
Modeling Functional Data Sources as Relations

Simone Santini and Amarnath Gupta�

University of California, San Diego

Abstract. In this paper we present a model of functional access to data that,
we argue, is suitable for modeling a class of data repositories characterized by
functional access, such as web sites. We discuss the problem of modeling such
data sources as a set of relations, of determining whether a given query expressed
on these relations can be translated into a combination of functions defined by the
data sources, and of finding an optimal plan to do so.
We show that, if the data source is modeled as a single relation, an optimal plan
can be found in a time linear in the number of functions in the source but, if the
source is modeled as a number of relations that can be joined, finding the optimal
plan is NP-hard.

1 Introduction

These days, we see a great diversification in the type, structure, and functionality of the
data repositories with which we have to deal, at least when compared with as little as
fifteen or twenty years ago. Not too long ago, one could quite safely assume that almost
all the data that a program had both the need and the possibility to access were stored
in a relational database or, were this not the case, that the amount of data, their stability,
and their format made their insertion into a relational database feasible.

As of today, such a statement would be quite undefensible. A large share of the
responsibility for this state of affairs must be ascribed, of course, to the rapid diffusion
of data communication networks, which created a very large collection of data that a
person or a program might want to use. Most of the data available on data communi-
cation networks, however, are not in relational form [1] and, due to the volume and the
instability of the medium, the idea of storing them all into a stable repository is quite
unfeasible.

The most widely known data access environment of today, the world-wide web,
was created with the idea of displaying reasonably well formatted pages of material
to people, and of letting them “jump” from one page to another. It followed, in other
words, a rather procedural model, in which elements of the page definition language
(tags) often stood for actions: a link specified a “jump” from one page to another. While
a link establishes a connection between two pages, this connection is not symmetric (a
link that carries you from page A to page B will not carry you from page B to page
A) and therefore is not a relation between two pages (in the sense in which the term

� The work presented in this paper was done under the auspices and with the funding of NIH
project NCRR RR08 605, Biomedical Informatics Research Network, which the authors grate-
fully acknowledge.

P. Atzeni et al. (Eds.): ER 2004, LNCS 3288, pp. 55–68, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

56 Simone Santini and Amarnath Gupta

“relation” is used in databases), but rather a functional connection that, given page A,
will produce page B.

In addition to this basic mechanism, today many web sites that contain a lot of
data allow one to specify search criteria using the so-called forms. A form is an input
device through which a fixed set of values can be assigned to an equally fixed set of
parameters, the values forming a search criterion against which the data in the web site
will be matched, returning the data that satisfy the criterion.

Consider the web site of a public library (an example to which we will return in
the following). Here one can have a form that, given the name of an author returns a
web page (or other data structures) containing the titles of the books written by that
author. This doesn’t imply that a corresponding form will exist that, given the title of
a book, will return its author. In other words, the dependence author ��book is not
necessarily invertible. This limitation tells us that we are not in the presence of a set
of relations but, rather, in the presence of a data repository with functional access. The
diffusion of the internet as a source of data has, of course, generated a great interest in
the conceptual modeling of web sites [2–4]. In this paper we present a formalization
of the problem of representing a functional data source as a set of relations, and of
translating (whenever possible) relational queries into sequences of functions.

2 The Model

For the purpose of this work, a functional data source is a set of procedures that, given
a number of attributes whose value has been fixed, instructs us on how to obtain a data
structure containing further attributes related to the former.

To fix the ideas, consider again the web site of a library. A procedure is defined that,
given the name of an author, retrieves a data structure containing the titles of all the
books written by that author. The procedure for doing so looks something like this:

Procedure 1: author -> set(title)
i) go to the “search by author” page;
ii) put the desired name into the “author” slot of the form that you find there;
iii) press the button labeled “go”;
iv) look at the page that will be displayed next, and retrieve the list of titles.

Getting the publisher and the year of publication of a book, given its author and title is
a bit more complicated:

Procedure 2: author, title -> publisher, year
i) execute procedure 1 and get a list of titles;
ii) search the desired title in the list;
iii) if found then

iii.1) access the book page, by clicking on the title;
iii.2) search the publisher and year, and return them;

iv) else fail.

On the other hand, in most library web pages there is no procedure that allows one to
obtain a list of all the books published by a given publisher in a given year, and a query
asking for such information would be impossible to answer.

Modeling Functional Data Sources as Relations 57

We start by giving an auxiliary definition, and then we give the definition of the kind
of functional data sources that we will consider in the rest of the paper.

Definition 1. A data sort S is a pair (N, T), written S = N : T , where N is the name
of the sort, and T its type. Two data sorts are equal if their names and their types
coincide.

A data sort, in the sense in which we use the term here, is not quite a “physical” data
type. For instance, author:string and title:string are both of the same data type (string)
but they represent different data sorts1.The set of complex sorts is the transitive closure
of the set of data sorts with respect to Cartesian product of sorts and the formation of
collection types (sets, bags, and lists).

Definition 2. A functional data source is a pair (S, F) where S = {S1, . . . , Sn} is a

set of data sorts, F = {f1, . . . , fm} is a set of functions α
f ��β , where both α and

β are composite sorts made of sorts in S.

In the library web site, author:string, and year:int are examples of data sorts. The
procedures are instantiations of functions. Procedure 1, for example, instantiates a func-

tion author:string
f �� title:string.

The elements “author:string” and “title:string” are examples of composite sorts.
Sometimes, when there is no possibility of confusion, we will omit the type of the sort.
Our goal in this paper is to model a functional data source like this one in a way that
resembles a set of relations upon which we can express our query conditions. To this
end, we give the following definition.

Definition 3. A relational model of a functional data source is a set of relations R =
{R1, . . . , Rp} where Ri ⊆ Si1 × · · · × Siq and all the Si’s are sorts of the functional
data source. The relation Ri is called a relational façade for the underlying data source,
and will sometimes be indicated as Ri(Ni1 : Ti1 , . . . , Niq : Tiq).

The problems we consider in this paper are the following: (1) Given a model R of
a functional data source (S, F) and a query on the model, is it possible to answer the
query using the procedures fi defined for the functional data source?, and (2) if the
answer to the previous question is “yes,” is it possible to find an optimal sequence of
procedures that will answer the query with minimal cost?

It goes without saying that not all the queries that are possible on the model are also
possible on the data source. Consider again the library web site; a simple model for this
data source is composed of a single relation, that we can call “book,” and defined as:

book(name:string, title:string, publisher:string, year:int).

1 The entities that we call data sorts are known in other quarters as “semantic data types.” This
name, however, entails a considerable epistemological commitment, quite out of place for a
concept that, all in all, has nothing semantic about it: an author:string is as syntactic an entity
as any abstract data type, and does not require extravagant semantic connotations.

58 Simone Santini and Amarnath Gupta

A query like

(N, T) :- book(N, T, ‘dover’, 1997),

asking for the author and title of all books published by dover in 1997 is quite reasonable
in the model, but there are no procedures on the web site to execute it.

We will assume, to begin with, that the model of the web site contains a single
relation. In this case we can also assume, without loss of generality, that the rela-
tion is defined in the Cartesian product of all the sorts in the functional data source:
R(S1, . . . , Sn). Throughout this paper, we will only consider non-recursive queries. It
should be clear in the following that recursive queries require a certain extension of our
method, but not a complete overhaul of it. Also, we will consider conjunctive queries2,
whose general form can be written as:

(Sk1 , . . . , Skp) : −R(S1, . . . , Sn), Sj1 = c1, . . . , Sjq = cq , φ1(S11, S12), . . . , φ1(Su1, Su2)
(1)

where c1, . . . , cq are constants, all the S’s come from the sorts of the relation R, and the
φi’s are comparison operators drawn from a suitable set, say φi ∈ {<, >, =, �=,≤,≥}.

We will for the moment assume that the functional data source provides no mecha-
nism for verifying conditions of the type φ1(S11, S12). The only operations allowed are
retrieving data by entering values (constants) in a suitable field of a form or traversing
a link in a web site with a constant as a label (such as the title of a book in the library
example). Given the query (1) in a data source like this, we would execute it by first de-
termining whether the function f : Sj1×· · ·×Sjn → {Sk1×· · ·×Skp×S11×· · ·×Su2}
can be computed. If it can, we compute f(c1, . . . , cq) and, for each result returned,
check whether the conditions φi(Si1, Si2) are verified.

The complicated part of this query schema is the first step: the determination of the
function f that, given the constants in the query, allows us to obtain the query outputs
{Sk1 , . . . , Skp}, augmented with all the quantities needed for the comparisons.

3 Query Translation

Informally, the problem that we consider in this section is the following. We have a col-
lection of data sorts S = {S1, . . . , Sn}. Given two data sorts α, β, defined as Cartesian
products of elements of S (α = Sα1×· · ·×Sαa and β = Sβ1×· · ·×Sβb

) one can define
a formal (and unique) correspondence function fαβ : α → β. This function operates
on the model of the data source (this is why we used the adjective “formal” for it: it is
not necessarily a function that one can compute) and, given the values {Sα1 , . . . , Sαa},
returns the corresponding values {Sβ1 , . . . , Sβb

}. If {v1, . . . , va} are the input values,
this function computes the relational algebra operation

πNβ1 ,...,Nβb
◦ σSα1=v1...,Sαa=va (2)

where the N ’s are the names of the sorts S, as per definition 1. A correspondence
function can be seen, in other words, as the functional counterpart of the query (2)

2 Any query can, of course, be translated in a disjunctive normal form, that is, in a disjunction of
conjunctive queries. The system in this case will simply pose all the conjunctive queries and
then take the union of all the results.

Modeling Functional Data Sources as Relations 59

which, on a single table, is completely general. (Remember that we don’t yet consider
conditions other than the equality with a constant.)

The set F = {fαβ} of all correspondence functions contains the grounding of all
queries that we might ask on the model. The functional data source, on the other hand,
has procedures Pi, each one of which implements a specific function fαβ , a situation
that we will indicate with Pi � fαβ . The set of all implemented correspondence func-
tions if F|� = {f |∃P : P � f}. Our query implementation problem is then, given
a query q, with the relative correspondence function f , to find a suitable combination
of functions in F|� that is equal to f . In order to make this statement more precise,
we need to clarify what do we mean by “suitable combination of functions” that is, we
need to specify a function algebra. We will limit our algebra to three simple operations
that create sequences of functions, as shown in Table 1. (We assume, pragmatically, that
more complex manipulations are done by the procedures Pi.)

Table 1. Operators of the function algebra.

Operation Definition Description Typing
f ◦ g (f ◦ g)(x) = f(g(x)) function composition f :α→β g:γ→α

f◦g:γ→β

〈f, g〉 〈f, g〉(x) = (f(x), g(x)) cartesian composition f :α→β g:α→γ
〈f,g〉:α→β×γ

f × g (f × g)(x, y) = (f(x), g(y)) cartesian product f :α→β g:δ→γ
f×g:α×δ→β×γ

A function f ∈ F|� for which a procedure is defined, and that transforms a data
sort S into a data sort P can be represented as a diagram

S
f �� P. (3)

The operators of the function algebra generate diagrams like those in the first and third
column of Table 2. In order to obtain the individual data types, we introduce the formal
operator of projection. The projection is “formal” in that it exists only in the diagrams:
in practice, when we have the data type P × Q we simply select the portion of it that
we need. The projections don’t correspond to any procedure and their cost is zero. The
dual of the projection operator is the Cartesian product which, given two data of type A
and B produces from them a datum of type A×B. This is also a formal operator with
zero cost. where the dotted line with the × symbols is there to remind us that we are
using a Cartesian product operator, and the arrow goes from the type that will appear
first in the product to the type that will appear second (we will omit the arrow when this
indication is superfluous).

The Cartesian product of the functions S
f �� P and Q

g �� R is represented
as

S ×Q
f×g ��P ×R (4)

With these operations, and the corresponding diagrams, in place, we can arrange
the correspondence functions f ∈ F|� in a diagram, which we call the computation
diagram of a data source.

60 Simone Santini and Amarnath Gupta

Definition 4. The computation diagram of a functional data source is a graph G =
(N, E) with nodes labeled by a labeling function λn : N → S, S being the set of
composite data sorts of the source, and edges labeled by the labeling function λe :
E → F|� such that each edge is one of the following:

1. A function edge, such that if the edge is (n1, n2), then λE((n1, n2)) : λn(n1) →
λn(n2), and represented as in (3);

2. projection edges,
3. cartesian product edges

Let us go back now to our original problem. We have a query and a correspon-

dence function S1 × · · · × Sn
f ��P1 × · · · × Pm that we need to compute, where

S1, . . . , Sn are the data sorts for which we give values, and P1, . . . , Pm are the results
that we desire. In order to see whether the computation is possible, we adopt the fol-
lowing strategy: first, build the computation diagram of the data source, then we add a
node called s to the graph, and connect it to S1, . . . , Sn, as well as a node d, with edges
coming from P1, . . . , Pm; finally, we check whether a path exists from s to d.

If we are to find an optimal solution to the grounding of a correspondence function
f , we need to assign a cost to each node of the graph and, in order to do this, we need to
determine the cost of traversing an edge. The cost functions of the various combinations
that appear in a computation graph are defined in table 2.

Table 2. Cost of the functional operations in terms of graph path.

Operation Cost Operation Cost

A
f �� B C(B) = C(A) + C(f) A

���
��

��
��

B

����
��

��
�

A × B

×
C(A × B) = C(A) + C(B)

A × B

π1

���
��

��
��

π2

����
��

��
�

A B

C(A) =
C(B) = C(A × B)

A

f1
���

��
��

� B

f2
����

��
��

D

C(D) = min(C(A) + c(f1),
C(B) + c(f2))

The problem of finding the optimal functional expression for a given query can
therefore be reduced to that of finding the shortest path in a suitable function graph, a
problem that we will now briefly elucidate. Let G be a function graph, G.V the set of
its vertices, and G.E the set of its edges.

For every node u ∈ G.V , let u.κ be the distance between u and the source of the
path, u.π the predecessor(s) of u in the minimal path, and u.ν the set of nodes adjacent
to u (accounting for the edge directions)

In addition, a cost function c : vertex× vertex→ real is defined such that c(u, v) is
the cost of the edge (u, v). If (u, v) �∈ G.E, then c(u, v) =∞.

The algorithm in table 3 uses the Djikstra’s shortest path algorithm to build a func-
tion graph that produces a given set of output from a given set of input, if such a graph

Modeling Functional Data Sources as Relations 61

exists: the function dijkstra(G, c, s) returns the set of nodes in G where, for each node
n, n.κ is set to the cost of the path from s to n according to the cost function c. Dijkstra’s
algorithm is a standard one and is not reported here.

Table 3. Algorithm for the creation of function graphs.

make graph(I : {vertex}, O : {vertex}, G : graph, c : vertex × vertex → real) : graph
s, d : vertex;
G.V := G.V ∪ {s, d};
forall u in I do G.E := G.E ∪ {(s, u)}; od
forall u in O do G.E := G.E ∪ {(u, d)}; od;
S := dijkstra(G, c, s);
Q : graph;
T, P : {vertex};
S := S − {s, d}; Q.V := ∅; T := O; P := O;
while T �= ∅ do

u := element(T);
if u.ν �= s ∧ u.ν �= ∅ do

forall v in I do
Q.V := Q.V ∪ {v};
if v �∈ P do T := T ∪ {v} fi
P := P ∪ {v}; Q.E := Q.E ∪ {(v, u)};

od;
T := T − {u};

fi;
od;
return Q;

4 Relaxing Some Assumptions

The model presented so far is a way of solving a well known problem: given a set of
functions, determine what other functions can be computed using their combination;
our model is somewhat more satisfying from a modeling point of view because of the
explicit inclusion of the cartesian product of data sorts and the function algebra opera-
tors necessary to take them into account but, from an algorithmic point of view, what
we are doing is still finding the transitive closure of a set of functional dependencies.
We will now try to ease some of the restrictions on the data source. These extensions,
in particular the inclusion of joins, can’t be reduced to the transitive closure of a set of
functional dependencies, and therein lies, from our point of view, the advantage of the
particular form of our model.

Comparisons. The first limitation that we want to relax is the assumption that the data
source doesn’t have the possibility of expressing any of the predicates φi(Si1, Si2) in
the query (1). There are cases in which some limited capability in this sense is available.

62 Simone Santini and Amarnath Gupta

We will assume that the following limitations are in place: firstly, the data sources pro-
vides a finite number of predicate possibilities; secondly each predicate is of the form
φ(S, R) = S op R, where S and R are fixed data sorts, and “op” is an operator that
can be chosen amongst a finite number of alternative. The general idea here comes, of
course, from an attempt to model web sites in which conditions can be expressed as part
of “forms.”

In order to incorporate these conditions into our method, one can consider them as
data sorts: each condition φ(S, R) is a data sort that takes values in the set of triples
(s, r, op), with s of sort S and r of sort R. In other words, indicating a sort as a pair
N : T , where N is the name and T the data type of the sort, a comparison data sort
C(S1, S2) is isomorphic to N1 : T1 × N2 : T2 × (T1 × T2 → 2) where 2 is the data
type of the booleans. A procedure that accepts in input a value of a data sort S1, and a
condition on the data sorts S2, S3, would be represented as

S1

������������� C(S2, S3)

�������������

S1 × C(S2, S3)

f

��
α

×
		

(5)

The only difference between condition data sorts and regular data sorts is that conditions
can’t be obtained as the result of a procedure, so that in a computation graph a condition
should not have any incoming edge.

Joins. Let us consider now the case in which the model of the functional data source
consists of a number of relations. We can assume, for the sake of clarity, that there are
only two relations in the model:

R1(N1 : T1, . . . , Np : Tp)
R2(M1 : Q1, . . . , Mv : Qv).

(6)

Each of these relations supports intra-relational queries that can be translated into func-
tions and executed using the computation graph of that part of the functional source that
deals with the data sorts in the relation. In addition, however, we have now queries that
need to join data between the two relations. Consider the relations: R1(X1, X2, X3),
R2(Y1, Y2, Y3) and the following query:

(A, B) : −R1(X, ’x’, A), R2(Y, ’y’, B), A = B. (7)

We can compute this query in two ways. The first makes use of the following two
correspondence functions:

X2
f1 �� X1 ×X3

Y2 × Y3
f2 �� Y1 .

(8)

To implement this query, we adopt the following procedure:

Modeling Functional Data Sources as Relations 63

Procedure 3:
i) use the computation graph of R1 to compute f1(’x’), returning a set of

pairs (a : X1, b : X2);
ii) for each pair (a, b) returned:

ii.1) compute f2(’y’, b) using the graph of R2, obtaining
a set of results (c : Y1);

ii.2) for each c, form the pair (a, c), and add it to the output.

The procedure can be represented using a computation graph in which the graphs
that compute f1 and f2 are used as components. Let us indicate the graph that computes
the function fas:

α ��������f �� β (9)

Then a join like that in the example is computed by the following diagram:

X2
	
�����f1

�� X1 ×X3

π2

��

π1 �� X1

	
		

		
		

	

X2 × Y2

π1

��

π2

�� Y2

	
		

		
		

	 X3

�����������
X1 × Y1

Y2 ×X3
	
�����f2

�� Y1

��

×

×

��

(10)

The second possibility to compute the join is symmetric. While in this case we used
the relation R1 to produce the variable on which we want to join and the relation R2 to
impose the join condition, we will now do the reverse. We will use the functions

Y2
f3 ��Y1 × Y3

X2 ×X3
f4 ��X1 .

(11)

and a computation diagram similar to the previous one. Checking whether the source
can process the join, therefore, requires checking if either the pairs of functions (f1, f2)
or (f3, f4) can be computed. The concept can be easily extended to a source with many
relations and a query with many joins as follows.

Take a conjunctive query, and let J = {J1, . . . , Jn} the set of its joins, with Ji :
(Xi = Yi). We can always rewrite a query so that each variable X will appear in only
one relation, possibly adding some join conditions. Consider, for example, the fragment
R(A, X), P (B, X), Q(C, X), which can be rewritten as

R(A, X1), P (B, X2), Q(C, X3), X1 = X2, X2 = X3. (12)

We will assume that all queries are normalized in this way. Given a variable X , let s(X)
be the relation in which X appear. Also, given a relation R in the query, let i(R) the
Cartesian product of its input sorts, and o(R) the Cartesian product of its output sorts.

64 Simone Santini and Amarnath Gupta

Table 4. Algorithm for the verification of the join conditions.

check(I : {vertex}, O : {vertex}, G : graph, c : vertex × vertex → real) : real
s, d : vertex;
G.V := G.V ∪ {s, d};
forall u in I do G.E := G.E ∪ {(s, u)} od;
forall u in O do G.E := G.E ∪ {(u, d)} od;
S := dijkstra(G, c, s);
return (d.κ < ∞);

The algorithm for query rewriting is composed of two parts. The first is a function
that determines whether a function from a given set of input to a given set of outputs can
be implemented, and represented in Table 4. The second finds a join combination that
satisfies the query. It is assumed that a set of the join conditions that appear in the query
J = {(X1, Y1), . . . , (Xn, Yn)} is given. The algorithm, reported in table 5 returns a
computation graph that computes the query with all the required joins.

Table 5. Join determination algorithm.

joins(J : {vertex × vertex}, G : graph, c : vertex × vertex → real) : graph
1. I := ∅
2. forall (X, Y) in J do

R := s(X); Q := s(Y);
if check(i(R), o(R) ∪ {X}, G, c) ∧ check(i(Q) ∪ {Y }, o(Q), G, c) do

I := I ∪ {(X, Y)}
elseif check(i(Q), o(Q) ∪ {Y }, G, c) ∧ check(i(R) ∪ {R}, o(R), G, c) do

I := I ∪ {(Y, X)}
fi od;

3. Q := make graph(
⋃

i i(Ri) ∪ {X|(X, Y) ∈ I}, ⋃i o(Ri) ∪ {Y |(X, Y) ∈ I}, G, c);
4. forall u in O do Q.E := Q.E ∪ {(X, Y)} od;
5. if cycle(Q) do error fi;
6. return Q;

The correctness of the algorithm is proven in the following proposition:

Proposition 1. Algorithm 1 succeeds if and only if the query with the required joins
can be executed.

The proof can be found in [5].
While the algorithm “joins” is an efficient (linear in the number of joins) way of

finding a plan whose correctness is guaranteed, finding an optimal plan is inherently
harder:

Theorem 1. Finding the minimal set of functions that implements all the joins in the
query is NP-hard.

Proof. We prove the theorem with a reduction from graph cover. let G = (V, E) be
a graph, with sets of nodes V = {v1, . . . , vn}, edges E = {e1, . . . , em}, and with

Modeling Functional Data Sources as Relations 65

ei = (vi1 , vi2), vi1 , vi2 ∈ V . Given such a graph, we build a functional source and a
query as follows.

For each node vi define a sort Xi and a function f : I → Xi. All the sorts are
of the same data type. For each edge (vh, vk) define a condition Xh = Xk. Also,
define a function g : Xi × · · · × Xn → Y . Finally, define the relations R1(I, X1),
R2(X1, X2), . . . , Rn+1(Xn, Y) and the query

ans(Y) : −R1(I, X1), R2(X1, X2), . . . , Rn+1(Xn, Y),
I =′ i′, X11 = X12 , . . . , Xm1 = Xm2 (13)

where the equality conditions are derived from the edges of the graph. The reduction
procedure is clearly polynomial so, in order to prove the theorem we only need to prove
that a solution of graph cover for G exists if and only if a cost-bound plan can be found
for the query.

1. Suppose that a query plan for the query exists that uses B + 1 functions: P =
{f1, . . . , fB, g} (the function g must obviously be part of every plan, since it is the
only function that gives us the required output Y). Consider the set S = {vi|fi ∈
P}, which contains, clearly, B nodes, and the edge (vi1 , vi2) of the graph. This edge
is associated to a condition Xi1 = Xi2 in the query and, since the query has been
successfully planned, either the function fi1 or fi2 are in the plan. Consequently,
either vi1 or vi2 are in the set, and the edge (vi1 , vi2) is covered.

2. let now S = {v1, . . . , vB} be a covering and consider the plan P = {fi|vi ∈ S} ∪
{g}. The output is clearly produced correctly as long as all the join conditions are
satisfied. let Xi1 = Xi2 be a join condition. This corresponds to an edge (vi1 , vi2)
and, since S is a covering, either vi1 or vi2 are in S. Assume that it is vi1 (if it
is vi2 we can clearly carry out a similar argument). Then the plan contains the
function fi1 , which computes Xi1 so that the variables Xi1 and Xi2 and the join
are determined by the following graph fragment

Xi1

��

		

������������� Xi2

��

X1 × · · · ×Xn

g

��
O

×
(14)

5 Related Work

The idea of modeling certain types of functional sources using a relational façade (or
some modification thereof) is, of course, not new. The problem of conciliating the broad
matching possibilities of a relation with the constraints deriving from the source has
been solved in various ways the most common of which, to the best of our knowledge,
is by the use of adornments [6, 7], which also go under the name of binding patterns.

66 Simone Santini and Amarnath Gupta

Given a relation R(X1, . . . , Xn), a binding pattern is a classification of the variables
X1, . . . , Xn into input variables (which must be “bound” when the relation is accessed
in the query, hence the name of the technique), output variables (which must be free
when the relation is accessed), and dyadic variables, which can be indifferently inputs
or outputs. Any query that accesses the relation by assigning values to the input vari-
ables and requiring values for some or all the output variables can be executed on that
relation façade. A relational façade can, of course, have multiple binding patterns. If
the relational façade is used to model an n-ary relation isomorphic to it, for instance, it
allows all the 2n possible bound/free binding patterns on its variables or, equivalently,
all its variables are dyadic. In the following, a binding pattern for any n-ary relation
will be represented as a string b ∈ {i, o, d} (where i, o, and d stand for input, output,
and dyadic, respectively, although dyadic variables will not appear in the examples that
follow). Unlike our techinque, which determines query feasibility at run time, binding
patterns are determined as part of the model. This difference results in a number of
limitations of binding patterns, some examples of which are given below.

Multiple relations with hidden sorts. Consider a source with five sorts, X, Y, P, W, Q,
and the functional dependencies shown in the following diagram

X
��
Y��

����
��

��
��

� P

�����
��

��
��

Y × P

��
W

����
��

��
��

�

Q

��×
(15)

We want to model this source as a pair of relations: R1(X, Y) and R2(P, Q), while
the sort W should not be exported. Considering the two relations and the functions
needed to answer queries on them, we can see that the relation R1 has two bind-
ing patterns: (i, o) and (o, i), while R2 has only (o, i). A query such as “ans(Q) :
−R1(X, y), R2(X, Q)” would be rejected by the binding pattern verification system
because R1 produces a set of X values from the query constant y, but R2 can’t take the
X’s as an input, Mapping the query to a functional diagram, however, produces

(Y ← y) ��

������������ X

����
��

��
��

�

Y ×X

��
W �� Q

×
(16)

Modeling Functional Data Sources as Relations 67

which is computable. Therefore, the query can be answered using the model presented
in this paper.

Non-binding conditions. Binding patterns are based, as the name suggests, on the idea
of binding certain variables in a relation, that is, on the idea of assigning them specific
values. Because of these foundations, binding pattern models are ill-equipped to deal
with non-binding conditions (that is, essentially, with all conditions except equality and
membership in a finite set).

As an example, consider a source with three sorts, A, B, and C, and a function
A × B → C. in addition, the source has a comparison capability which allows it to
compare B with a fourth sort D and return C’s for a specified value of A such that a
specified condition C(B, D) is verified: A× C(B, D)→ C. the diagram of this source
is:

B

����
��

��
��

� X

����
��

��
��

�

�������
�����

� C(B, D)

�������������

A×B

����
��

��
��

� A× C(B, D)

������������

C

× ×
(17)

Because the condition C(B, D) is non-binding, it doesn’t contribute any binding pattern
to the relation R(A, B, C) for which the only binding pattern is, therefore, (i, i, o). A
query such as “ans(C) : −R(a, B, C), B < v” where “<” is one of the operators al-
lowed for C(B, D) is not allowed in the binding pattern model, while it can be executed
with the model presented here.

These examples highlight an important general difference between methods, such
as binding patterns, that encode the satisfiability of functional constraints in the model,
and methods such as ours that verify them when a query is executed: the latter class of
methods can take advantage of rewriting opportunities that arise from the specific form
of the query, even if they do not apply to a class of queries that can be identified at
modeling time.

6 Conclusions

In this paper, we have considered the modeling of data sources for which a relational
model doesn’t apply, but that can be as a set of functions that, given certain constants
and certain conditions, return a set of “corresponding” values. We were interested in
modeling these sources as relations, and to find algorithms to translate queries on these
relations into combinations of functions provided by the source.

The simplest form of the model that we have presented here is, mutatis mutandis,
an instance of the problem of finding the closure of a set of functional dependencies
and, in this sense, a rather classic one. The framework introduced in that section, how-
ever, allowed us to extend the formalism to other problems that either from a modeling
point of view (the inclusion of data sorts representing conditions) of algorithmic (the
inclusion of joins) go beyond the transitive closure problem.

68 Simone Santini and Amarnath Gupta

In these conclusions, we would like to propose a further interpretation of the work
presented here, an interpretation that, we believe, is more likely to generate interesting
developments. The functions defined for the data source can be seen as atomic state-
ments in a query planning language in which we want to translate our queries, and
the function algebra that we have defined constitutes the structural statements of this
planning language.

The problem that we have is therefore that of “implementing” queries in a language
of fixed structure, but whose primitives change from source to source. In this frame-
work, we can start asking questions such as the optimal structure of the language in
order to manage the variability of the statement while still preserving the possibility of
easy optimization, or the minimal characteristics of the primitive statements that allow
the creation of interesting plans.

Finally, the nature of our method might make static planning (planning done sep-
arately from the execution) impossible, because there is no a priori indication of what
queries will be feasible and which won’t. it is not clear, at this time, whether static
optimal planning is possible for sources with restrictions modeled this way, or if it is
necessary to resort to some form of on-the-fly planning as the query is being executed.

These we regard as promising future directions for our work.

References

1. E. Damiani and L. Tanca, “Semantic approaches to structuring and querying web sites,” in
DS-7, 1997.

2. Z. Liu, F. Li, and W. K. Ng, “Wiccap data model: Mapping physical websites to logical views,”
in Proceedings of ER 2002: 21st International Conference on Conceptual Modeling, Tampere,
Finland, pp. 120–134, October 2002.

3. A. S. da Silva, I. M. Evangelista Filha, A. H. F. Laender, and D. W. Embley, “Represent-
ing and querying semistructured web data using nested tables with structural variants,” in
Proceedings of ER 2002: 21st International Conference on Conceptual Modeling, Tampere,
Finland, pp. 135–151, October 2002.

4. V. Zadorozhny, L. Raschid, M.-E. Vidal, T. Urhan, and L. Bright, “Efficient evaluation of
queries in a mediator for websources,” in Proceedings of ACM SIGMOD, 2002.

5. S. Santini, “Notes on a relational model of functional data sources,” tech. rep., BIRN-CC,
University of California, San Diego, 2003. http://ssantini.ucsd.edu/personal/bibliography/all-
by-year/2003/s426long.pdf.

6. R. Yerneni, C. Li, H. Garcia-Molina, and J. Ullman, “Computing capabilities of mediators,”
in Proceedings of ACM SIGMOD, pp. 443–454, 1999.

7. Z. Li and H. Chen, “Computing strong/weak bisimulation equivalences and observation con-
gruence for value-passing processes,” Lecture Notes in Computer Science, vol. 1579, pp. 300–
314, 1999.

	1 Introduction
	2 The Model
	3 Query Translation
	4 Relaxing Some Assumptions
	5 RelatedWork
	6 Conclusions
	References

