse items of information, pos-
sibly distributed, which collectively forms ahetero-
geneous contextof the original information. In
biology, for example, the context of a protein struc-
ture may be an observed phenomenon in a cell line
of an organ, a 2D electrophoretic separation and a
mass-spectrometer plot.

• Scientists often requireintegrated accessto infor-
mation combining retrieval, computation and visu-
alization of individual or multiple datasets.
The information model presented in this paper must

support the mode of operation in scientific applica-
tions where information is often created by iterating
through the steps of acquiring data, performing some
‘procedure’, analyzing the results, and then obtain-
ing the next set of data. The data may be structured,
e.g., information stored in a relational database, or
semistructured/unstructured, e.g., text documents,
multimedia information, or visualization of datasets.
Procedures and analyses performed on the data may
include a treatment protocol on a specimen, expert
interpretation of observed data, and a computational
procedure on an observed data set. The contributions
of this paper are (i) a proposed ‘hybrid’ informa-
tion model that integrates structured and semistruc-
tured data, and (ii) demonstration that the semistruc-
tured information model proposed by database
researchers for other applications [2–4] is also
well-suited for modeling composite-media scientific
information.

The rest of the paper is organized as follows. In
Section 2, we describe two typical usage scenarios for
scientific information. In Section 3, we provide details
of the information model with accompanying exam-
ples. Section 4 discusses issues related to the under-
lying infrastructure needed to implement this model.
Section 5 concludes the paper with a note on our
future directions.

2. Two usage scenarios

In this section, we describe two application scenar-
ios demonstrating different aspects of scientists’
approach to information.

2.1. Usage scenario I

Consider several groups of earth scientists who are
jointly investigating biodiversity of a certain animal
species in the state of California. Assume that each
of these groups collects and studies a specific type of
information such as natural habitats, land use, indus-
trial pollution, effects of urbanization, climate and the
population dynamics of the species of interest. Fur-
thermore, the groups work with publicly available data
from sources such as the Census Bureau and the Envi-
ronmental Protection Agency at the Federal and state
levels. In the course of their study, the scientists cre-
ate derived maps from raw observations. For example,
one map may show the increase in urbanization and
traffic pollution from, say, 1996–1998, while another
shows the change in the natural habitat of a specific
species along with the change in its population density
over the same period. These derived maps, created by
compute intensive processing of raw datasets residing
in distributed locations in heterogeneous databases,
are stored for future access. Along with the maps, the
system stores information about the attributes that are
represented in the maps. It also stores the timestamp
at which this map has been generated along with rele-
vant information on accuracy limitations. The creator
of the derived information may also store the maps at
multiple levels of spatial resolution, where a coarser
level of resolution provides an aggregated view of the
data, which may highlight an aggregated property that
is lost at finer resolutions. Hence, the coarse level in-
formation may be additionally associated with its own
‘description’ which is not present in the original, finer
level map. A user accessing the maps may issue a
query specifying the region of interest, attributes of in-
terest and a desired level of resolution. If such a map
has been computed and stored before, it is fetched
from the database; otherwise the system computes the
maps from raw information. If the user’s request cov-
ers only a part of the mapped region, then only related
subregions are extracted from the map when the re-
sults are presented to the user at the desired level of
resolution. If a map satisfying the query is available,
but at a finer level of resolution, then the system com-
putes a coarse resolution map before presentation.
After inspecting the presented map, the user may re-
quest a related piece of information, such as the latest
SPOT data of the same region. In response, the system
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issues a query to a corresponding, possibly remote,
database and locates the information. Finally, the user
may wish to compute the variation of a mapped vari-
able over a period of time. A given map is submit-
ted as part of a query to fetch other related maps
and a computation is invoked to compute the varia-
tion. The results may be viewed through a presenta-
tion/visualization interface.

2.2. Usage scenario II

Consider several teams of biologists sharing infor-
mation through a collaborative environment. Assume
that one of the scientists is demonstrating an observa-
tion by performing telemicroscopy on a cell specimen.
The microscope image is visible to other collabora-
tors. The experimenting scientist takes a snapshot at a
specific magnification and stores it along with the ex-
perimental settings. A region of interest is marked on
the snapshot and a corresponding annotation is made,
which is also stored. Next, the scientist wishes to view
the region of interest at a higher magnification by tak-
ing a second snapshot. Again, upon identifying the
specific site of interest, the scientist makes further an-
notations. At that point, a participant in the collab-
oration environment retrieves a previously stored to-
mographic reconstruction of the specific sub-cellular
structure of interest. All the scientists now jointly view
the original microscope snapshots, the experimenter’s
annotations and the 3D reconstruction. During the
collaborative viewing and interpretation of this infor-
mation, further measurements are taken, shapes are
analyzed and inferences noted. All of this additional
information is stored in the system for future refer-
ence and analysis. In fact, as part of the comparative
analysis, similar information from past experiments
may be retrieved and presented in the same environ-
ment. Information from past experiments is obtained
by issuing queries based on attributes that describe
the context of the experiments. Once retrieved, this
information can be linked to the current experiment
to provide context in the future. The search for infor-
mation needed to facilitate this collaboration scenario
may also reach out to the Internet. For example, a set
of keywords stored in an annotation may trigger a bib-
liographic query to a MedLine service, and retrieve a
ranked set of abstracts to be viewed together as part
of the collaborative session.

2.3. Role of the information sharing infrastructure

The role and need for an information sharing infras-
tructure is clearly demonstrated from the above exam-
ple scenarios.

These examples impose basic requirements on the
information model including:
• support for multi-resolution information, especially

for multimedia data;
• support for derivation ancestry, where a given item

is derived in a known way from one or more other
items in the lineage;

• the ability to define named sets of objects of a given
type, along with ‘context’ information (i.e., a set of
related or linked objects) for each object. This is
useful for query processing and for exporting data to
external processes, e.g., collaboration systems, and

• support for associating unstructured and semistruc-
tured objects, like free text annotations, with data
objects.
The following section describes the information

model used to support scientific applications such as
the ones described in the previous subsections.

3. The information model

The information model is based on the abstractions
of dataobjectsand links. A dataobjectconsists of a
data item, which is the actual observed datasets, or
product of computation, and a datadescriptor. The
data descriptor contains a variety of metadata associ-
ated with the item, which can be queried. A data ob-
ject is associated with atype, where the type of the
object is defined by the schema of the descriptor asso-
ciated with the object. In the scientific domain, exam-
ples of data objects are, LANDSAT images, results of
a simulation experiment, and text documents of field
observations. In each case, a descriptor schema can
be specified to provide attribute-based access to the
data objects. Adata descriptorincludesassigned(or,
non-derived) metadata andcontent(or, derived) meta-
data. Assigned metadata includes metadata values as-
signed by external users and which are not derivable
from the actual content of the data object. Examples
include name of the author, title, and pixel resolu-
tion (for images). Content metadata examples include
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number of pixels in an image, size of a file, and aspect
ratio1 .

Data objects may be related to other data ob-
jects via typed links. Links may be manually as-
signed or computationally derived. Links represent
instance-to-instance relationships and, unlike say the
entity-relationship (ER) model, it is not mandatory
for all instances of a given data type to have the
same relationship with objects of another data type.
Due to its navigational nature, we believe that the
instance-based, or ‘object-oriented’, approach is suit-
able for modeling scientific information, in conjunc-
tion with a set-based approach for providing ad hoc
querying capability.

3.1. Modeling data objects

As mentioned above, a data object consists of a
data item and a data descriptor. The data descriptor
is associated with aschema. The descriptor schema
may be fully structured or partially structured. A
fully structured schema has a fixed set of attributes, is
non-nested, and is expressible as a relational schema
which can be queried using a relational query lan-
guage such as the Structured Query Language (SQL).
A partially structured schema has a structured com-
ponent as well as a semistructured component. The
semistructured part is expressed in XML [5] and may
or may not have an associated Document Type Defi-
nition (DTD). Thetypeof an object is determined by
the structured part of its schema.

The model supports the notion of a type hierarchy.
Thus, if the type of an objectX is a subtype of the type
of some other objectY, then the structured schema as-
sociated withX is asupersetof the structured schema
associated withY. The model provides a set construc-
tor to allow the grouping of data objects of the same
type into a named set. This provides the mechanism
for users to create their own sets of data objects and
to issue queries on those sets. In a typical implemen-
tation, a system will define a basic object type, or
schema, for all objects (e.g., the set of attributes im-

1 Note that the distinction between assigned and derived metadata
is not rigid. For example, if a user directly records a voice an-
notation associated with a video segment, it would be considered
assigned metadata with respect to that video segment. However,
if the audio annotation is extracted from the audio channel of the
video, then it would be content metadata.

plied by the Dublin Core definition). Thus, this basic
schema defines the so-calledbase typefrom which all
other types are derived. For example, one may derive
an image object type from this base type. The image
object type defines a metadata schema that is common
to all images regardless of the types of images (e.g.,
satellite versus microscopy) and regardless of the ap-
plication domains to which they belong. From this im-
age type, one could derive a subtype specific to, say,
LANDSAT images. Further, different groups with col-
lections of LANDSAT images may choose to employ
different annotations for these images, at which point a
semistructured data model may be employed to model
annotation metadata associated with the images. In
this example, third-party applications aware of the
LANDSAT schema can query the data collections us-
ing that schema, while applications that understand the
semistructured extensions may utilize the additional
attributes specified in the semistructured part of the
descriptor.

The notion of partially structured schemas is a
unique capability that has not been discussed in pre-
vious related work, such as Lore [6,7]. The ability to
define strict type-subtype hierarchies while simulta-
neously providing the flexibility to define semistruc-
tured descriptors is particularly useful in scientific
information. As mentioned in Section 2.2, scientists
often record inferences or annotations with raw obser-
vations and computations, on a per case basis. Thus,
all instances of the same data object type may not
share the same information structure for ad hoc ob-
servations. However, by representing this information
in the form of〈attribute, value〉 pairs, one can employ
a semistructured model for the data. As mentioned
earlier, even for the semistructured information, it is
possible to register a DTD (i.e., schema). In this case,
the DTD is used to support querying. Otherwise, data
in the semistructured part can be navigated only if
there is a recognizer that can parse the structure. If
such a parser is not available, then the semistructured
information is simply treated as a binary large ob-
ject (BLOB). To support the semistructured model,
we employ XML as the data specification language.
For each object, the semistructured component is
stored as a text block calledssdata2 , starting with

2 If object x has a non-null value inx.ssdata, it has a semistruc-
tured component, else it is purely structured.
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Fig. 1. Data model example.

the standard XML document prolog such as〈?xml
version=“1.0” encoding=“UTF-8” ?〉. While we do
not provide a formal treatment of the model in this
paper, it can easily be shown that, in the general case
(if inheritance is supported), the semistructured data
is equivalent to a directed acyclic graph. For exam-
ple, the following semistructured description (without
inheritance) results in the tree shown in Fig. 1.
〈L1〉 abc

〈L2〉 def 〈/L2〉
〈L2〉 ghi 〈/L2〉
〈L3〉 jkl

〈L4〉 mno 〈/L4〉
〈/L3〉

〈/L1〉
Operators to traverse from any node in the graph to
its descendants or ancestors can be defined. One can
further constrain the traversal by specifying selection
conditions on the labels (i.e., attributes) and values of
the destination nodes.

3.2. Modeling links

Links are associations that relate data objects in
an information context. A link is minimally repre-

sented as the 5-tuple〈link id, link label, link type,
from object, toobject〉. The attribute linklabel is a
textual description of the semantic role of the link
and can be queried like any textual attribute. Although
the link is binary, it can always be used to model
one-to-many links by first creating a group of target
nodes, renaming it, and then connecting the source
link to the group object.

3.2.1. Link types
Note that contrary to many graph-based data models

[8,9], we support the notion of a linktype. The concept
of a link type allows the modeling of the structure and
behavior of links and permits meaningful navigation
along inter-object links. The link types also serve to
constrain the relationship among data objects. The in-
formation model includesbuilt-in link types and also
provides support foruser-definedlink types. Built-in
link types have predefined semantics. At this point, we
recognize the following link types:
1. Ordering Links: This link type can be used to

create ordered sequences of data objects. The
link specifies a precedence relationship between
two data objects of the same type. The ordering
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link is implicit, effected through an ordering at-
tribute from the metadata of the data object or
by using a variable within the link itself. The
choice to use one over the other is a matter of
user preference and does not affect the semantics
of any operation. Ordering links are described
by the 6-tuple 〈link id, link label, link type,
from object, toobject, orderattrib〉. The attribute
link type specifies whether the ordering attribute
is in the metadata or in the link, and the last at-
tribute refers to the ordering attribute. A typical
ordering variable istime, which may be used to
order a sequence of observations in an experi-
ment. A more complex example is a sequence
of images that represent a progression of slices
through a 3D object, such as the coronal sections
of a human brain.

2. Resolution Links: This is a special type of order-
ing link where the link is between two related im-
age data objects of different resolutions. Resolu-
tion links always connect objects that are adjacent
in the resolution dimension. However, a resolu-
tion link deviates from a simple ordering link in
two ways. First, it is possible that the data that two
data objects on two sides of a resolution link have
are of different data types. For example, in Sec-
tion 2.1, a resolution link may connect a LAND-
SAT image of a region under study to a much
larger higher resolution SPOT image (a different
data type) where further details of industrial oc-
cupancy of a region can be observed. Secondly, a
higher resolution image may cover only a portion
of a lower resolution image. A typical example is
that of microscopy images where, as mentioned
in Section 2.2, only regions containing interest-
ing objects are zoomed. In this case, the resolu-
tion link additionally contains the spatial coordi-
nates (only the two diagonal coordinate points for
a rectangular region) in the low-resolution image
corresponding to the high-resolution image.

3. Derivation Links: If data object o2 is obtained
by performing some operation on data object o1,
o1 is connected to o2 by a derivation link. The
purpose of the derivation link is to establish the
lineageof a data item by keeping enough infor-
mation so that any data item can be traced back
to other data objects that led to the current item.
The operations themselves can have a wide vari-

ety, ranging from executing a computational pro-
cedure, to performing the next step in an experi-
mental protocol. We model a derivation link by a
link object and a corresponding operation object.
The link object derives from the standard link and
contains three additional attributes〈operationid,
operationinstanceid, materialized〉. The first at-
tribute refers to a registered operation such as a
computational procedure known to the system. If
the operation is unknown a special identifier is
used. The operation instance identifier links the
current derivation link to an instance of the op-
eration object describing the operation. This op-
eration object contains the parameters of the op-
eration and may include a textual description or
a reference to another data object. Thematerial-
izedattribute specifies whether the data object is
already materialized or needs to be computed at
run-time by executing the operation. As an exam-
ple of the above, consider that a classification pro-
cedure is executed on a LANDSAT image classi-
fying each pixel into one of a finite set of cate-
gories (deep water, shallow water, asphalt, vegeta-
tion etc.). This classification procedure may need
to specify parameters like minimum inter-class
separation and minimum compactness of a class.
Then the operation object identified by opera-
tion id may have attributes〈operationinstanceid,
interclassseparation, classcompactness, descrip-
tion, command〉 where description is for annota-
tions and comments and command is a method
that uses the other attributes to create the actual
command to execute the classification procedure.
If multiple objects are used to derive a single data
object, the data objects are grouped first and the
derivation link connects the group to the derived
object.

4. Reference Links: A reference link is a virtual con-
nection to an object outside the scope of the in-
frastructure, such as an object at a website with a
known URL. The reference link additionally con-
tains a possibly null method to construct such a
reference from the data object it attaches to. This
can be used in constructing a query string to fill an
HTML form and perform a search as mentioned
in the example scenario of Section 2.2.

5. User-defined Links: To provide extensibility, the
model supports user-defined links that can be reg-
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istered by the application designer by using the
registerLinkTypefunction. The user first defines
the new link type by inheriting from an existing
link type. This process can be used not only to
specify additional attributes but also to define con-
straints such as the data type of the participating
nodes, whether group nodes are allowed on either
ends of the link, and specific dependencies that
needs to exist on the data items on both end of
the link. For example, spatial adjacency links may
be created on image data objects, where all con-
nected images are captured from the neighboring
fields of a single microscope slide.

3.2.2. Link operations
Once an object, or subset of objects, has been iden-

tified as the result of an ad hoc query, link operations
allow navigation among data objects with a given ob-
ject as the point of reference. As one navigates links
to reach other objects the point of reference, orcur-
rency, changes to the new object. Examples of link
operations are:
• Find all links at a node: the operation returns the

link ids of all links associated with that node, re-
gardless of link type.

• Find all links of a particular type, at a node: similar
to above, this operation returns all links of a partic-
ular type associated with the given node.

• Find end-points of each link (all links): returns the
object IDs of all objects directly connected via a
link to the current object.

• Get link metadata for a given link: retrieves all meta-
data attributes associated with a link.

• Get to the object at the other end of a link (i.e.,
traverse link): changes the currency to the object
reached by traversing a given link.

The above is not meant to be an exhaustive set of
possible link operations, but it provides examples of
the types of navigational operations that are possible
in the system.

3.3. Modeling example I

The information model can be formally expressed
as a graph where the data objects correspond to nodes
and the links correspond to edges. To support informa-
tion sharing and collaboration, it is necessary to pro-

vide the ability to identify subgraphs that correspond
to sets of linked objects that are of interest. The graph
model of the data can itself be expressed as semistruc-
tured data using XML. Similarly, the subgraph rep-
resenting objects of interest can also be expressed as
semistructured data. Thus, when users query, share, or
exchange information about objects, they use XML as
the medium for doing so. We illustrate this with an
example shown in Fig. 1 which depicts a set of data
objects and different types of links among these ob-
jects. Assume that the objects labeled A1–A4 are, a
set of LANDSAT images. With A3 as the reference,
A1 and A2 are lower resolution images correspond-
ing to A3. The resolution links, r1 and r2 capture this
relationship. Similarly, A4 is a higher resolution im-
age of a particular site and/or region in A3. Object C1
is also a higher resolution image of the same region.
However, the type of C3 is different from the type of
A1–A4. For example, while A1–A4 are all Landsat
images (at multiple levels of resolution), C1 may be a
SPOT data image.

B1 and B2 are derived from A3, and are objects
of a different type than LANDSAT images. Thus,
they are both linked to A3 via derivation links. An-
other example of a derivation link is the link between
A2 and D1. While D1 is derived from A2, the dot-
ted representation for D1 indicates that this object
is not physically stored in the collection. Rather, it
is generated on-the-fly by invoking the derivation
method d3 on object A2. The link d2 from A3 to
A1 indicates that the lower resolution image, A1,
was derived from A3. The figure also shows a link
between A3 and the object E1 via a link labelled,
UDLTLink, which is an instance of a user-defined
link.

The graph adjacency information for data object A3
can be represented as follows:
〈GRAPH OBJECT〉
〈DATA OBJECT〉
〈DESCRIPTOR〉
〈STRUCTUREDMETADATA 〉
〈OBJECTID〉 A3 〈/OBJECTID〉
. . . all other structured metadata attributes (derived
from supertypes as well as locally defined). . .

〈/STRUCTUREDMETADATA 〉
〈MOREDATA〉
. . . any semistructured metadata attributes, if they
exist. . .
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〈/MOREDATA〉
〈/DESCRIPTOR〉
〈ITEM〉
. . . contents of data item (or a reference to it). . .

〈/ITEM〉
〈/DATA OBJECT〉
〈LINKType = RESOLUTION, Id = r1〉 Label info
〈/LINK 〉

〈LINKType = RESOLUTION, Id = r3〉 Label info
〈/LINK 〉

〈LINKType = DERIVATION, Id = d2〉 Label info
〈/LINK 〉

〈LINKType = DERIVATION, Id = d3〉 Label info
〈/LINK 〉

〈LINKType = DERIVATION, Id = d4〉 Label info
〈/LINK 〉

〈LINKType = UDT LINK , Name= MyLink , Id =
UDLTLink〉 Label info 〈/LINK 〉

〈/GRAPH OBJECT 〉
For a particular collaborative session, if a set of

users are only interested in sharing specific derived
information related to object A3 (i.e., A3 along with
B1 and B2), they may wish to share the following
subgraph of A3:
〈SUBGRAPHOBJECT〉
〈DATA OBJECT〉
〈DESCRIPTOR〉
〈STRUCTUREDMETADATA 〉
〈OBJECTID〉 A3 〈/OBJECTID〉
. . . all other structured metadata attributes (derived
from supertypes as well as locally defined). . .

〈/STRUCTUREDMETADATA 〉
〈MOREDATA〉
. . . any semistructured metadata attributes, if they
exist. . .

〈/MOREDATA〉
〈/DESCRIPTOR〉
〈ITEM〉
. . . contents of data item (or a reference to it). . .

〈/ITEM〉
〈/DATA OBJECT〉
〈LINKType = DERIVATION, Id = d3〉 Label info
〈/LINK〉

〈LINKType = DERIVATION, Id = d4〉 Label info
〈/LINK〉

〈/SUBGRAPHOBJECT〉

3.4. Modeling example II

Next, we discuss an example where different ap-
proaches can be used to model the same information
using the proposed information model. This results
in modeling of information at different levels of
detail and, correspondingly, different querying ca-
pabilities. The following discussion explains three
different ways of modeling data, using video infor-
mation related to a microscopy experiment as an
example:
(a) Video modeled as a BLOB with minimal (as-
signed) metadata. The video information is mod-
eled as a data object which belongs to the base type
supported by the system. Thus, only minimal meta-
data is stored in the data descriptor. The data item
itself is represented as a BLOB. With this model,
one can query the minimal metadata, such as the
set of Dublin Core attributes represented in the base
type. However, it is not possible to issue a query
that is specific to the contents of the video itself,
since the video information is simply modeled as a
BLOB. The only operations possible would be the
basicgetobject/putobjectoperations (i.e., play video
and store video).

(b) Video modeled as a BLOB with type-specific
(assigned) metadata. The schema for the data de-
scriptor is defined as a video-specific subtype of the
base type. Thus, the system is able to represent a
variety of video-related metadata in addition to the
basic metadata stored in case (a). For example, this
metadata may include the duration of the video, the
bit rate of MPEG encoding, the frame dimensions,
and whether the video has audio and closed caption
channels. This video subtype can be further spe-
cialized to includefeaturemetadata that describes
the content of the video. This is done by providing
the ability to defineannotation trackswhich are
tuple-structured attribute fields containing values
for 〈time in, time out, annotationdata〉. The first
two items specify a time interval in the video and
the third item is the actual annotation which may
be semistructured. A similar track-oriented video
content description scheme was proposed by Weiss,
Duda and Gifford [10] and has been commercially
implemented in the Video Foundation Blade by
Informix [11].
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Given this model for the video object, the sys-
tem can support retrieval of video segments based
on queries such as, “video segments that are more
than 1 min long, where the keywords ‘monoclonal
antibody’ and ‘Jurkat cells’ are present in one or
more annotation tracks”. Using the time interval in-
formation in annotation tracks the system can also
support the retrieval of only the desired segments
of video. The sequence of frames that constitute the
video is still represented as a BLOB.

(c) Video modeled as an object with links to derived
metadata. The annotation track information can be
enhanced to include key frames from the video des-
ignating particular event (e.g., cell death). Thus, the
key frame is represented as derived information with
respect to the particular video (or video segment).
In addition, the key frame image may itself be fur-
ther annotated to indicate, say, the boundary of the
dying cell and the decreasing diameter of its nu-
cleus. This latter annotation is derived information
based on the key frame image object. Thus, rather
than modeling the video as a BLOB, the informa-
tion model now models the image contents of the
video itself. The user may now issue a query based
on where certain events occur within the video. This
approach requires the user to model this informa-
tion explicitly and to provide the neccesary data.
As in case (b), the data descriptor associated with

the video has a subtype that is specific to video in-
formation. In addition, the descriptor may also inherit
from a domain-specific type, for instance, it may in-
herit the schema that applies to information related to
the subject ‘cellular phenomena’. However, as men-
tioned before, since there can be high variability in
the type of experimental information and annotation
available for each observation, we allow this informa-
tion to be represented using the semistructured repre-
sentation.

4. Implementation issues

In this section, we discuss requirements on the un-
derlying storage infrastructure needed to implement
the information model introduced above. The infras-
tructure should provide efficient support for:
• storage and querying of metadata associated with

data objects;
• navigation along inter-object links;

• storage of data objects including multimedia objects
such as images, videos, geospatial, text;

• scalability and the ability to handle a wide range of
collection and object sizes. Some collections may
range in the millions of objects, while others may
contain individual objects that may range up to ter-
abytes (and even petabytes) in size;

• transparent distribution of and access to data stored
across a wide area network and across heteroge-
neous storage resources; (An example of a system
that provides this type of capability is the IBM Gar-
lic project [12].)

• querying by object content;
• spatial access to data; (Many data objects are spatial

in nature, e.g., remote-sensing data which may be
accessed using latitude/longitude, and X-ray images
which may be accessed usingx andy coordinates
and

• efficient on-the-fly materialization of derived ob-
jects.

In the following, we discuss some of the storage
implementation issues in more detail.

4.1. Storage and querying of metadata

Ad hoc querying based on descriptor schemas is the
fundamental access method for identifying data ob-
jects of interest. Thus, the ability to store and query
metadata in a standard way is a basic requirement. For
the structured part of the descriptor schema, we pro-
pose to use SQL as the standard query language. Re-
lational databases are a mature technology and many
implementation choices are available.

For managing the semistructured part of the descrip-
tor schema, we need efficient mechanisms for storing
and querying semistructured data. We will use XML
as the standard language for representing this informa-
tion. XML itself is an emerging standard and work has
only just begun to provide database support for XML,
and semistructured data in general [7]. As part of our
future work, we will investigate issues in providing a
schema definition and query language based on XML.

4.2. Storage of data

In many instances, scientific data sets are stored in
ordinary UNIX files, though in some scientific fields,
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e.g., molecular biology, the use of database manage-
ment systems is more prevalent. Several options are
available for storing data objects, as discussed below.

4.2.1. Use of database tables
If the data item associated with an object can it-

self be represented as a set of fields, or ‘structured’
columns (i.e., columns of type integer, float, character,
etc.), then this information can be stored directly as a
row in a database table. In this case, applications can
query the object content simply by using the query lan-
guage supported by the corresponding DBMS. If the
data item is in semistructured form, the options are to
convert this into an internal structured representation
which can be implemented using a relational database,
or to store the semistructured data in its native form.
As mentioned before, the latter requires database sys-
tems that can efficiently manage semistructured data.

4.2.2. Use of BLOBs
The data item may be stored as a BLOB in a DBMS.

This allows the application to exploit all the features
provided by a typical DBMS (e.g., standard query
language, query optimization, transactional capabil-
ity, and backup/restore). Modern DBMSs also provide
efficient techniques for handling BLOBs (e.g., seg-
mentation, disk striping, separation of non-BLOB and
BLOB data, and log/nolog options for BLOB data).
However, if the data objects already exist in the form
of files, it will be necessary to perform a one-time
loading of this data into BLOBs in a database.

4.2.3. Use of files
Each data item may be stored simply as a sepa-

rate file. Applications would then utilize the standard
file I/O APIs to access these objects. However, unlike
the BLOB case above, current filesystem generally do
not support transaction capability nor do they provide
backup/restore and recoverability capabilities.

4.2.4. Use of Hierarchical Storage Management
(HSM)

The use of HSM systems can be considered in cases
where a data collection contains a very large number
of objects, or each individual data object is very large
in size, or where a large fraction of a collection is not
accessed (or, is accessed rarely). The HSM can employ

high capacity media (e.g., magnetic tapes) to record
this information. Systems such as HPSS [13], which
support parallel I/O to tapes, would be able to handle
very large object sizes. In addition, infrequently ac-
cessed data would migrate from disk to tape. For very
large collections, HSMs also provide large storage
capacities (e.g., ranging up to 100s of terabytes to a
few petabytes).

From the above discussion, it is clear that a variety
of options are available for storage of data. To simplify
the implementation, we need a common interface to
this variety of storage systems. A middleware system
that provides such an interface is the SDSC Storage
Resource Broker (SRB) [14]. This system provides a
common API for storing/retrieving data from a variety
of distributed, heterogeneous storage systems includ-
ing filesystems, database system, and archival storage
systems. Thus, the information model can be imple-
mented on top of the SRB middleware.

4.3. Linking a data object with its metadata

Depending on the mechanism used for storing data
objects, there are a variety of options for linking the
data object with its related metadata. For example, if
the data object is stored as a BLOB, then the metadata
can be stored as columns in a database table with the
data object being a ‘BLOB column’ in the same table.
This provides a tight linkage between the metadata
and the data, since both reside in the same row of a
database table.

If the data object is implemented as a file, then there
is a need to link the corresponding row(s) in the meta-
data database to the external file in a filesystem. One
approach to providing this linkage is using the concept
of Datalinks [15]. Datalinks provides the capability to
implement a ‘tight’ link between the DBMS and the
filesystem so that the data object and its correspond-
ing metadata are always synchronized.

If the data objects are stored using an HSM, there
are two options to consider. First, if the objects are rel-
atively small in size (e.g., 10s to 100s of Kbytes)and
second, there are also millions of objects, then the
object can be stored as BLOBs in a DBMS and the
DBMS can manage migration of data to a HSM. The
advantage of this approach is that the DBMS can pack
objects into a few large database ‘containers’ which
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are stored in the HSM. Thus, the HSM is not bur-
dened with managing millions of objects. In a typical
DBMS, a container can be up to 2GB in size. Thus, a
single container can store about two million objects of,
say, 100KB each. The interactions between the DBMS
and HSM are transparent to the user. This approach is
being explored in a joint project between SDSC and
IBM [16,17] and has been demonstrated in a project
at SDSC [18].

If the data objects themselves are large and cannot
be stored as BLOBs in a DBMS, then they may be
stored directly as files in the HSM. In this case, the
Datalinks approach, mentioned above, could be ex-
tended to link metadata stored in a DBMS to objects
stored in a HSM.

5. Future work

San Diego Supercomputer Center and its NPACI
partners have a large community of scientific re-
searchers from diverse disciplines like molecular
science, neuroscience, and earth systems science who
generate large amounts of observational and simula-
tion data and metadata. Our work has been motivated
by the need to create a common infrastructure for shar-
ing this data among cooperating groups. In developing
this information model, our goal has been to address
the general needs for information sharing, without
bias to a specific scientific discipline. We currently
have several building blocks to implement the model
including storage broker middleware, distributed
metadata service, automatic metadata extraction from
multimedia data objects, and an XML based query
language with view-definition capability. Our primary
future work is to integrate these blocks into a com-
plete application in an area such as molecular science.
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