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Abstract

We present issues arising when trying to formalize disease maps, i.e., ontolo-
gies to represent the terminological relationships among concepts necessary
to construct a knowledge-base of neurological disorders. These disease maps
are being created in the context of a large-scale data mediation system being
created for the Biomedical Informatics Research Network (BIRN). The BIRN
is a multi-university consortium collaborating to establish a large-scale data
and computational grid around neuroimaging data, collected across multi-
ple scales. Test bed projects within BIRN involve both animal and human
studies of Alzheimer’s disease, Parkinson’s disease and schizophrenia.
Incorporating both the static “terminological” relationships and dynamic
processes, disease maps are being created to encapsulate a comprehensive
theory of a disease. Terms within the disease map can also be connected
to the relevant terms within other ontologies (e.g.the Unified Medical Lan-
guage System), in order to allow the disease map management system to
derive relationships between a larger set of terms than what is contained
within the disease map itself. In this paper, we use the basic structure of a
disease map we are developing for Parkinson’s disease to illustrate our initial
formalization for disease maps.
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Introduction

Recently there has been a significant increase in the development and publication of
terminological systems for biology. In addition to general-purpose controlled vocabularies
such as the Unified Medical Language System (UMLS)(National Library of Medicine, 2003)
and Gene Ontology (Gene Ontology Consortium, 2002), a large number of more specialized
vocabularies are being created. For example, TaO (TAMBIS Ontology) (Stevens et al.,
1999) is an ontology for protein properties, motifs and similarities; The Cyc family of on-
tologies (EcoCyc (Karp, Riley, Paley, Pellegrini-Toole, & Krummenacker, 1999), MetaCyc
(Karp, Riley, Saier, Paulsen, & Pellegrini-Toole, 2000), HinCyc (Karp, Ouzounis, & Paley,
1996)) describe the genes, gene product function, metabolism and regulation within specific
species such as E. coli and the H. influenza; whereas the MGED Ontology provides stan-
dard terms for the annotation of microarray experiments. In the domain of neuroscience,
BrainML (Gardner, Xiao, Abato, Knuth, & Gardner, 2002) is a controlled vocabulary for
describing the standard vocabulary of neurophysiological experiments. NeuroML represents
a standardized vocabulary to express information about neural simulations.

Despite this growth, it was observed by (Williams & Andersen, 2003; Karp, 2000) and
others that many of the publicly available “ontologies” remain just controlled vocabularies
and do not satisfy the primary requirements of being a formal ontology that can used for
purposes like automated logical interpretation. Hence they cannot be easily integrated into
larger information management systems. Gruber (Gruber, 1993) defined an ontology as
a “formal explicit specification of a shared conceptualization”,1 where conceptualization
refers to “an abstract model of how people think of things in the world, usually restricted
to a particular subject area” (Guninger & Lee, 2002).

For the purposes of this paper, and following Gruber, by an ontology O we mean
a representational vocabulary V and a set of axioms A, that constrain the interpretation
and the well-formed use of this vocabulary. We first illustrate the notions of constrained
interpretation and well-formed use through an example.

Example 1. Consider a vocabulary V = (T,R) where T is a set of terms denot-
ing concepts, and R is a set of relationship names. As a simple example, let T =
{cell, nerve cell, neuron, axon, purkinje cell} that represents the user’s world of neurons, and
R = {isa,part of}, that represent the usual subclass and part-of relationships for this
domain. Assume that the user has represented the relationships among them through the
following binary relations, called facts:

isa(nerve cell, cell).
isa(neuron, nerve cell).
part of(axon, neuron).
isa(purkinje cell, neuron).

1See also Guarino’s detailed discussion on the notion of “formal ontology” (Guarino & Giaretta, 1995)
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Further, let us assume the ontology O = (V,A) contains an axiom A1 stating that isa is a
transitive relationship, i.e.,

A1 : isa(X, Y ) ←− isa(X, Z), isa(Z, Y )

With this ontology, we can use standard logic programming semantics2 to conclude the
evident fact: isa(neuron, cell), i.e., the neuron is a cell. We can also add the axiom:

A2 : part of(X, Y ) ←− isa(Y, Z),part of(X, Z).

to conclude part of(axon, purkinje cell). This is because if X is a part of Z and every Y is
a Z, then X is a part of Y as well, as specified by this rule.

Let us assume that as part of a disease map “exploration”, we want to add the
following axiom and inspect its consequence:

A3 : part of(Y, Z) ←− isa(X, Z),part of(Y, X).

Will this rule still yield valid conclusions? For instance, with A1 and A3, we can con-
clude part of(axon,nerve cell) and part of(axon,cell). These statements are of question-
able validity – while it is true that an axon is a part of some nerve cells, it is certainly not a
part of all nerve cells. Similarly, an axon is not a part of all cells. Hence, unless some other,
more constraining axioms (rules) are in place, the errant inferences cannot be avoided for
this newly added exploratory rule. On the other hand, the disease map explorer could have
added some other similar rule which leads to plausible (albeit unverified) conclusions. In
that case, she may decide to keep the “hypothetical rule” and qualify the conclusions using
a “may(be)” operator (cf. Section ).

The example above illustrates that the design of an ontology is not just the collection
or standardization of a large vocabulary that represents the “terminology base” of a domain,
it is the characterization of useful and interpretable direct and inferred relationships among
the terms in the vocabulary, geared toward a specific set of tasks.

The goal of this paper is to present issues arising when attempting to devise a formal
model for disease maps, i.e., ontologies to represent the terminological relationships among
concepts necessary to construct a knowledge-base of neurological disorders. We use an initial
formalism as the basic foundation to represent the content of disease maps, to develop
computational procedures to search and analyze the ontology, and to integrate multiple
information sources that contain data about the neurological disorders modeled with disease
maps.

Disease Maps: Scope and Desiderata

We introduce the motivation behind building our specific disease map, the Parkinson’s
Disease Map (PDM) (BIRN-PDM, 2003) through a brief description of the Biomedical In-
formatics Research Network (BIRN), a multi-institution project. The project studies a set of

2see Section
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neurological disorders including Parkinson’s Disease (PD), Alzheimer’s disease, Schizophre-
nia, cases of clinical depression that progress into dementia, and corresponding animal
models, particularly in the mouse. Different institutions specialize both in the patient and
animal populations they observe and the categories of experimental data they collect. The
data across the participants range from structural and functional MRI of human patients
and animals to diffusion tensor images to high-resolution microscopy for immunolabeling
and gene-expression, to electron tomography of relevant ultrastructures. A central goal
of the BIRN project (http://www.nbirn.net) is to assimilate this wide variety of data in an
effort to understand the basic mechanism of the target diseases. The PDM is incrementally
created by a team of domain scientists and computer scientists as a consolidated, extensible
ontology by combining information from existing public ontologies and building upon them
new information from relevant research literature. Thus the roles of disease maps such as
NDM are to serve as:

• a central body of knowledge that a researcher in the field can query, navigate
through and analyze. This does not imply that a disease map will be an all-encompassing
“world repository” of such knowledge, but rather will be part of a group’s own “local
repository” that researchers in a specific project like BIRN would construct and utilize.

• a “glue ontology” that helps one to perform semantic (i.e., ontology-based) infor-
mation integration across the experimental data collected by the partner institutions

Scope. Ontologies can be considered as closely related to, or variants of, knowledge bases
(Guarino & Giaretta, 1995). Since a disease map itself can be seen as a special ontology,
the question arises how disease maps differ from ontologies and knowledge bases in general,
and expert systems in particular. A famous example for the latter is MYCIN (Buchanan
& Shortliffe, 1984), which was performing simple diagnosis and treatment recommenda-
tion for certain infections, based on partial information from a “dynamic questionnaire”
on symptoms and test results. Our disease map approach is fundamentally different from
MYCIN-like expert systems. It differs, e.g., from MYCIN in its purpose (diagnosis and
treatement suggestions in the case of MYCIN, and “knowledge exploration” in the case of
disease maps), and in its underlying technology (Dempster-Shafer reasoning with uncertain-
ties in MYCIN vs. declarative logic semantics of disease maps). Moreover, MYCIN-style
expert systems and “conventional” ontologies and knowledge bases are not designed in a
way which would make the encoded knowledge the focus of a “knowledge exploration”.
In contrast, this is precisely the focus of disease maps: Capturing various aspects of some
knowledge about certain diseases, and then exploring – via graph-queries or other deductive
reasoning – what the given knowledge entails and how certain modeled aspects relate to
one another.

Also note that disease maps are aimed at capturing certain aspects of processes (e.g.,
biochemical processes in the human body). However this does not mean that the actual
dynamic/concurrent behavior is meant to be simulated or fully captured by disease maps.
Rather, disease maps model only a high-level abstraction of certain dynamic aspects of
processes. If a detailed process model is required, then, in principle, the specific simulation
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or process model at hand may be “plugged into” a disease map, albeit not as an integral
part of the reasoning process, but as an illustration of a specific behavior of a modeled
process.

Content of a Disease Map

In the following we present some design criteria we have identified while developing
the Parkison’s Disease Map PDM.

Multiple Perspectives. A disease and its animal models are complex phenomena and
different scientists view them from different perspectives. The clinician’s set of terms and
relations identifying the character of the disease is distinct from a physiologist’s viewpoint.
In the following example, we illustrate this distinction.

Example 2. Consider the term resting tremor. From a clinical viewpoint one can make
the statements:

isa(tremor, movement disorder).
isa(resting tremor, tremor).
occurs in(resting tremor, posture(resting)).
clinically associated(resting tremor, parkinsons disease).

From a physiological viewpoint, one can say:

isa(oscillation(oscType), process).
causes( oscillation, neural firing(neuron) ).
isa(tremor, oscillation(abnormal)).
causes(neuron of ventral intermediate nucleus)( neural firing(abnormal), resting tremor ).

Here, we use slightly different versions for the causes relation, one which just pairs cause
and effect, and one which additionaly describes the context in which the causality holds:
causes(Cause, Effect) and causes(Context)(Cause, Effect). Notice in our notation that also a
concept like posture can be parameterized by the term resting, and that a term like oscillation
can be parameterized by an oscillation type (here any subtype of oscType).

In general, a statement of the form r(x̄)(p(ȳ), q(z̄)) with x̄, ȳ and z̄ (possibly empty)
parameter vectors can be visualized as

p(ȳ)
r(x̄)−→ q(z̄)

which can be read as “p(ȳ) is r(x̄)-related to q(z̄)”. The relation parameters x̄ can be
used to describe the context in which the statement holds, or to denote a refinement of the
relation r.

As an ontology, the disease map needs to preserve the separate threads along which
a term can be perceived, and yet provide a means to correlate them. To satisfy the first
requirement we need to distinguish the “clinical block” from the “physiological block” by
a syntactic procedure, effectively “tagging” all facts and rules in a block with the unique
name of the block within which they occur.
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To satisfy the second, we need to provide the mechanism to derive statements like the
(abnormal) firing of neurons in the ventral intermediate nucleus maybe (but not necessarily
is) associated with PD.

The example illustrates that unlike many ontologies that model only inter-object
relationships, a disease map needs to model both interprocess relationships, as well as
object-process relationships that may be relevant for a disease. Specifically, it needs to
handle terms like neuron firing, a nominalization of the process fires(neuron), where both
forms will appear as valid terms in the ontology.

An important consequence of the multiple viewpoints is that semantically, the same
lexical term can belong to different roles (e.g., resting tremor is a symptom and it is also
a process), very similar to the notion of “word senses” used in dictionaries. The disease
map thus needs to have role specifiers to syntactically determine which role is meant when
a term is used in a fact, rule, or query.

Very often, the same relationship name used in the ontology may have distinct prop-
erties depending on the types of the terms they relate. For example, if a and b are events,
then part of(a, b) implies that the temporal duration of a is fully contained within the tem-
poral interval of b. On the other hand, if they are anatomical structures then the spatial
extent of a is fully contained within the spatial extent of b. The formalism of disease maps
models this by making certain predicates polymorphic, i.e., different versions of a predicate
are implied by the types of its arguments.

Note that the results of applying inference rules of a disease map cannot be considered
valid under all circumstances, but instead should be interpreted as “default logic conclu-
sions” (Reiter, 1980), which can be invalidated or refined by the addition of new facts (see
(Brewka & Dix, 2003) for a comprehsenive treatment of such nonmonotic behavior).

For example, let us assume we model causes as a transitive, antisymmetric, irreflexive
relationship. However, the transitivity of causes should be interpreted cautiously. Let us
say we have the facts:

causes(process1, process2)
causes(process2, process3)
· · ·
causes(process9, process10)

Can we infer causes(process1, process3)? Can we also infer causes(process1, process10)?
While the real answer always depends on the specific situation, quite often, the first answer
will be affirmative but the second would be negative. This example illustrates two important
problems in many ontologies including the UMLS. First, an intuitive relationship like causes
often has no obvious or well-specified semantics, and should possibly be broken down into
a number of concrete relationships like may cause and necessarily causes that do have well-
defined semantics. Second, the transitivity property of these relations may not hold beyond
a certain length of the transitivity chain, requiring additional semantic specification of the
relation.
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Multiple Granularities. A disease map must incorporate models of disease processes at
various levels of detail so that the individual scientist can extend the map with information
from his own experimental domain. This needs the formal framework to define extension
mechanisms by elaborating on existing concepts, relationships, or some combination thereof,
as well as an abstraction mechanism to reduce details if necessary.

Example 3. Consider the observation that the enzyme monoamine oxidase B (‘MAOB’)
is an enzyme that catalyzes oxidation of dopamine in the substantia nigra pars compacta
(Snpc).

isa(’MAOB’, enzyme)
p0: isa(oxidation(dopamine), process).
occurs in(oxidation(dopamine), ’Snpc’).
p1: catalyzes(’MAOB’, oxidation(dopamine)).

Another researcher, trying to understand this process, comes up with the following de-
tailed instantiation (Beal, 2001): Neurotoxin ‘MPTP’ is converted to ‘MPP+’ by ‘MAOB’.
The active form ‘MPP+’ is picked up by the dopamine transporter, and released inside the
neuron, where it accumulates in mitochondria. This leads to complex I (an antioxidant)
inhibition, which leads to free radical generation.

This can be expressed as follows:

isa(‘MPTP’, neurotoxin).
isa(‘MPP+’, neurotoxin(active)).
isa(complex I, antioxidant).
p2: isa(conversion(‘MPTP’, ‘MPP+’), process).
p3: catalyzes(‘MAOB’,conversion(‘MPTP’, ‘MPP+’)).
p4: transports(dopamine transporter, ‘MPP+’, inside(neuron)).
p5: accumulates(‘MPP+’, inside(mitochondria)).
p6: contained in(complex I,mitochondria).
p7: inhibits(p5, complex I).

Here, we use named statements of the form pi: A, where A is a logic atom, and pi its unique
identifier. The use of an identifier pi as an argument in a fact (such as p5’s use in p7)
creates a new concept, the nominalization of the stated fact. For example, p7 can now be
read as: Accumulation (= the nominalized form of ’accumulates’ in p5) of MPP+ inside of
mitochondria inhibits complex I.

In this description, we did not explicitly represent that process p6 would lead to free
radical generation because the system infers this from the fact that p6 inhibits complex I
and corresponding rules which specify inheritance through the isa hieararchy. The processes
p2–p7 are one possible mechanism to realize processes p0–p1. The task of the formal model
of a disease map is to make explicit this elaboration relationship between processes.

Animal Models. An animal model is a model system where a natural or transgenic an-
imal, exhibits some symptoms and/or pathological manifestations of a disease. Thus an
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animal model is a separate disease map by itself, parameterized by species characteristics
and the properties that are related to the disease process. Consequently, there are ter-
minological differences among disease maps of different species – for example, the terms
β-synuclein and γ-synuclein should not appear in a Drosophila model of PD, but should
in the mouse and human disease maps. The need to compare animal models impose on the
disease map formalism the need to specify an extended form of what Peter Karp (Karp,
2000) calls functional equivalence across objects and processes of the animal model disease
and the actual human disease. The anatomical structure of one animal should be mapped
to the homologous structures in its counterparts (Bota & Arbib, 2001), the enzymes and
the processes they participate in would need to be mapped as accurately as possible. Often
this mapping is not obvious. For example, it will be anatomically incorrect to map the
retina of a drosophila to the substantia nigra pars compacta of a human. However, it might
be appropriate to state:

model of(neurotransmission)(X(drosophila),Y(human)) ←−
isa(X, dopaminergic neuron(drosophila)),
isa(Y, dopaminergic neuron(human))

That is, with respect to neurotransmission, dopaminergic neurons of the drosophila are
models of those of humans.
However, when this rule is applied to the disease maps, one should constrain its
interpretation such that the system does not automatically make the deduction:
model of(X)(retina(drosophila), ‘Snpc’(human)), where X is anything other than neurotrans-
mitter. Thus the formalism of the disease map needs to limit the propagation of inferences
from mapping axioms.

Hypotheses and Evidences. A primary utility of a disease map is to give its user the
ability to place a hypothesis (derived from the literature, or conjectured by the user) in
the map and explore how this hypothesis may compare with respect to other known or
hypothesized facts or rules. This presents a number of requirements for the disease map
formalism:

• It must be able to isolate hypotheses from known facts and rules, but at the same
time, allow them to be used together to test for ramifications.

• Multiple hypotheses might contain or derive contradictory content. The formalism
should harbor and detect these contradictions in a controlled manner, without becoming
inconsistent itself.

• A hypothesis may have links to object instances in a database, such that the in-
stance serves as the evidence of the hypothesis. Aside from comparing and testing hy-
potheses, querying the evidence of user-specified hypotheses is an important way to access
experimental data connected to a disease map.

Accessing the Disease Map

In this section we explore the operational aspects of disease maps, highlighting dif-
ferent ways in which they can be used.
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Specialization. The fundamental backbone of the ontology describing a disease map will
be a general-purpose set of properties that characterize the genesis, activity, symptoms,
treatment and the outcome of a disease. From this backbone, one should be able to construct
the model for any disease either incrementally or differentially.

Incremental Specialization. In the incremental method, a disease (e.g., PD) is de-
scribed by specializing different aspects of the disease by adding facts and rules. For exam-
ple, the fact that diseases under the familial form of PD have a genetic risk factor can be
added by the following:

false ←−
isa(D, disease), inheritable(D),
¬∃ H ( etiology(heredity)(D,H),

isa(H, hereditary factor) ) .

inheritable(D2) ←−
isa(D1, disease), inheritable(D1), isa(D2, D1),
¬ exception(inheritability)(D2).

inheritable(familial parkinsons disease).
isa(inheritance(recessive), hereditary factor).
isa(juvenile parkinsons disease, familial parkinsons disease).
etiology(heredity)(juvenile parkinsons disease, inheritance(recessive)).

The first rule is an integrity constraint and declares that for every inheritable disease there
is a hereditary factor such that it is the etiology (of the hereditary kind) of the disease. If
this were not the case, then a contradiction (false) would be derived by this rule. We treat
terms like hereditary factor as class names for which further subclasses can be derived. Of
course, for a non-hereditary disease like idiopathic PD, there should be no hereditary factor
– this is ensured by the inheritable(Disease) predicate in the rule. The second rule states
that if a disease is inheritable, then all subcategories of the disease are also inheritable,
unless it is an exceptional disease with respect to inheritability. This illustrates the need
for employing a default reasoning scheme in the formalism. This mechanism would then
conclude from the next two statements that juvenile Parkinson’s disease is inheritable. From
the last statement, it should conclude that recessive inheritance is a hereditary factor for
juvenile Parkinson’s disease. We show in the next section that in ontologies such as the
disease map, the process of specialization has interesting semantic properties.

Differential Specialization. Often a disease map can be specialized by specifying the
differences between a known disease and a new, to-be-defined disease. For example, Multiple
Systems Atrophy differs from PD in several ways, two of which are: its onset age can be 30
(as opposed to 65 for PD) and it progresses much more rapidly. It also shows substantial loss
in the density of the neurons that are postsynaptic to dopaminergic neurons, a phenomenon
absent in PD. This can be stated as:
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like(msa: multiple systems atrophy, pd: parkinsons disease).
unlike(msa, pd, activity(onset age)(multiple systems atrophy, Age), Age > 30).
associated with(msa, loss(density(dopaminergic neuron(postsynaptic))))).

Recall that throughout the paper we follow the convention to read the first argument
of an atom as the “subject”, and the predicate symbol as the (possibly parameterized)
predicate of the logical sentence. Therefore, Multiple Systems Atrophy, unlike Parkinson’s
disease has and onset age activity with an Age value greater than 30 (while the default onset
age for PD (defined elsewhere) is greater than 60). Further note that here we use “:” similar
but different from above, i.e., as defining a synonym.

The second statement, about the loss of density, is not given as an exception via the
unlike predicate, because it does not “replace” any fact from the facts about PD. Instead
the differentiating property is given as a separate positive statement. However regardless
of the manner of specialization, the internal representation of the disease properties should
be identical.

Finally, a form of specialization can be used to derive new nodes. Suppose, the disease
map has the facts:

isa(dopaminergic neuron, neuron).
part of(axon, neuron).

Using rules A1 and A2 from Section , we can derive the fact part of(axon, dopaminer-
gic neuron). The usual interpretation of this is that every dopaminergic neuron has an
axon. However, in this case, we want the system to construct an object, called the axon
of a dopaminergic neuron, which is distinguished from all other axons, because we might
want to define properties that pertain to only these axons. Suppose, we adopt the con-
vention that these “system-invented” objects (also called derived nodes) will be named:
of(axon,dopaminergic neuron). We could write an “object generating” rule:

isa(of(D,C1),D) ←−
isa(C1,C), part of(D,C), ¬ exception(C1).

asserting, in our example, that of(axon,dopaminergic neuron) is an axon.

Path Finding. Our neuroscience users have identified path finding to be a very important
class of queries that help them find interesting correlations among concepts, processes and
their properties. A path search can be ordered or unordered. An ordered path search is
given as a path expression over concepts and relationship names; the path expression can
contain wild-cards and predicates to be satisfied by the nodes and edges of the path, but
the expression constrains the order of the specified path elements. An unordered path search
specifies the properties of the nodes and edges to be included and excluded from the path,
and possibly on the number of occurrences of each type of node and edge, but not on their
order. The utility of a path search can be illustrated by a researcher who wants to know of
all paths that go from the term α-synuclein through the term protein aggregate( Protein) to
the term cell death, but not through the term Lewy body. These paths, if present, would give
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the researcher a sense of all theories assembled in a disease map where cell death occurs due
to protein aggregates that are not part of Lewy bodies. Note that the unspecified parameter
in the term protein aggregate( Protein) refers to any protein that might form an aggregate.

Neighborhood Finding. Neighborhood finding has been identified as another important
operation with a disease map. If we treat the disease map as a graph over concepts (nodes)
and relations (edges), neighborhood finding corresponds to a subgraph search where the
properties of only some nodes, edges or paths are specified. A typical use is from a scientist
who has created a small hypothesis in the form of a small set of concepts and relationships,
and wants to situate it in a larger disease map. The neighborhood finding task would take
a specified set of terms and relationships and locate all neighborhoods where they can fit.
Once a desirable neighborhood is located, the user might want to further tune the results,
for example, by adding to it the k-neighborhood of a node in the previous result.

Model Matching. Comparison of one fragment of a disease map with another corre-
sponds to the task of subgraph matching (homomorphism), and is the central requirement
of evaluating animal models with human disease models. There are several different ways
a user might want to perform a subgraph match. In many cases, producing the node and
edge intersection between the two graphs, as well as their difference graph would suffice.
In other cases, a numerical matching score is desired. Either way, the comparison needs to
cover both the explicit and the derived relations (edges) of the disease map.

Semantic Mediation. Semantic mediation refers to a class of information integration
problems where two database schemas from different data sources are integrated by using
a third, auxiliary body of knowledge (e.g., in the forms of facts and rules) provided by
a domain expert. The presence of the auxiliary knowledge is essential, because without
this additional glue, the schemas do not overlap enough to allow the definition of any
integrated view over them. In this context, the role of the disease map is to act as a body of
glue knowledge (Gupta, Ludäscher, & Martone, 2000; Ludäscher, Gupta, & Martone, 2001;
Ludäscher, Gupta, & Martone, 2003) that ties together experimental data from the different
participants of a federation. In the case of BIRN, the disease model helps to integrate
information from researchers dealing with the human and animal forms of Parkinson’s
disease. A query on such an integrated view could be: Which animal model shows a rate
and distribution of neuron degeneration most similar to the patient population P, where
P can be specified by conditions on patient age, gender, medical history and treatment
received.

In the next section, we propose an initial formalization of disease maps using logic
programs and illustrate how the resulting formalism can accomplish the various desiderata
described above.
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Towards a Formal Model of Disease Maps

It is common practice to model and visualize ontologies as labeled directed graphs.
For example, the labeled edge C

r→ D states that the concepts C and D are r-related. In
particular, a labeled tree in which the only label r is “isa” describes a simple concept (or
class) hierarchy.

As is the case for most ontologies, binary relationships of a disease map can be under-
stood as labeled edges between nodes representing concepts. Such a graph representation
facilitates the visualization of disease maps via graph layout programs, and allows the user
to issue powerful graph queries to explore the graph structure and the relationships between
concepts (e.g., one can compute reachability under regular path expressions, find shortest
paths, minimal spanning trees, etc.). In this way, ontologies in general, and disease maps
in particular not only serve as sources of “terminological glue knowledge” in scientific data
integration systems, but become study objects in their own right.

However, in order to capture scientific knowledge using disease maps, a pure graph-
oriented model of disease maps is not sufficient, as it does not address the following crucial
issues:

• What does an individual edge C
r→ D really mean? For example, can C and D be

understood as classes of objects? If so, what does this edge say about the relationship r
between instances c ∈ C and d ∈ D? Is every r-related object o of c in D, or does the edge
just state that there is some such r-related o in D? A logic formalization of disease maps
can resolve this ambiguity: e.g., the former meaning is specified using the description logic
formula C v ∀r.D, while the latter is specified by C v ∃r.D.

• Given a set of edges, what is their combined meaning? For example, does C
r→

D
r→ E also imply that C

r→ E? The answer is yes for r = isa and (in general) no for
r = inhibits. A logic formalization allows us to specify what facts are or are not implied by
certain “edge configurations”.

Disease Maps as Logic Programs

We use a formalization of disease maps as logic programs for the following reasons:
Logic programs are a standard, well-understood formalism for knowledge representation
and reasoning (Brewka & Dix, 2003; Baral, 2003). Logic rules provide a concise, declarative
specification mechanism for defining the semantics of “edge interactions” in disease maps.
The meaning of the sometimes quite intricate interactions among different logic rules and
axioms is unambigously given by the declarative logic programming semantics of the rule
set. All common relational integrity constraints and arbitrary application-specific semantic
constraints can be expressed as logic programs. Finally, logic programs are executable
specifications and complex queries over these specifications can be evaluated by deductive
database engines such as the XSB system (Sagonas, Swift, & Warren, 1994).

The syntax of logic programs is defined as follows: A logic program is a set of logic
rules of the form H ←− B, where the head H is a logic atom, and where the body B is a
conjunction of literals. If B is empty, then we say H is a fact. A literal is an atom A or its
negation ¬A. An atom (short for: atomic formula) is an expression of the form r(t1, . . . , tn),
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where r is an n-ary relation symbol and the ti are terms. The set of terms is constructed in
the usual way, based on a set of constants, variables, and function symbols. In particular,
if t1, . . . , tk are terms and f is a k-ary function symbol, then f(t1, . . . , tk) is a term. When
writing concrete logic rules, variable names are capitalized, e.g., X, Y, . . ., while all other
symbols (i.e., constants, function symbols, and relation symbols) are lower-case.

The semantics of a logic program is given using the notion of a model of the program.
Due to lack of space, we only provide the basic intuition; see, e.g., (Brewka & Dix, 2003) or
(Abiteboul, Hull, & Vianu, 1995) for details (using logic programming and database per-
spectives, respectively). A logic interpretation assigns a meaning to the syntactic constructs
of the language, e.g., by mapping constants and terms to domain elements, function sym-
bols to functions, and relation symbols to relations. For the purpose of answering queries,
one considers only Herbrand interpretations which interpret the underlying domain syntac-
tically or symbolically. In particular, the Herbrand universe consists of all ground terms
that can be constructed from constants and function symbols. Relations are then inter-
preted over this universe of terms. A (Herbrand) model of a logic program is a (Herbrand)
interpretation that satisfies all facts and rules of a program.

Intended, Declarative Semantics. The question arises: Which model(s) of a program
are the “right” and intended ones. The logic programming community has extensively
studied and solved this problem (Dix, 2003). For positive logic programs P (i.e., not
involving any negated subgoal) the intended semantics is given by the unique minimal
model of P . The minimal model can be obtained as the intersection of all Herbrand models
or, equivalently, as the least fixpoint when “firing” the rules simultaneously, starting from
the facts. For programs with negation, there are two main accepted semantics, the well-
founded semantics (Van Gelder, Ross, & Schlipf, 1991), and the stable model semantics
(Gelfond & Lifschitz, 1988). Under the first semantics every logic program has a unique
well-founded model which assigns a third truth-value ⊥ (undefined) to atoms which cannot
be decided to be either true or false because (i) its truth-value depends negatively on itself,
and (ii) there is no well-founded reasoning process using only the facts and rules of the
program that would establish a unique truth-value. In contrast, the stable model semantics
“guesses” models and considers them stable if they reproduce themselves under a certain
natural transformation (Gelfond & Lifschitz, 1988).

For example, for the logic program P with the two rules a lies←− ¬b lies and
b lies←− ¬a lies, the well-founded semantics assigns the truth-value ⊥ (undefined) to both
atoms since it cannot be established whether a or b lies. P has two stable models though:
in one a is a liar and b speaking the truth, while in the other model the roles of a and b are
reversed.

Therefore, for disease maps, we adopt as our canonical semantics the less controversial
well-founded semantics. Well-founded models can be computed efficiently (e.g., using the
XSB deductive database (Sagonas et al., 1994)) due to their PTIME data complexity on
function free programs. Moreover, every stable model coincides with the well-founded model
on the true and false atoms and only interprets the undefined atoms as either true or false
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(according to a “stable guess”, i.e., one which does not contradict itself).

Edge Semantics

A large number of facts in a disease map are binary relations, i.e., sets of tuples of
the form r(C,D). If C and D are classes, we can distinguish two kinds of edges:

• C
r→ D (the default edge type) which stands for the description logic axiom C v

∃r.D (every c ∈ C has some r(c) ∈ D). We formalize this using the logic rule3

false←−
class(C) ∧ class(D) ∧ instance(C0, C)
∧ ¬∃D0 : r(C0, D0) ∧ instance(D0, D)

Such a rule with the distinguished predicate false in the head is called a denial. Denials
are a convenient way to express integrity constraints by specifying what must not happen
– here: there must not exist a c0 ∈ C such that there is no d0 ∈ D to which c0 is r-related.
If false can be inferred under the well-founded semantics (or in a stable model), then an
inconsistency has been detected.

• C
∀r→ D which stands for the description logic axiom C v ∀r.D (all r-related d of

any c ∈ C are in D). This integrity constraint is captured as follows:

false←−
class(C) ∧ class(D) ∧ instance(C0, C)∧
∧ r(C0, D0) ∧ ¬instance(D0, D)

The rules states that there can be no co ∈ C such that r(c0, d0) and do /∈ D.
Note that both axioms for the two different edge types apply only to concepts which have
been declared to be classes, since only classes have instances (also known as the members
of the class). The distinguished predicate instance(X, C) holds if X is an instance of class
C.

Separation of Class and Instance Level. If we want to disallow disease maps that
blur the distinction between the schema level and the instance level, we can require that no
class can be an instance of another class:

false←− class(C), class(D), instance(C,D)

Clearly, C can still be a subclass of D, i.e., class(C), class(D), and isa(C,D) can be true.

Parameterized Concepts and Relations

Often it is convenient to parameterize concepts or relationships. For example in
the above examples for specifying semantic integrity constraints as denials, it is desirable

3For conciseness and readability, we allow first-order rule bodies such as ¬∃D0 : r(C0, D0) ∧
instance(D0, D). It is well-known how they can be translated into several standard logic rules.
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not only to signal an inconsistency, but to provide an explanation for the inconsistency
by “witness terms”. For example, we can reformulate the above class-instance separation
constraint as follows:

false(cis(C,D))←− class(C), class(D), instance(C,D).

Now if false(cis(c,d)) is derived under the canonical semantics, we know that the class-
instance separation constraint has been violated for c and d.

Apart from the distinguished relation symbol false, any other relation can be param-
eterized as well. For example, the edge

disease
etiology(pathology)−→ aberration(cell)

involves a parameterized relation etiology(pathology) and is represented using the fact

etiology(pathology)(disease, aberration(cell)).

In aberration(cell), aberration is a conventional first-order logic function symbol mapping
a concept name c (here: cell) to the concept “the aberration of c”. In contrast, etiology
occurs at the position of a relation symbol which in conventional first-order logic cannot be
parameterized. However, in real applications it is desirable to be able to handle different
“flavors” of a relation either uniformly across all flavors or differently depending on the
specific flavor. A standard example is the part of relation which, in a finer modeling, can be
parameterized as part of(F ) to include flavors F such as member/collection, portion/mass,
phase/activity, etc. (Artale, Franconi, Guarino, & Pazzi, 1996).

Here, we may query the system which flavors etiology has (e.g., pathology, agent,
vector, host, . . .) and then define either overarching rules for multiple flavors or distinct
ones for individual flavors.

Closure Operations

A common semantic constraint for certain relations is to perform various kinds of
“deductive closure” operations. For example, a standard requirement for the isa concept
hierarchy is that it should be transitive and antisymmetric. This can be formalized as
follows:

isa(C,D)←− b isa(C,D).
isa(C,D)←− isa(C,C ′), isa(C ′, D).

false(on isa cycle(C,D))←− isa(C,D), isa(D,C), C 6= D.

The system can then derive all transitive edges using the first two rules, starting from a
(typically much smaller) base relation b isa of “initial” isa facts. The last rule allows the
system to detect inconsistencies in the concept hierarchy and reports all pairs of concepts
(C,D) which are involved in a (disallowed) concept cycle.

Similarly, the following rule closes all flavors of part of transitively within each flavor
F , but not across flavors (a variant of this rule can be used to achieve the latter):

part of(F )(X, Y )←−
part of(F )(X, Z),part of(F )(Z, Y )
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Relation Variables and Hilog Features. In addition to parameterized relations sym-
bols, we allow variables at the position of relation symbols. For example, we can specify a
generic transitive closure rule for any relation R as follows:

tc(R)(X, Y )←− R(X, Y )
tc(R)(X, Y )←− R(X, Z), tc(R)(Z, Y )

While relation variables such as R and parameterized relations such as tc(R) correspond
to a restricted second-order syntax, they have a standard first-order semantics via a sim-
ple transformation. For example R(X, Y ) is mapped to a conventional first-order atom
apply(R,X,Y). This encoding is used, e.g., in Hilog (Chen, Kifer, & Warren, 1993) and
F-logic (Kifer, Lausen, & Wu, 1995), and is implemented in the XSB system.

Inheritance

An import use of the isa relation is property inheritance: a subclass inherits all
properties of its superclass. This is specified as follows:

L(C,X)←− isa(C,D), L(D,X).

A similar rule can be used to inherit properties across the instance level. Note that multiple
inheritance, i.e., a situation where C is a subclass of both D and E can lead to problems:
what if the properties inherited along D and E contradict each other? There are several
approaches to deal with this problem: e.g., if D itself is a subclass of E, then typically
the more specific information from D is inherited, while E is ignored. If D and E are
incomparable, then one can inhibit inheritance altogether, or specify some ad-hoc overriding
policy.

Default Inheritance.
It is sometimes convenient to describe a new concept, such as a new disease, relative

to another, similar one. This can be achieved by providing facts of the form like(X ′, X),
stating that X ′ should by default inherit all properties of X, and the following rule:

L(X ′, Y )←− L(X, Y ), like(X ′, X),¬exception(L)(X ′, X)

Now every property described by an edge X
L→ Y is inherited from X to X ′ unless a

fact exception(L)(X ′, X) states otherwise. This rule is nonmonotonic, since a larger set of
exceptions results in a smaller set of inherited properties.

Exceptions can be stated directly as facts or indirectly using rules. We call this way of
handling inheritance default inheritance, since property inheritance is not automatic through
the isa relation, but based on direct or indirect conditions expressed through exception facts.
Additional properties of X ′ (versus X) do not need special handling, but are simply stated
as new facts for X ′.
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Semantic Typing of Functions and Relations

Traditionally, first-order logic and logic programs are untyped. This means that we
can apply any function symbol to any term, and instantiate any argument of a relation
with any term as well. However, in order to detect certain errors as soon as possible,
it is desirable to employ a type system, e.g., similar to the ones used in the functional
programming languages Haskell and ML.

We obtain a semantic type system, by declaring for each relation and for each function,
the types of each argument. A powerful polymorphic type system is obtained by allowing
type declarations with type variables. Finally, the type hierarchy is obtained by extending
a given subtyping relation “≺” from the base types to complex types. The resulting type
system helps to structure the domain and documents this structure, and – most importantly
– it allows detection of certain specification errors in facts and rules of disease maps at
compile-time, before evaluating the rules.

In the disease map, an example of semantic types can be found in the relation
cellular structure ≺ anatomical structure. The arguments of predicates often have a semantic
signature – for example,

anatomical part of(thing, anatomical structure)
codes for(gene, protein, species)
codes for(gene, peptide, species)
occurs in(stuff, anatomical structure)

Here stuff, as opposed to thing, refers to non-discrete entities like “fat deposit”.
There can also be a ≺ relationship between two predicates. For example, related to(process,
disease) is used when no further information is available, whereas, causes(process, disease)
is a stronger relationship, and is subsumed by related to.

Reasoning as Argumentation

Well-founded and stable semantics can be used to resolve disputes via so-called ar-
gumentation frameworks (Dung, 1995; Bondarenko, Dung, Kowalski, & Toni, 1997). A
variant of this can be used, for example, to perform a sort of hypothetical reasoning: As-
sume for modeling the regulatory behavior of genes controlling the pathogenesis of protein
aggregates, that a relation inhibits(Inhibiter,Inhibitee) is given, together with a set of genes
that are active in a certain scenario like Lewy body formation. We may wish to state that
a substance is active if it is not inhibited, and that it is inhibited, if there is an active
inhibiter:

active(X)←− ¬inhibited(X)
inhibited(X)←− inhibits(Y,X), active(Y )

While this logic program is not stratified (the predicate inhibited depends negatively on
itself), it still has a unique well-founded model that can be used to identify which of the
“arguing” inhibits statements ultimately “win”. At present, we are trying to use this
formalism to model the behavior of fibril formation during the production of Lewy bodies.
In some “drawn positions”, the stable models of the program (if they exist) may provide
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additional insight. For example, if a and b mutually inhibit themselves, then there are two
stable models, one in which a is active, and one in which b is active. We expect this model
to simulate the reasoning for two contrasting hypotheses – one in which the Lewy body is
the primary cause for cell-death, and another in which they are the protectors against the
process of cell death.

A general argumentation framework (Dung, 1995) comprises an argument generation
unit AGU and an argument processing unit APU. The former can be given simply by a
binary relation attacks(X,Y), stating that argument X attacks argument Y. The APU is
then the simple yet very powerful logic program

defeated(Y) ←−attacks(X,Y), acceptable(X).
acceptable(X) ←−¬ defeated(X).

The first rule states that an argument Y is defeated if it is attacked by an argument X
which is acceptable. The second rule states that an argument is acceptable if it is not
defeated. The truth values assigned by the well-founded semantics to such an argumentation
framework correspond to a cautious reasoning process, in which an alternating sequence of
underestimates and overestimates ultimately converges to three sets of definitely acceptable,
definitely defeated, and non-determinable arguments.

Homomorphisms

As described in the previous section, animal models can be thought of as a “parallel
world”, from which certain knowledge may be transferrable to the human. In order to
formalize the correspondences, we can use rules such as the following:

may(L(F ))(X ′, Y ′)←−
L(X, Y ),model of(F )(X, X ′),model of(F )(Y, Y ′)

This rule states that if there are model pairs (X, X ′) and (Y, Y ′) under the same flavor F
(such as neurotransmission), and L(X, Y ) holds in one model (typically the animal model),
then there may be a homomorphic statement L(X ′, Y ′) (typically in the human model).
Here, we use an operator may to indicate that this is not a definite inference, but derived
from a “parallel model”.

The above rule could be modified in several ways. For example, we may want to allow
this rule to apply for compatible flavors F1 and F2 instead of a single flavor F only. For
this compatibility may be defined, e.g., as isa(F1, F2) ∨ isa(F2, F1).

Another variant is to derive potential facts of the form may(. . .)(X ′, Y ′) only if the
correspondences through model of(. . .)(X, X ′) facts are established in a certain defined
neighborhood of X and Y and not just locally at a single point L(X, Y ).

Towards a Disease Map for Parkinson’s Disease

In this section we describe the basic structure of the disease map we are developing
for Parkinson’s disease and some of the related ailments. The map is created as a logic
program divided into a number of sections.



DISEASE MAPS 19

Meta Model. This section catalogs the basic object, process and relationships used
through the rest of the disease map. The entire meta model is based upon a few prim-
itive class-level concepts – object, organism, process, and event that get specialized in the
course of the model. These primitives have minimal structure and semantics – an object
has a name, an organism has a name that comes from the animal kingdom taxonomy, a
process has a name, and optionally a time-interval, and an event has a name, a process
in which it occurs and optionally, a time-of-occurrence. An anatomical structure specializes
the meta-class object by adding a parameter for the organism class it belongs to. Thus,

anatomical structure(organism) isa−→ object

We instantiate an anatomical structure to the value substantia nigra for humans as

substantia nigra
instance−→ anatomical structure(human)

This implicitly makes the substantia nigra inherit the organism as human. Specializa-
tion becomes a little more complex in case of the basal ganglia, a group of nuclei that are
given a single name. This is declared in multiple steps:

neuron
isa−→ nerve cell

nucleus
isa−→ anatomical structure(organism)

basal ganglia
isa−→ anatomical structure(human)

subcortical nucleus
isa−→ set of(neuron | self.location = outside(neocortex))

caudate nucleus
isa−→ subcortical nucleus

basal ganglia
instance−→ caudate nucleus

Here the condition self.location=outside(neocortex) is a restriction predicate that limits the
possible locations of the members of the group being declared.

Process specialization occurs similarly – in a simplistic approach, let us say aberra-
tion, injury, degeneration and malfunction all specialize process. We can use them to define
pathological process as a specialization of process through a union rule by introducing a
parameter to associate the process with an aberration, injury of anatomical structure, or a
malfunction of physiological system, or the aberration of a gene:

pathological process(Y )(X)←−
process(X), aberration(anatomical structure)(Y )

pathological process(Y )(X)←−
process(X), injury(anatomical structure)(Y )

pathological process(Y )(X)←−
process(X), degeneration(anatomical structure)(Y )

pathological process(Y )(X)←−
process(X),malfunction(physiological system)(Y )

pathological process(Y )(X)←−
process(X), aberration(genetic)(Y )
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Disease Definition. In this section, a disease is defined as a pathological process that
has the following properties: one or more flavors of etiology, an epidemiology, a vector, one
or more hereditary risk factors, one or more symptoms, one or more pathological hallmarks,
an activity pattern, one or more treatments. Some of these properties are complex. For
example, the activity pattern consists of onset, progress and outcome, where onset may
have a number of attributes like age, onset cause, and progress in a sequence of phases, each
of which has a sequence of landmark events. Of course, a specific disease may not have a
need for all of these attributes. So when we specialize disease to define parkinsons disease,
we might assert:

isa(parkinsons disease, disease).
false(not applicable(pd spc))←−

etiology(pathology)(D, aberration(S)),
isa(D, parkinsons disease)
anatomical structure(S), anatomical part(S, spinal cord).

meaning that for Parkinson’s disease (or any of its subtypes D), no fact about the aberration
of any anatomical subpart of the spinal cord is relevant. Note that the parameterization
not applicable(pd spc) of false characterizes the nature of error. In addition to not applicable,
we use not known, not recorded, not present as other forms of null values.

The disease definition section also contains the symptoms that are clinically associ-
ated with Parkinson’s and related disease, and other diseases like acute polio and syphilis
that have been identified as risk factors for Parkinson’s disease. Diseases with clinically sim-
ilar presentations (like Pick’s disease) are also recorded. Many of our relationship names
are borrowed from semantic relationship names of the UMLS. However, we have imposed
additional constraints to ensure consistency of their properties within the disease maps. For
example, the relationship is clinically similar is not transitive.

Anatomical Structures. The next section of the disease map captures the anatomical
structures relevant for Parkinson’s disease. It uses and references the concept identifiers from
the UMLS. This allows the disease map management system (which functions as a mediator)
to connect to a local copy of the UMLS, and derive relationships between two terms based
both on the relationships specified by the disease map as well as the UMLS. For example,
although the term “cerebral peduncle” does not exist in the disease map, the UMLS provides
the relationship anatomical part of(midbrain, substantia nigra). The subcellular structures of
the disease map make similar references to the “Cellular Component” fragment of the Gene
Ontology.

Some concepts need bidirectional implications. Consider the statements in Figure 1,
which state that if a cell contains an abnormal filament, it contains a filamentous inclusion,
conversely, if something is a filamentous inclusion, it must contain an abnormal filament.
This is a part of the disease map that would allow us derive, for example, that neurons in the
substantia nigra pars compacta of a Parkinson’s disease patient has filamentous inclusions.
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isa(neurofibril, fiber).
located in(neurofibril, cytoplasm(axon)).

isa(axon, compartment(neuron)).
located in(X, neuron) ←−

isa(Y, compartment(neuron)),
located in(X, Y).

isa(neurotubule, neurofibril). isa(neurotubule, microtubule).
isa(neurofilament, neurofibril). isa(neurofilament, filament).

located in(X, cell) ←−
isa(X, cellular inclusion).

contains(species)(X, abnormal(filament)) ←−
isa(X, filamentous inclusion).

isa(X, filamentous inclusion) ←−
isa(F,filament),
contains( )(X, abnormal(F)).

Figure 1. A Fragment of the Parkinson’s Disease Map describing filamentous inclusions, a parent
category of Lewy body.

Managing Correspondence Problems. Often when employing multiple sources, say
UMLS and Gene Ontology, we come across terms such as mitochondria that are refer-
enced by both. We use different identifiers, corresponding to the different occurrences, e.g.,
UMLS.mitochondria and GO.mitochondria, respectively. In this way, name clashes can be
avoided by fully qualifying names with the source which specifies them. This resolution
of name clashes has to be distinguished from the more general “correspondence problem”
across concept hierarchies or ontologies coming from different sources. For example, ac-
cording to UMLS, the substantia nigra is a part of the midbrain. However, according to
(Swanson, 1998), substantia nigra is part of midbrain-hindbrain and the term midbrain is not
a distinct concept. Typically, whenever such a correspondence mismatch occurs, some
spatial relationship such as contains, covers, overlaps, etc. holds. Discovering the actual
spatial correspondence relations is outside of the scope of disease maps. (Bota, 2001) uses
a spatial inference technique to derive such atlas correspondance relations from different
parcellations. In the current development of our disease map, we have not modeled such
relationships. One way in which we may use such information in the future is by stating
these spatial relations as logic statements. Description logics (Baader, Calvanese, McGuin-
ness, Nardi, & Patel-Schneider, 2003) have been used to reason about concept interrelations
and correspondences, e.g., to establish whether one concept subsumes or overlaps with an-
other. See (Rector, 2003) for a similar approach to nomenclature management in medical
informatics.
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Protein Aggregation. The protein aggregation section defines the relationships between
the concepts regarding the localization and content of the protein aggregates like Lewy
bodies. For example the fact that high concentrations of the ubiquitin protein is found in
the bound state is represented as:

concentration(high)( bound(protein(ubiquitin)), lewy body(early onset parkinsons disease) ).

Note that protein(ubiquitin) is distinguished from ubiquitin which is semantically typed as
a gene. In order to express the fact that for the human version of late onset Parkinson’s
disease, a Lewy body expressing mutant α-synuclein may have either the a53t or the a30p
mutant but not both, we use the following integrity constraints:

false ←− contains(human)(
lewy body(late onset parkinsons disease),
protein aggregate(protein(a53t)) ),

contains(human)(
lewy body(late onset parkinsons disease),
protein aggregate(protein(a30p)) ).

false ←− ¬ contains(human)(
lewy body(late onset parkinsons disease),
protein aggregate(protein(a53t)) ),

¬ contains(human)(
lewy body(late onset parkinsons disease),
protein aggregate(protein(a30p)) ).

The first rule eliminates the case in which both proteins are present in the lewy body,
whereas the second eliminates the case that neither one is.

The protein aggregation section also contains relationships that pertain to the genes
found in Lewy bodies. Consider the statements:

has form(aggregate(protein(alpha synuclein)))(
protein(alpha synuclein), beta pleated sheet ).

ligase(denaturation)( protein(parkin), protein(ubiquitin(’E3’)) ).

The first states that within protein aggregates, α-synuclein is found in the form β-pleated
sheets, and the second states that the protein of the parkin gene acts as a ligase for the E3
form of the protein of ubiquitin, tagging them for the process of denaturation.

Cellular Environment. This section records the terms and relationships related to
the neurons participating in or affected by the disease process. This contains informa-
tion such as the dopaminergic neurons of the substantia nigra pars compacta express pro-
tein(dopamine transporter). The role of the dopamine transporter protein as described earlier
(Section ) in the paper also appears in this section.
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Cell Death. Finally, the cell death section contains the process description related to
the common, agreed-upon knowledge and hypothesized models of cell death as they relate to
Parkinson’s disease. Two important aspects of the formalism are used in this section. First,
for cell death, the inherent temporal semantics of concept names denoting processes become
important. For example, cell death in Parkinson’s disease is not acute – the time-course of
cell death for PD is progressive, exhibiting a gradual transition between the onset of a cell
injury, the development of the degeneration while the cell still performs its function, the
slow withering of the cellular compartments, finally leading to its death. Pathologically, cell
death has been related to Lewy bodies (Kahle, Haass, Kretzschmar, & Neumann, 2002).
At a very coarse level one can make statements like:

isa(protofibril(X), protein aggregate(X)) ←−
protein(X).

p1: isa(formation(protofibril(alpha synuclein)), process).
p2: isa(formation(fibril(alpha synuclein)), process).
p3: isa(formation(lewy body), process).
has phases(dopaminergic neuron)(cell death, [p1→p2→p3]).
occurs in(cell function(normal))( p1, dopaminergic neuron ).

Here, the second argument in the phase of relation, denotes an ordered sequence of phases,
which could be elaborated into finer processes.

Secondly, this illustrates the treatment of hypotheses, which are modeled as simple
facts or rules, that are specially labeled. For example, a statement like “Jones’ hypothesis
is protofibrils of α-synuclein are toxic to dopaminergic neurons (Goedert, 2001), but Lewy
bodies protect them” can be written as:

hypothesis(’Jones’)(is toxic(protofibril(alpha synuclein),dopaminergic neuron)).
hypothesis(’Jones’)(protects(lewy body,dopaminergic neuron)).

If Smith’s hypothesis is “Lewy bodies cause degeneration of dopaminergic neurons”, it can
be similarly stated:

hypothesis(’Smith’)(causes(lewy body,degeneration(dopaminergic neuron))).

To make these two statements “oppose” each other, we need to tell the system that the
facts protects(X,Y) and causes(X, degeneration(Y)) attack each other (see Section ):

attacks(protects(X,Y), causes(X, degeneration(Y))).
attacks(causes(X, degeneration(Y)), protects(X,Y)).

This can be made to produce two stable models of cell death depending on whether the
toxicity of the protofibril or the Lewy body fibrils is assumed.

Querying the Disease Map

In Section , we outlined a number of different tasks we need to perform with a disease
map. They can be categorized into three primary groups – extensional queries that perform
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a path or graph search, intensional queries that require logical derivation to perform a search,
and defining integrated views, which might need a combination of the above. The query
language that enables us to perform these operations is currently only partially specified,
and its full treatment is beyond the scope of this paper. Therefore we outline the basic
structure of the query language as we envision it, and present examples of queries for
analysis of and mediation with disease maps.

Elements of the Query Language. As mentioned in Section , a disease map can be
considered to be an edge-labeled graph with parameterized nodes and edges. The logic
rules are producers of derived edges, and occasionally derived nodes. The basic form of the
query is to give the system a graph pattern and request it to find all occurrences (called
witness graphs) of the pattern in the map. Consider the query “Find all diseases that have
dementia as a symptom and Lewy bodies as a pathological feature”. As a query, this would
be expressed as:

select graph union($Path1, $Path2) from parkinsons disease map M (1)
where M.node=$N1 and isa($N1.value,’disease’) and (2)

M.node=$N2 and $N2.value=’dementia’ and (3)
M.node=$N3 and $N3.value=’lewy body’ and (4)
connects($Path1, $N1,$N2) and connects($Path2, $N1,$N3) and (5)
edgeInPath({symptom}.$N2, $Path1) and (6)
pathInPath({etiology(pathology)}..$N3, $Path2). (7)

In this query, we are looking for a graph, the union of paths $Path1 and $Path2 such that
there are three nodes $N1, $N2 and $N3 satisfying the specified conditions. In line (2),
$N1 is bound to nodes whose value is disease or a subconcept thereof. Note that although
“isa” can be construed to be transitive, unless we use the explicit form tc(isa) for the
transitive closure of isa, the system just uses the direct isa edges. Line (5) of the query
shows the system-defined connect(Path, Node, Node) function, where the Path variable binds
to the set of paths that the two nodes are connected by. Line (6) illustrates the edgeIn-
Path(Edge, Path) predicate, where the first argument is an edge expression that refers to
an edge with the label ’symptom’ – one end of it is our desired graph node ’dementia’ and
the other end is unspecified. Note that {label} denotes an edge label. Line (7) shows a
similar construct pathInPath(Path1, Path2) for a sub-path expression, where the fragment
{etiology(pathology)}’..$N3 refers to an edge label etiology(pathology) followed by any num-
ber of nodes or edges leading to the node $N3 which is a Lewy body (4).

Next, consider the query “Which animal models share common features between
Parkinson’s disease (PD), Alzheimer’s disease (AD) and Lou Gehrig’s disease(LGD)?” Un-
der the simplifying assumptions that the terms in the animal models match exactly the cor-
responding terms in the human disease models, this query finds the graphs corresponding
to PD, AD and LGD, and intersects them to create a new graph IG that represents the
common features of all three diseases (lines (1–13) in Figure 2). Then it reports all animal
models that have a non-empty intersection with IG (lines (14–16) in Figure 2).
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select * from ( (1)
select reachability graph($N1) (2)
from parkinsons disease map M (3)
where $M.node=$N1 and $N1.value=’PD’ (4)

graph intersect (5)

select reachability graph($N2) (6)
from parkinsons disease map M (7)
where $M.node=$N2 and $N2.value=’AD’ (8)

graph intersect (9)

select reachability graph($N3) (10)
from parkinsons disease map M (11)
where $M.node=$N3 and $N3.value=’LGD’ (12)

) into graph($IG) (13)

select * from animal models (14)

graph intersect (15)

select * from $IG (16)

Figure 2. Animal model queries

The reachability graph is computed in lines (2), (6) and (10) because it projects
out the part of the graph that might be relevant to each disease. As noted by (Jagadish
et al., 2002), our queries on databases of graphs (and trees) need to return both the witness
graphs (the parts that matched the query conditions) as well as a covering subgraph (e.g., a
minimal spanning tree that includes the nodes and edges of the witness graphs) surrounding
the witness graphs. Also noteworthy is the observation that in practice, this rigid graph
intersection would be impractical because the graph structure of the animal models would
very likely be different from the human case. We are currently investigating the query
language properties to specify imperfect graph matches.

Deductive Queries. To pose a query that involves a deductive computation, we use a
rules module, which is evaluated by a deductive database engine. For example, to query for
all descendants of neurons using the transitive closure tc(isa) of the isa relation, we would
pose the following query:

select * from parkinsons disease map M, rules R (1)
where M.node=$N1 and R.tc(isa)($N1.value,’disease’). (2)

Integrated View Definition. Consider two groups of researchers – one who works on a
mouse model of PD, and the other who works on protein localization with high-resolution
light and electron microscopy images. Let us assume the first group has a table with the
following schema in their database:

process evidence(transgenic id, model type, process name, image location,
observed structures, evidence details).

The second group has a table:

protein localization(subject id, protein name, model type, image location,
observed structures, relative concentration).
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From these two relations one wants to ask the query: “Find the localization of protein X
in all brain regions where evidence of process P has been found in some animal model
of PD”. This is an example of semantic mediation using a disease map. To formu-
late such a query, we need to construct a join-view over the two schemata, and pose
the query against this view. However, in reality, protein localization.observed structures
and process evidence.observed structures need to be semantically joined, i.e., if one has a
record with the term ’midbrain’ and the other has a record with the term ’substantia ni-
gra pars compacta’, then these records are joinable because ’substantia nigra pars compacta’
is an anatomical subpart of ’midbrain’ and a query looking for processes in the midbrain
would be satisfied by a record containing ’substantia nigra pars compacta’. Similarly, if
the query has specified P as ’cell death’ but the database record has an observed pro-
cess called ’reduction(diameter(of(axon,dopaminergic neuron)))’ (see Section ), they should
be joinable because reduction(diameter(of(axon,dopaminergic neuron))) is a phase of neu-
rodegeneration(of(axon,dopaminergic neuron)). Additionally, if the observed structure is ’sub-
stantia nigra pars compacta’, then the observed process should be treated as a phase of the
’cell death’ process. However, for this domain knowledge to work, it has to become part of
the integrated view definition. Since the formal disease map records or derived relationships
such as anatomical substructures and process phases, the integrated view is defined over
the heads of chosen rules from the disease map.

Discussion and Conclusions

We have studied the problem of constructing disease maps in the context of the BIRN
project, built around the study of human diseases. As projects like BIRN assemble data
repositories that encompass multiple techniques, scales, diseases and species, we face the
opportunities and problems of bringing together multiple types of information relevant to
the understanding of disease, regardless of how, where and why the data were originally
acquired. Using the data mediation framework under development, researchers will be able
to issue queries across species, diseases and animal models to try to develop new insights into
common processes and features that span conditions. It is this challenge that motivates the
creation of data mediation architectures and formal approaches to disease maps as described
here. However, disease maps and other ontologies are useful not only in the context of
database construction and mediation, but serve as an important source of information and
study object in their own right. By navigation and exploration of disease maps, the scientist
can investigate relationships between concepts and develop testable hypotheses.

Ideally, disease maps are dynamic representations of evolving knowledge on a given
disease and thus will be continually extended and modified. This gives rise to the important
problem of how to manage change in ontologies. The problem of reconciling different evolv-
ing versions over time is similarly difficult as the problem of articulating correspondences
across different contemporary ontologies. We have not addressed these issues in this paper.
Initially, we are providing a minimalistic version management, in which evolving statements
are tagged with a version identifier to which descriptive meta-data about the version and
change is linked.
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We are also currently developing the necessary tools and protocols for researchers to
register their experimental observations in the context of the disease maps. Registering
data to the disease map is somewhat analogous to publishing a paper in a scientific jour-
nal. When researchers currently publish their results, they typically write an introduction,
which provides a general overview of a field and a rationale for performing an experiment,
followed by methods, results and finally a discussion of how their findings relate to the
current understanding of the problem. We view the process of registering an experimental
observation with the disease map to encompass the same steps. The researcher will first
isolate the portion of the map that provides the context for a particular set of experiments.
The methods and the experimental results will be deposited in a database. Finally, the
researcher will map their results onto existing hypotheses about a disease, indicating where
they support or fail to support existing knowledge. If the specific hypothesis does not exist
in the disease map, then the researcher will be asked to extend the map with the appropriate
concepts and relations. One important method by which researchers can weight their views
of a particular theory or hypothesis is through the addition of data that either supports or
refutes various portions of a disease map.

Disease maps represent one of the key challenges facing the biological community: the
need to express complex biological concepts in a logically sound, machine-processable form.
Although the technical diffulties are many, we believe that our disease map formalization
provides a promising approach to interrogate complex findings for understanding biological
systems on a grand scale.
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