
A Live Multimedia Stream Querying System

Bin Liu
Electrical and Computer

Engineering
Georgia Institute of

Technology

bliu@ece.gatech.edu

Amarnath Gupta
San Diego Supercomputer

Center
University of California San

Diego

gupta@sdsc.edu

Ramesh Jain
Department of Computer

Science
University of California Irvine

jain@ics.uci.edu

ABSTRACT
Querying live media streams captured by various sensors is be-
coming a challenging problem, due to the data heterogeneity
and the lack of a unifying data model capable of accessing var-
ious multimedia data and providing reasonable abstractions for
the query purpose. In this paper we propose a system that en-
ables directly capturing media streams from sensors and auto-
matically generating more meaningful feature streams that can
be queried by a data stream processor. The system provides
an effective combination between extendible digital processing
techniques and general data stream management research.

1. INTRODUCTION
Live sensors ranging from simple RFIDs to webcams are

becoming common in many applications, from homeland se-
curity to businesses, and are producing enormous volumes of
continuous sensor data that we call media streams. Expect-
edly, the large scale deployment of various sensors gives rise
to more complex applications where multiple live streams
of heterogeneous media are jointly monitored for querying
interesting events [7]. A media stream is usually the output
of a sensor device such as a video, audio or motion sensor
that produces a continuous or discrete signal, but typically
cannot be directly used by a data stream processor. To eval-
uate queries on media streams, one needs to continuously ex-
tract content-based descriptors, that we call features, from
them and identify the qualifying media portions by evalu-
ating queries on the generated feature streams, which are
post-processed by one or more transformers and correlated
to the media streams temporally and in terms of content.

While the progress in computer vision and other digital
processing areas has enabled generating many automatic
features in real time, synchronously combining individual
media channels and derived feature streams remains a chal-
lenge. Moreover, users prefer a query system that allows
efficiently performing complex queries over media and fea-
ture streams by exploiting the semantic constraints among
them. Consider an application where a seminar is broad-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

cast from a meeting room equipped with cameras and mi-
crophones for the presenter and the audience, along with a
camera capturing presentation slides. A remote participant
decides to “tune in” when some specific events occur, such
as “the presentation begins” – which can be detected by the
changes in the view of the slide camera and the voice of the
presenter. While individual media channel or a derived fea-
ture stream captures some aspects of such an event, it is the
synchronous combination of all the streams that captures
the entire intended semantics of the content and makes the
event detection easier or more effective than only using one
media or one aspect of that media.

The MPEG-7 standard [9] provides a framework of stan-
dardized tools that can be used to describe and efficiently
manage multimedia content. There are two categories of
audiovisual features that can be extracted from each type
of media streams. Low level features, like color, texture or
face recognition, audio energy and speech, are those that
can be extracted automatically. High level features need
more human annotations and cannot be processed in real
time. We use the term live multimedia to refer to the sce-
nario where the multimedia information is not “produced”
though manual editing, but is captured in a real-life set-
ting – where the different sensors are observing different
aspects of the same real-life situation, and streaming the
captured data to a central processor. The primary prob-
lem for the live multimedia management system (LMMS) is
how to effectively combine multiple media streams as well
as auxiliary non-media stream information to answer stand-
ing queries about the situations observed by various media
sensors. The MPEG-7 standard only attempts to insert ad-
ditional descriptive features computed from a media object
inside the object itself, but does not handle any issue re-
lated to multiple and concurrent media streams over which
live multimedia queries need to be evaluated. In this con-
text, a unifying data model that can access heterogeneous
media streams and provide effective interpretations as well
as reasonable abstractions for them is necessary.

Processing continuous queries, which are persistent queries
that are issued once and then logically run continuously over
live and unbounded streams, has become a major research
area in data management. Many projects, such as OpenCQ,
NiagaraCQ, Aurora, Telegraph, COUGAR and STREAM
system, have addressed broad research issues including data
models, query languages, query optimizations, etc [4]. How-
ever, to our knowledge, no stream related project in recent
literature addresses the media stream continuous querying
problem. The true challenge lies in the effective intersec-



tion of data stream management research and the research
in various digital signal processing techniques, including but
not limited to the image, video and audio processing.

Most of the video based event recognition approaches (such
as [6]) to activity recognitions assume models for specific ac-
tivity types (such as human activities), and depend on video-
based procedural recognition methods designed for particu-
lar domains. Our research goal is to develop a declarative
approach to general event queries by using various media
streams. Unlike research issues in standard image, video and
audio database systems (e.g., QBIC [3]) centering around
queries like object detections and similarity retrievals using
different features, we contend the LMMS should be able to
make use of the additional contextual information and se-
mantic constraints to answer more complex queries over live
media streams. Different to the time-instant based VDBMS
system [2], which stores both videos and extracted features
in tables before querying them, we aim at processing interval-
based media and feature streams in real time.

We approach the live multimedia query problem by propos-
ing a general-purpose media stream management system,
called MedSMan. It permits a designer to directly cap-
ture various live data streams from different sensor devices,
and forms media streams consisting of logical media tuples.
Then, more meaningful feature streams can be automati-
cally derived from media streams for the query purpose. Our
system is open to any user-defined feature generation func-
tions (FGFs), via which various features are computed from
media streams. We design description languages for cap-
turing and representing various media streams from sensor
types such as webcam and microphone, and generating au-
tomatic feature streams through particular FGFs. To issue
continuous queries over live media streams, a Media and Fea-
ture Stream Continuous Query Language (MF-CQL) is de-
signed and implemented by exploiting the semantics of me-
dia and derived feature streams, as well as the inter-stream
constraints among them. Although MedSMan is designed
to work independently of how features are produced, in this
paper we consider only automatically extractable features.

The rest of this paper is organized as follows. In Section 2,
we introduce the data model for MF streams. Both media
capturing and feature generating, together with the stream
description languages, are presented in Section 3 through
concrete examples, followed by a brief introduction to the
query processing. The implementation is presented in Sec-
tion 4. We run a number of query experiments in Section 5,
before concluding our work in Section 6.

2. DATA MODEL FOR MF STREAMS

2.1 Formal Definitions
Because of their continuous nature and the stream depen-

dency, both media and feature elements require explicit and
exact timestamps. The time attributes provide valuable in-
formation for the stream generating and query processing.
In our framework, the element of a media or feature stream
is defined as a tuple, which consists of a logical sequence
number (sqno) indicating its position in a stream, a tempo-
ral extent defined by a pair of start and end timestamps (tb,
te] (for a time-point attribute tb = te, we represent a single
time point as td), and any other media attribute.

Convention 1. A set T , is said to be continuously well-
ordered iff (1) T is well-ordered, and (2) for each time-unit

(tbi, tei], there must be one and only one directly following time-
unit (tbi+1, tei+1] in T , where tei = tbi+1. We refer to a contin-
uously well-ordered set of time-units as a continuous time set.
A corresponding tuple value holds in each time-unit.

Convention 2. A set T is said to be discretely well-ordered
if and only if T is well-ordered, i.e., the continuity clause does
not apply for two consecutive units. We refer to a discretely
well-ordered set of time-points as a discrete time set. At each
time-point td, a corresponding tuple value holds.

Definition 1. A continuous media stream is a set of tuples,
each consists of a sequence number (msqno) uniquely identifying
its position in stream, a pair of start and end timestamps (tb, te]
whose domain is a continuous time set, and a media valued at-
tribute vm valid only during (tb, te].

Definition 2. A discrete stream is a set of tuples, each con-
sists of a sequence number (msqno) uniquely identifying its posi-
tion in stream, a media or non-media valued attribute vm, and a
time-point td, defined on a discrete time set domain, indicating
when vm arrives intermittently.

Definition 3. A feature stream is defined as a set of tuples,
each consists of a sequence number (fsqno) uniquely identifying
its position in stream, a feature value attribute vf , a time-point
attribute tf indicating when vf is computed, and a set m̄sqno

identifying the media tuples or a set f̄sqno identifying other fea-
ture tuples, from which a feature tuple is derived.

2.2 Stream Semantics and Operator Classes
While being absent in the general purpose Data Stream

Management System (DSMS) [1], direct stream-to-stream
operators are necessary for media stream systems, since me-
dia and feature streams are (1) quite different in opera-
tions; and (2) dependent. Besides, we need compose media
stream(s) for presenting query results. The four subclasses
of stream-to-stream operators, shown in Figure 1, are:

• MS-to-FS operators that generate feature streams from me-
dia streams;

• FS-to-MS operators that map back to the deriving media
stream fragments from feature tuples;

• FS-to-FS operators that generate feature streams from ex-
isting feature streams;

• MS-to-MS operators that reformat a media stream or com-
pose a composite media stream from multiple media streams.

Figure 1: Stream operator classes and semantics.

Algebraic Operators In order to manipulate both media
and feature streams, we design and implement a number of
algebraic operators. The Selection and Projection operators
are similar to those in traditional DBMSs. The Scan opera-
tor is used to get the next tuple of a same stream in a push
mode. Working in a pull mode, the Fetch operator maps and
retrieves the deriving media or feature tuples that generate
the given feature tuple(s). An O Join operator overlap-joins
multiple tuples with different intervals but sharing a com-
mon time point. A Compose operator reformats a single
media stream, or multiplexes multiple media streams as out-
put. We also design and implement a set of period operators,
such as P Scan, P Detect, and P Aggregation, which are out
of the scope of this paper.



2.3 Query Delay
A number of cost metrics are investigated, such as the

queue lengths and operator costs. In this paper, we focus
on the query delay, which is significantly determined by the
feature computation delay (FCD). For one satisfying tuple in
a media stream, its query delay is defined as the time differ-
ence between it enters the system and it leaves the topmost
operator. Query delays are both media stream dependent
and individual tuple dependent, since (1) different media tu-
ples have different tuple extents and FCDs; (2) a particular
media tuple may be joined by multiple tuples from other
streams; thus (3) different tuples in one stream joined by a
common tuple in another stream may have different delays.

3. MF STREAM PROCESSING

3.1 Media Stream Generation

3.1.1 Media Generation Model and Classifications
The raw streams captured from sensors are bit streams wi-

hthout explicit media semantics. To correctly retrieve and
interpret them, the details of registering data (such as media
format, coding and size) must be known [10]. Particularly,
de-multiplexing, decompression, or decryption procedures
may be applied to retrieve individual media tracks from a
raw stream. The heterogeneous nature (such as continuity,
media type and data rate) of media streams greatly increases
the processing complexity. However, there are some general
principles on how to create various media streams from sen-
sors and separate them into sequences of media tuples.

The media stream generation model M consists of a sen-
sor type ST , a sensor source SS , a media tuple definition
TM , a set of sensor-dependent initialization parameters P̄ ,
and a media stream type MT . ST plays a significant role
in determining other parameters. Basically, there are three
categories of MT according to the differences in stream con-
tinuity and data rate:

1. Continuous stream, whose values are continuous over time,
such as an audio. It can be split into a sequence of media
tuples with any appropriate size specified in P̄ . For example,
an audio is cut into clips of 40ms.

2. Pseudo-continuous stream, whose tuples are discrete, but we
prefer to consider it as a continuous stream–each tuple spans
an entire interval defined by two sequential tuple arrival time-
points. This type of stream typically consists of tuples arriving
at a specified data rate defined in P̄ , e.g., 30 frames per second
for a video.

3. Intermittent stream, whose tuples are intermittent, such as
a sequence of Powerpoint slides. It can be split into intervals
terminating at punctuation boundaries [11], or by tokens from
a different stream [5].

Both the continuous stream and the pseudo-continuous stream
are defined on continuous time sets, while the intermittent
stream is defined on a discrete time set.

3.1.2 The MSDL Language
A Media Stream Description Language (MSDL) is designed
for defining various media tuples. Basing on a specific TM ,
a media stream instance conforming to particular ST and P̄
can be declared and initialized. For example, a video tuple
definition and a video stream instance can be declared as:

create type frame { integer frame num primary key,
time frame bt, time frame et, image content };

create media stream video1 of frame from
sensortype cam sensorsource vfw://0 datarate 10.0;

Since sqno (i.e., frame num in this example) works as a unique
identifer for each tuple in a stream, it is declared as a pri-
mary key. Futher, most query operators require the explicit
timestamp attributes tb (i.e., frame bt) and te (i.e., frame et).
The sensorsource (SS) defines a local or remote URL con-
necting the capturing sensor. The sensortype (ST ) cam indi-
cates that the output media stream is a pseudo-continuous
video stream, and requires a datarate parameter denoting the
data rate of a video, which means each video frame spans
an extent of 100ms on average. In contrast, an audio tuple
definition and an audio instance can be declared as:

create type audioclip { integer clip num primary key,
time clip bt, time clip et, audiobuffer clip };

create media stream audio2 of audioclip from
sensortype mic sensorsource dsound:// capturebuffersize 40;

Different to cam, the mic (ST ) indicates a continuous audio
stream, and requires a capture buffer size (e.g., 40ms) to
cut the stream into a sequence of audioclips.

3.2 Feature Stream Generation

3.2.1 Characterizing Features
A feature stream is produced by one or more transformer

functions operating on media streams or other feature streams.
A feature tuple value is generated from its deriving me-
dia or feature tuple(s) by one or multiple specific FGFs,
with different generation costs. A feature stream has tuples
with complex-valued attributes, and a reference to the me-
dia/feature streams from which it is derived. Properties of
feature values include:

1. The feature value vf can be either a single or a complex value
(e.g., vector, set or any other value that can be processed
directly by a query processor).

2. Its temporal attribute tf is defined on a discrete time set. We
assume vf is computed and available only by tf , regardless of
when the computation begins and how long it takes.

3. A single feature tuple may be derived from multiple media
tuples, or multiple feature tuples derived from the same set of
media tuple(s). For example, a movement detection is derived
from two consecutive video frames.

Feature Tuple Atomicity A feature tuple is an entity
dependent on its deriving media tuple(s), and its value is
atomic in that its semantics represents one aspect of all me-
dia tuples from which it is derived. Therefore, a feature
tuple has a representing interval equal to the time-unit or
set of time-units of its deriving media tuples.

3.2.2 Feature Generation Model
A feature stream generation model F consists of a fea-

ture tuple definition TF , a set of deriving media or feature
streams D̄S , a set of feature generation functions F̄G, and
a set of optional parameters P̄F controlling the data rate,
delay, etc. We have designed a Feature Stream Description
Language (FSDL) to create feature tuple definitions. Bas-
ing on them, feature stream instances can be declared from
deriving D̄S by using particular P̄F .

3.2.3 FGF Implementations and The FSDL Language
The feature generation functions are implemented as in-

terface between the FSDL and the underlying digital signal
processing techniques. Thus, the FSDL is open for users
to implement their own FGFs. We introduce the syntax of
FSDL through instances of different FGF implementations.



Color-based Object Detection Due to the low compu-
tational cost of the algorithm, the color histogram based ob-
ject detection is a desirable feature for simple object detec-
tions when appropriate [12], such as detecting “a red book”.
The similarity between each video frame and the reference
image is evaluated by using a normalization threshold. In
our implementation, the histogram consists of 323 bins (32
bins each for R, G, B) and the threshold can be adjusted
for different objects. Basing on video1, an object detection
feature and its feature stream instance can be expressed as:

create type odFeature { integer od sn primary key,
time od bt, time od et, integer od pixel };

create feature stream odFStream2 of odFeature on video1
with od sn:=getFrameNum(frame num)

od bt:=getFrameTime(frame bt)
od et:=getFrameTime(frame et)
od pixel:=getObjdetectNum(content);

Each feature attribute must be explicitly declared from
its deriving media stream attribute(s). Taking each video
frame as input, the FGF getObjdetectNum computes the total
number of pixels – whose color falls into the corresponding
reference histogram bin with value greater than the thresh-
old – in each frame. The getFrameNum returns the frame
number for each frame, while the getFrameTime computes
both start and end time for each frame.

Haar-like Face Detection We implement a face detec-
tion feature using OpenCV object detectors initially pro-
posed in [13]. The trained classifier (namely a cascade of
boosted classifiers working with haar-like features) is also
provided with OpenCV. The key FGF getFaceDetectNum com-
putes the number of detected faces in each frame. This fea-
ture and a feature stream instance are expressed as:

create type fdFeature { integer fd sn primary key,
time fd bt, time fd et, integer fd num };

create feature stream fdFStream3 of fdFeature on video1
with fd sn:=getFrameNum(frame num)

fd bt:=getFrameTime(frame bt)
fd et:=getFrameTime(frame et)
fd num:=getFaceDetectNum(content);

Movement detection Different from the features men-
tioned above, a movement feature is computed by every two
sequential video frames. The FGF getMovementNum com-
putes the total number of pixels, with the difference between
the average RGB value of each pixel and that of the pixel at
same location in previous frame being greater than a spec-
ified threshold. A 3 × 3 low-pass filter is applied to both
frames to reduce the background noise in advance. Such a
feature and its feature stream instance can be expressed as:

create type mvFeature { integer mv sn primary key,
time mv bt, time mv et, integer mv pixel };

create feature stream mvFStream1 of mvFeature
on video1 [skip 1 in every 2]
with mv sn:=getFrameNum(frame num)

mv bt:=getFrameTime(frame bt)
mv et:=getFrameTime(frame et)
mv pixel:=getMovementNum(content);

The feature computation costs vary significantly depend-
ing on different media types, generation algorithms and avail-
able system resources. In the extreme case, a feature genera-
tion may last longer than the extent of deriving media tuple,
with potentially adverse effects on the entire system perfor-
mance when for high data-rate media streams. For example,

the getMovementNum for frame movement costs longer than
100ms, thus will delay a video stream with data rate greater
than 10 frames per second. However, typical media streams
are redundant in content so that skipping some tuples may
not affect the query accuracy much. We may skip (e.g.,
mvFeature) one media tuple in every two, if the media stream
data rate is overwhelming. One may wonder why we do not
define all feature attributes (e.g. both mv pixel and od pixel)
in a single feature tuple. The reason is that both getMove-

mentNum and getObjDetectNum functions are time consum-
ing. Placing them as a single tuple might seriously delay, or
even block, feature tuple generation for fast incoming video
frames. Rather, it is highly recommended to separate the
time consuming feature generations into different feature tu-
ples and use parallel feature generation threads. A possible
optimization would be to consider if features can be gener-
ated lazily, i.e., only when required by a query. We do not
explore this solution in this paper.

Sound Energy Detection We also implement features
from audio. For instance, an audio feature from audio2 com-
puting the average sound energy of each clip is expressed as:

create type sdFeature { integer sd sn primary key,
time sd bt, time sd et, double sd energy };

create feature stream sdFStream3 of sdFeature on audio2
with sd sn:=getFrameNum(clip num)

sd bt:=getFrameTime(clip bt)
sd et:=getFrameTime(clip et)
sd energy:=getSoundEnergy(clip);

Complex Feature Generation A feature can be de-
rived from other existing feature(s). Moreover, we may not
want to compute a feature from every deriving tuple, but
only in some interesting periods. For example, we compute
a speech length feature (slFeature) from an audio for each pe-
riod when someone is speaking more than a 5-clip duration:

create type slFeature {time sl bt, time sl et, integer sl };
create feature stream slFStream4 of slFeature on sdFStream3
with sl bt:=getPeriodStart()

sl et:=getPeriodEnd()
sl:=getPeriodCount();

when CONTINUE(sd energy > 25.0) > 5

A slFeature is computed during each period (P ) only if a
speech lasts more than 5 audioclips. Each P is computed
from the when subclause by an outer period predicate, which
uses a period detection operator CONTINUE to count the
number of feature tuples continually qualifying the inner
predicate. The FGFs (e.g., getPeriodCount) then use the P de-
tected at run-time to compute each feature attribute value.

3.3 Querying MF Streams
We have designed a query language, MF-CQL, which is

CQL [1] extended with additional syntax and shortcuts to
express the extended semantics beyond DSMS. MF-CQL al-
lows flexible expressions for period detections and period
aggregations, which deliver higher levels of expressive power
for media query applications. Considering the real-time re-
quirement of most media stream applications, MedSMan’s
operations are triggered by each arriving (media or feature)
tuple per time. For most media streams queries, query pred-
icates are based on their derived feature streams. Then the
qualifying fragments of the feature streams are mapped back
to their deriving media stream fragments by using sqno or



interval attributes. We design syntax for efficiently express-
ing these queries. The query language details will be intro-
duced through various query examples in Section 5.

3.4 System Architecture
Figure 2 shows the overall system architecture. A user

creates definitions of media streams and declares their in-
stances via MSDL. The raw streams captured from sen-
sors are processed and transformed to user-defined media
streams, which are transmitted to both the query engine
and the feature generation component, where various fea-
ture streams are automatically generated via FGFs defined
in FSDL. The media streams and derived feature streams
are queried by the query engine, which outputs the qualify-
ing media portions to the composition component. Finally,
the composed media results are returned to the user.

Figure 2: MedSMan system architecture.

4. IMPLEMENTATION
We have designed and prototyped the architecture of media-

feature stream declaration and generation, whose dataflow
is shown in Figure 3. A media tuple definition TM is parsed,
validated and generated as a TupleDesc, which is inserted
into a global Tuple Desc Manager. Basing on a TupleDesc,
a media stream instance is declared via CreateMediaStream-
Stmt, generating a MediaStreamDesc, which is added into a
global stream manager and associated with a media queue
manager controlling a media tuple queue (MTQ). Tuples of
a defined media stream are generated via the following steps:

1. Capture raw stream from a sensor by a capture thread. Sensor
specific parameters {ST , SS , P̄} defined in MSDL are used
during each sensor capture thread setup.

2. Particular PreAccessCodec dependent on MT is applied to the
raw stream to get an individual media track.

3. A customized cutIntoMediaTuple function working on a media
track populates a tuple’s attributes defined in TM .

4. Each generated media tuple is sent to a media queue manager,
which then inserts it into a corresponding MTQ.

A feature stream instance based on a feature tuple def-
inition TF is created in similar procedures. Each create-
FeatureStreamQuery contains a featureStreamID, a deriving
mediaStreamID or existing featureStreamID, and a sequence
of triples of <featureAttr, mediaAttr, function> parsed from F̄G

defined in FSDL. Then, a FeatureStreamDesc is created and
associated with a feature queue manager controlling a fea-
ture tuple queue (FTQ). It registers to the deriving medi-
aStreamDesc, thus setting up the mapping between media
and feature. Triggered by a registering media queue man-
ager with every new media tuple, the Feature Generator
generates new feature tuples and inserts them into corre-
sponding FTQ. All concurrent threads are implemented in
a “producer-consumer” fashion. Each thread triggers its
follower(s) as it is triggered by its parent. When a media

Figure 3: The dataflow of MF-Stream generation.

queue manager gets a media tuple, it will poll all its regis-
tered featureStreamDescs, each of which can join and leave
its registering mediaStreamDesc’s media queue manager at
any time. For experiments in this paper, MF streams are
captured and generated on a same machine as the central
query processor. A more efficient implementation is to use
a distributed system (MediaBroker [8]) for MF stream gen-
eration, and transfer streams to a central query machine via
Sockets. The prototype of MedSMan is implemented using
Java (JDK 1.5.0). We use APIs provided by Java Media
Framework (JMF2.1.1) and OpenCV (integrated with Java
based query engine via Java Native Interface (JNI)) for real-
time audio/video capturing and feature generating.

5. EXPERIMENTS AND DISCUSSION
Experimental Set-up We run a number of query exam-
ples varying in media streams and feature streams, thus
evaluate performances for different query types, in terms
of query delays. Our experiments run on a XP machine
with dual 2.4GHz CPUs and 2GB RAM. Basing on the in-
stances of video (with the format of RGB, 400x320, 10fps,
Length:230400, 24-bit), audio (with the format of LINEAR,
44100Hz, 16-bit,Stereo, 2Channels) and the derived feature
streams defined in Section 3, we evaluate the following queries:
Q1: select content from video1, odFStream2 where od pixel>500;

Q2: select content from video1, fdFStream3 where fd num>0;

Q3: select content from video1, mvFStream1 where mv pixel>1000;

Q4: select clip from audio2, sdFStream3 where sd energy>32.0;

Q5: select content from video1, fdFStream3, odFStream2 where

fd num=1 and od pixel>1000;

Q6: Select content from video1, mvFStream1, audio2, sdFStream3

where mv pixel>5000 and sd energy>32.0;

Figure 4: Querying a person raising a book.



Q1 to Q4 are single selection queries against four features,
respectively. Q5 is a join query on two features from one
media – a face detection feature shown in Figure 4(a) and
an object detection feature with a reference image shown in
4(b). One qualifying output video frame is shown in 4(c).
Q6 is a join query using two features over two media streams.
Delay Sensitivity The media tuple intervals, FCDs and
query delays for Q1 to Q5 are shown from (a) to (e) in Fig-
ure 5, respectively, while their averages are listed in Table 1.
These values vary with media tuple sqno, sometimes radi-
cally. Obviously, FCDs play a significant role in determin-
ing dynamic tuple intervals and total query delays. In Q6
(shown in Figure 5(f)), each video frame overlaps with mul-
tiple sequential audio clips. The average delay of the video
frames is 393.1ms, and the average max delay of the audio
clips is 622.5ms for the oldest one waiting in queue, since
an optimization is implemented by making a slower feature
(mv) tuple trigger the faster feature (sd) tuples waiting in
queue, to reduce an extra Scan operator and queue buffers.

80 85 90 95 100
0

100

200

300

400

frame_num

T
im

e
 (

m
s)

(a)

585 590 595 600 605
0

200

400

600

800

frame_num

T
im

e
 (

m
s)

(b)

105 110 115 120 125
0

100

200

300

400

500

600

frame_num

T
im

e
 (

m
s)

(c)

1360 1365 1370 1375 1380
0

20

40

60

80

clip_num

T
im

e
 (

m
s)

(d)

40 45 50 55 60
0

200

400

600

800

frame_num

T
im

e
 (

m
s)

(e)

180 185 190 195 200
300

400

500

600

700

800

frame_num

T
im

e
 (

m
s)

(f)

query delay
frame interval
FCD(od)

query delay
frame interval
FCD(fd)

query delay
frame interval
FCD(mv)

query delay
clip interval
FCD(sd)

query delay
frame interval
FCD(fd)
FCD(od)

frame query delay
max clip query delay

Figure 5: Query delays.

6. CONCLUSIONS
This paper presents our approach to dealing with contin-

uous querying over live heterogeneous media streams by ef-
fectively combining extendible digital processing techniques
with a general media stream management system. To bridge
the two different areas, a unifying data model for media and
feature streams is designed, along with description languages
managing media and feature streams and a query language

Table 1: Delay sensitivities (ms)
Query/Feature AVG interval AVG FCD AVG query delay

Q1/od 72.2 66.4 165.6
Q2/fd 239.1 237.3 685.9
Q3/mv 186.1 181.8 543.1
Q4/sd 39.99 5.89 9.11
Q5/od 261.5 89.9 740.6
Q5/fd 259.3

manipulating complex queries. A prototype of our system
has been implemented with a number of audiovisual fea-
tures. A key advantage of our system is that it is open to
any user-defined feature generation; thus its querying power
can evolve as the DSP techniques advance. Due to the in-
creasing use of media data in many emerging applications,
we believe this is an area of significant interest to researchers
in stream data as well as multimedia data. In the near fu-
ture, we will investigate scalability issues, considering more
complex features derived from multiple media or existing
feature streams out of a large number of distributed sensors.
We also plan to work on composition operation over multiple
heterogenous medias, and investigate more factors, such as
media transmission delays and compression/decompression,
that may affect system performance.

7. REFERENCES
[1] A. Arasu, S. Babu, and J. Widom. The cql continuous query

language: Semantic foundations and query execution.
Technical report, Stanford University, Oct. 2003.

[2] W. G. Aref, A. C. Catlin, and et al. Vdbms: A testbed facility
for research in video database benchmarking. ACM
Multimedia Systems Journal, Special Issue on Multimedia
Document Management Systems, 9(6):575–585, June 2004.

[3] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang,
B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic,
D. Steele, and P. Yanker. Query by image and video content:
The qbic system. IEEE Computer, 28(9):23–32, Sept. 1995.

[4] L. Golab and M. T. Ozsu. Issues in data stream management.
ACM SIGMOD Record, 32(2):5–14, June 2003.

[5] A. Gupta, B. Liu, P. Kim, and R. Jain. Using stream
semantics for continuous queries in media stream processors.
ICDE Demo, April 2004.

[6] S. Hongeng, R. Nevatia, and F. Bremond. Video-based event
recognition: activity representation and probabilistic
recognition methods. Computer Vision and Image
Understanding (96), 2:129 – 162, November 2004.

[7] R. Jain. Experiential computing. Communications of the
ACM, 46(7):48 – 55, July 2003.

[8] U. Ramachandran, M. Modahl, I. Bagrak, M. Wolenetz,
D. Lillethun, B. Liu, J. Kim, P. Hutto, and R. Jain. Media
broker: A pervasive computing infrastructure for adaptive
transformation and sharing of stream data. To appear in
Pervasive and Mobile Computing (PMC) Journal, 2, 2005.

[9] P. Salemier and J. R. Smith. Introduction to
MEPG-7:Multimedia Content Description Interface. Wiley
Europe, 2002.

[10] R. Steinmetz and K. Nahrstedt. Multimedia computing,
communications and applications. Prentice Hall, 1995.

[11] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploiting
punctuation semantics in continuous data streams. IEEE
TKDE, 15(3):555–568, May-June 2003.

[12] V. V. Vinod and H. Murase. Video shot analysis using efficient
multiple object tracking. In ICMCS ’97, Ottawa, Ontario,
CANADA, June 1997.

[13] P. Viola and M. J. Jones. Rapid object detection using a
boosted cascade of simple features. In IEEE CVPR, volume 1,
pages 511–518, 2001.


