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Abstract. We present the semantic data model for an ontological
database for subcellular anatomy for Neurosciences. The data model
builds upon the foundations of OWL and the Basic Formal Ontology, but
extends them to include novel constructs that address several unresolved
challenges encountered by biologists in using ontological models in their
databases. The model addresses the interplay between models of space
and objects located in the space, objects that are defined by constrained
spatial arrangements of other objects, the interactions among multiple
transitive relationships over the same set of concepts and so on. We pro-
pose the notion of parametric relationships to denote different multiple
ways of parcellating the same space. We also introduce the notion of
phantom instances to address the mismatches between the ontological
properties of a conceptual object and the actual recorded instance of
that object in cases where the observed object is partially visible.

1 Introduction

An Ontology-based database (OBDB) is a new class of information systems
that consists of a domain ontology and a database content that references the
ontology, such that the system can be queried both as a database and through
the ontology. In recent work, [1,2] have developed an object-oriented frame-
work for managing and querying OBDBs. We consider this class of systems to
be especially important for life science applications and develop elements of a
semantic data model to address a number of specific modeling issues we have
encountered in developing ontology-based databases for neuroscience. A primary
difference between the work in [1,2] and ours is that we consider the ontology to
be much richer, specified in terms of OWL-DL or any other SHOIN -compliant
description logic, supplemented by constructs and rules of entailment from the
Basic Formal Ontology (http://www.ifomis.uni-saarland.de/bfo) that describes,
among other things, a formalization of space and objects in space.

This paper investigates how the semantic data model of an ODBMS is in-
fluenced when the application domain contains information about interacting
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extended objects in space. To focus the issue around a life science problem, we
consider the domain of neuroanatomy as our application context.

Application Domain.Application Domain.Application Domain. To situate the application context of our problem domain,
consider that one of the fundamental organizing principles of biological infor-
mation is anatomical, i.e., based on the physical structure of living beings, and
how these entites relate to each other. Anatomy provides one of the covering
disciplines that spans every single entity in any biological organism. Further,
a number of biological functions can be associated with anatomical entities,
the functional relationship between two entities is often effected through their
anatomical relationship. Anatomy presents a number of interesting issues. As a
simple example, any anatomical structure (at least for multicellular organisms)
can be recursively broken down into increasingly finer substructures – starting
from substructures that are at the same scale (i.e., measured by the same spa-
tial units) like forearm and phallanges, and extending to substructures that span
scales such as tissues and cellular ultrastructures. This meronymic continuum is
complemented by other relationships among anatomical enities such as physical
and chemical connectivity, functional groups, and cytoarchitectural associations.
It is the task of a conceptual model to capture the intricacies of their relation-
ships to various biological functions. Because of the central role of anatomy in
structuring biological information, it may also be used to serve as a common
backbone for problems in biological information integration. For example, an
organ-level biological database and a cell-level biological database can be se-
mantically integrated through the multi-granular meronymy of an anatomical
ontology.

The central role of anatomy in modeling and understanding biological systems
has inspired a number of formal modeling efforts. For example, the cellular compo-
nent fragment of the well-known Gene Ontology (http://www.geneontology.org/)
captures is-a and part-of relationships among intracellular structures of generic
cells. The Foundational Model of Anatomy (FMA), on the other hand, captures
gross anatomical object including spatial relationships like has boundary. These
two ontologies overlap in that the cell-level terms of the FMA is a subset of that
in Gene Ontology. And yet, their combined collection of terms and relationships
leave some holes in the eyes of the neuroanatomist. The present work is an ex-
tension and re-formalization of SAO [3], the ontology for subcellular anatomy
arises from our recognition that (a) these ontologies do not reflect the com-
plexity needed to express cellular and subcellular neuroanatomical information,
and (b) there is no available ontology that formally reflects mesoscale infor-
mation, where those structures that sit between more gross anatomical scales
and the level of individual protein and other macromolecules. In our example
area of the nervous system, it comprises the dimensional range of nanometers
to microns, encompassing cellular networks, subcellular microdomains, and their
macromolecular constituents. These spatially extended structures lie at the heart
of information processing in the nervous system, providing the adaptive spatial
framework in which molecular and biochemical processes occur. In order to un-
cover the complex, detailed structural and dynamic inter-relations critical to the
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functional properties of nervous system, entities at this scale must be observed
and described, and inferred using a combination of experimental observations
and formal treatment. The purpose of the semantic modeling framework pro-
posed in this paper is to create an OBDB that serves this goal.

Contributions.Contributions.Contributions. In this paper we propose the notion of parametric relationships
to denote different multiple ways of parcellating the same space. We also intro-
duce the notion of phantom instances to address the mismatches between the
ontological properties of a conceptual object and the actual recorded instance of
that object in cases where the observed object is partially visible.

2 Data Model

2.1 Preliminaries

An OBDB consists of the triple (S, O, μ), where S is a schema, O is an ontology
and μ defines a set of mappings between O and S. For simplicity, we start with
the assumption that S is a relational schema containing relations R1, R2 . . .. We
also make the simplifying assumption at this point that we have a single ontology
O, and that the ontology roughly corresponds to the SHIN description logic.
The focus of this paper is to define a variety of mapping relationships μ that can
be concretely used for anatomical information.

Any relation Ri(Ao,Ad) may have two kinds of attributes – Ao is the sub-
set of attributes that are ontology-mapped, while Ad is the subset of attributes
having data domains. If Ri.Aj is an ontology-mapped attribute of relation Ri,
the domain of Ri.Aj is defined to be an ontology expression that specifies which
part of the ontology will provide values for the attribute. In our example domain,
consider the relation neuron-image containing images of traced neurons.

neuron-image(image-id, image-type, neuron-name, x-size, y-size)

where neuron-name is mapped to the subcellular anatomy ontology (SAO) and
the mapping μdom is described as:

dom(neuron-image.neuron-name) = SAO:subclass*(’neuron’)

where ’neuron’ is a term of the SAO (Subcellular Anatomy Ontology) [3] ontology
and subclass* refers to the transitive closure of the subclass relationship of SAO.
We will present more examples of ontology-expressions as we proceed. Suppose
t (e.g., ‘basket cell’) is a term belonging to SAO:subclass*(’neuron’) and ri is
a tuple in neuron-image such that ri.neuron-name = t. We say tuple ri is an
evidence-of t. The set of all evidences of a term t in a relation R is called the
range of t in R. Why should one invent yet another relationship like evidence-
of ? Semantically, it will be incorrect to say that tuple r20 of neuron-image is an
instance of ‘basket cell’, for example, because r20 is actually an instance of class
image which happens to depict a basket cell. Thus this image is like a container
of an instance of an ontological object. We capture this semantic relationship
through the distiguished relationship evidence-of.



Toward an Ontological Database for Subcellular Neuroanatomy 67

Now consider the relation that stores information about all structures that
have been segmented from images:

segments(structure-name, cell-name, image-id, length, volume)

where the domain of structure-name is SAO:component-of*(’neuron’) and the do-
main of cell-name is SAO:subclass*(’neuron’). Note that has-component (hc) is a
kind of partonomic relationship such that the component has a specific function
within the cell. Clearly, every tuple of the relation segments is an evidence of
some ’neuron’ and some ’component’. But in our model this depicts a stronger
semantic association. Since the primary key of the segments relation consists of
two attributes having domains in two parts of the SAO ontology, this implies
that every tuple in segments is an instance-of the direct or inferred path connect-
ing the corresponding neuron and the structure of the ontology. Let us say the
SAO ontology has the following entries:

Purkinje-neuron � neuron
dendrite � neural-component
neuron ≡ ∀ has-component.neural-component
neuron ≡ ∃ has-component.dendrite

Here Purkinje-neuron �−→neuron hc−→ dendrite is a path p1. Consequently, Purkinje-
neuron hc−→ dendrite is a path p′1 in SAO. If the relation segments has tuples:

r1: segments(dendrite, Purkinje-cell, 12, 4.67, 2.11)
r2: segments(dendrite, Purkinje-cell, 39, 3.93, 1.52)

we can say r1, r2 are instances of path p′1 (or p1 for that matter). However, it
is not meaningful to create instances of all paths in an ontology. For example,
while it is possible to have an instance of ∃R.C1 it is not possible to have an
instance of C2 � ∃R.C1. In general, instances of paths containing � or � are
disallowed. Instantiations of more complex concepts are possible with more spe-
cialized constructs. We will return to this issue when we present our ontology
model for aggregates in Section 2.2.

2.2 A Semantic Model for Extended Objects

Anatomical objects are spatial objects – they are located in a spatial context,
occupy space, and maintain functional relationships with other objects often by
virtue of their (relative) positions in space. It is therefore imperative that both
the ontology component and the schema component of an OBDB has an ade-
quate semantic model of extended objects and their spatial context. The fact that
spaces and objects are conceptually distinct but are related intricately through
relationships of spatial inclusion, meronymy and topology has been a topic of
philosophical research [4,5,6]. In our work, we encapsulate all this development
through our adoption of the Basic Formal Ontology (BFO) [7], described next.

Basics.Basics.Basics. BFO serves as an upper-ontology for biomedical science. BFO uses a
concept called continuant for everything that is not dependent on time. Two sub-
categories of continuant relevant to us are spatial-region, that represents space,



68 A. Gupta et al.

and independent-continuant, that represents material objects or named portions
of objects. According to the BFO catergorization, spatial-region represents space
that is not relativized, i.e., not specified with respect to any object (e.g., extra-
cellular space surrounding the post-synaptic density). In contrast, independent-
continuants have some characteristic shape (that may be specified with respect
to other continuants) in which they are completely enclosed, and are further
subcategorized into object, object-boundary, site, object-aggregate and fiat-object-
part. Briefly, sites are entities that can be occupied by other continuant entities
(e.g., a post-synaptic-density is also occupied by the dendrite of which it is a
part); objects are independent, spatially extended, maximally self-connected and
self-contained entities, and possesses an internal unity; object-boundary (e.g., the
outer membrane of a mitochondrion) is an independent continuant entity that
is a lower-dimensional part of some other continuant entity; an object-aggregate
is a named independent continuant entity that is a mereological sum of sepa-
rate objects (e.g., a gap junction consists of the two membranes of two different
neurons apposed to each other); finally, a fiat-object-part is a named part of an
object that does not have an identifiable boundary (e.g., the distal dendrites of
a neuron). In addition to these entities, BFO also admits a number of relation-
ships – the two relevant ones are part-of that holds between two continuants or
between two spatial-regions and located-in, that holds between an independent
continuant and a spatial-region.

Recently [8] has investigated the problem of representing space and extended
objects in the light of biomedical ontologies. They introduced the primitive func-
tion region-of, which given an extended object instance e, returns the spatial-
region s that e fully occupies, such that

∀x, y : located-in(x, y) =def part-of(region-of(x), region-of(y))

For extended objects they also distinguish between two forms of located-in,
namely, location due to parthood and that due to spatial containment. If o
is the instance of a spatial extended object, they define:

∀x, y : contained-in(x, y) =def object(x) ∧ object(y) ∧ located-in(x, y) ∧ ¬ part-of(x, y)

Our semantic data model adopts this ontological framework and extends it to
provide a more realistic ontology to instance mapping constructs that can model
extended data objects observed in images and videos and stored in the database.

Multiple Paritioning.Multiple Paritioning.Multiple Paritioning. As in BFO, in our model, a spatial-region, extended object,
or site can be partitioned using part-of relationship. However, our anatomy-
motivated viewpoint persuades us to model spatial partitioning in a finer detail.
The following snippet shows an example of our partition specification:

s1 � SAO:site
p1 ≡ ∃ complete-partition-of.s1
p2 ≡ ∃ partial-partition-of.s1
s11 ≡ ∀ part-of(p1).s1
s12 ≡ ∀ part-of(p1).s1
s21 ≡ ∀ part-of(p2).s1
disjoint(s11,s12)
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The first line establishes s1 as a SAO:site (which is the same as a BFO:site). The
next two lines show that our role hierarchy for the partition-of relationship has
two values complete-partition-of and partial-partition-of. The first sub-role means
that all the spatial parts that constitute the particular partition-of relationship
are completely enumerated in the ontology, while the latter sub-role states that
this is not the case. The next three lines illustrate a parametric role or a para-
metric relationship, our extension to the standard OWL-DL. It simply states
that s11 and s12 are parts of site s1 according to the partitioning scheme p1,
whereas s21 is part of site s1 according to the partitioning scheme p2. The last
line implies that our partition-of relationship does not assume spatial disjoint-
edness of the parts – otherwise this constraint must be explicitly asserted as in
this example. Also note that although p1 is a complete partitions11 s12 are not
the only parts of s1 because we don’t claim the OBDB is completely known.

Multiple Inheritance of BFO Categories.Multiple Inheritance of BFO Categories.Multiple Inheritance of BFO Categories. Ourmodel permits multiple inheritance
from the basic BFO categories. For example, the class synapse inherits from both
an aggregate-object and from a fiat object part because a synapse is a junction,
i.e., it is a portion of extracellular space (hence it has no demarcated boundaries)
where axon terminals and dendritic processes are situated (hence it is an aggre-
gate) closely enough such that chemical neurotransmitters can pass from the axon
terminals to the neurotransmitter receptor portions (e.g., post-synaptic density) of
those dendrites. We show the ontological definition of synapse in Figure 1. Other
neuroanatomical entities like the gap junction or the node of Ranvier share the
same characteristics – they are aggregates of fiat object parts such that certain
predicates over selected properties of the participating objects hold.

Implicit Subclasses.Implicit Subclasses.Implicit Subclasses. Our model also supports the creation of implicit subclasses
but considering all possible values of a class based on its data properties. Con-
sider a class called post-synaptic-density that has a data property called
morphological-type whose value is a 2-tuple (m1, m2) where m1 can be ‘sym-
metric’ or ‘asymmetric’ and m2 can be ‘macular’ or ‘perforated’. When implicit
subclasses are used, the system implicitly creates a cross-product of 4 subclasses
of post-synaptic-density. If one of the system-generated classes is not valid, the on-
tologist has to specify a constraint like invalid-class(’asymmetric perforated post-
synaptic-density’). One might argue that this creates a huge proliferation of pos-
sible classes. We view this as a necessary evil because thanks to the bottom-up
nature of biological discoveries, very often a scientist would discover a new char-
acteristic of an biological entity that had not been materialized as a separate
class before because there was no prior evidence that such a class would be
biologically significant.

2.3 Bridging the Instantiation Gap

We return to the issue of mapping between the ontology part and the database
part of an OBDB in the context of our semantic model.

An implicit assumption in almost all ontology literature is that the primary
technical problems lies in the expressive power and computational complexity
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Fig. 1. A rough ontological definition for the concept synapse

related to the specification of the ontology and the reasoning over instances. We
introduce a problem called the instantiation gap problem between the ontol-
ogy and its instance repository, which in an OBDB, has a schema constructed
independently of the ontology. To our knowledge, this problem has not been
considered by prior research. Simply, an instantiation gap occurs when either of
the following cases hold:

1. an instance store has a data object d marked as instance of a concept c from
the ontology, but one or more of the following occurs:
(a) d does not have all the inherited properties of c
(b) d does not have all the local properties of c
(c) d’s extended object properties violate the expected object properties

of c
2. an instance store has instantiations of all properties that an instance of

concept c from the ontology is supposed to have, but there is no data object
d in the instance store that can be assigned as an instance of c.

It is easy to see that all three conditions under case (1) may occur when an image
depicts one or more extended object that are partially visible. We show that case
(2) also occurs due to partially visible structures. For example, consider an image
(image-id = 23) showing a chemical synapse from a granule cell to a Purkinje
cell as part of its content. As a constituent of the synapse, the presynaptic axon
terminal exists in the image but is partly visible, the postsynaptic density of the
synapsing dendrite is also partly visible, other dendritic processes of the same
postsynaptic neuron are also partial. Let us imagine the image also shows a
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number of synaptic vesicles, some in the synaptic cleft, some in the presynaptic
axon, and the rest in the extracellular space as well as parts of other neural
structures such as the endoplasmic reticulum. Now consider Table 1, a slightly
extended version of the segments relation we saw earlier, with the contents as
recorded in from the scientist’s annotation of image 23.

Table 1. A portion of the segments table showing the experimenter’s data about the
synapse

Obj-IDObj-IDObj-ID Structure-nameStructure-nameStructure-name Cell-nameCell-nameCell-name Image-idImage-idImage-id VisibilityVisibilityVisibility lengthlengthlength volumevolumevolume classclassclass
1001 axon-terminal:02 granule-cell:21 23 partial
1002 synaptic-vesicle:45 granule-cell:21 23 partial fused
1003 psd:15 Purkinje-cell:19 23 partial
1004 dendritic-process:25 Purkinje-cell:19 23 partial
1005 dendritic-process:26 Purkinje-cell:19 23 partial
1006 dendritic-spine:58 Purkinje-cell:19 23 partial thin
1007 cell-membrane:34 granule-cell:21 23 partial
1008 synaptic-vesicle:46 23 complete 0.10 normal
1009 synaptic-vesicle:47 23 complete 0.11
1010 synaptic-vesicle:48 23 partial
1011 synaptic-vesicle:48 23 partial
1012 synaptic-cleft:03 23 complete
1013 ER:09 granule-cell:21 23 partial
1014 extracellular-space:28 23 partial none

Notice that since the database has been developed to support experimental doc-
umentation and ontology has been developed to model the scientist’s perception of
biological reality, there are a number of disconnects between the ontology’s depic-
tion and the database’s depiction of the objects. First, for oid = 1003, the instance
of the post-synaptic-density could not be assigned any classification (e.g., ‘symmet-
ric macular’) due to the partial observation, although the ontological data prop-
erty of the class posits this as a mandatory property1 A different mismatch occurs
for oid = 1001. We know from the ontology that an axon-terminal is a part of an
axon and can’t really exist without the axon. However, the database does not in-
dicate the presence of the axon. In absence of the axon however, oid = 1007 can’t
be considered to be an instance of axonal-membrane, which is defined as the part
of the cell-membrane covering the axon, and is a mandatory part of axon. Along
the same lines, the fiat aggregate object called synapse as defined in the ontology
(Figure 1) does not exactly exist, although pieces that consitute the synapse do.

To bridge this instantiation gap, our system computes an additional concept-
to-instance mapping called unobserved-instance-map that first copies partially
observed extended objects, and then recursively fills-in phantom instances of

1 Notice that in contrast, the classification for the dendritic spine could be filled in even
if the spine is not completely visible.
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objects for which there is sufficient evidence (more than x% of mandatory prop-
erties). This would create an axon instance and an neuron instance given the
axon terminal. The expected properties of these phantom instances are then
matched against the observed properties in the database to derive further cor-
respondences between the concepts and properties in the ontology to the data
records. This will instantiate the synapse when most of its expected compo-
nents are located. When the process terminates, the unobserved-instance-map
is committed to the database, that can be verified by the domain expert.

3 Querying the OBDB with OntoQuest 2.0

In [9], we presented OntoQuest 1.0, the first version of our ontology explo-
ration software. OntoQuest 1.0 is built upon the IODT framework from IBM
(http://www.alphaworks.ibm.com/tech/semanticstk) and allows navigational
queries over the ontology content and SPARQL+aggregate queries over instances
in distributed stores. In general however, one should be able to pose arbitrary ad
hoc queries to an OBDB that permit ontology navigation and instance fetching
together, and utilize all the concept-to-instance mappings that are available.

OntoQuest 2.0 uses a storage model for the concept graph that is similar
to that of IODT. In this model, all distinguished relationships permitted by
OWL (e.g., subclass, allValuesFrom, disjoint . . .) are stored in separate tables,
while all user-defined relation names are stored in a quad-store. However, the
instances (both observed and phantom) are stored in a graph-like manner. The
properties of the nodes and the edges are stored in relational column stores,
while the connectivity of the nodes and edges are stored in triple stores with
additional path indexes. The mappings between the concepts and the relations
are maintained using standard primary key foreign key relationships between
the concept tables and the node/edge property tables.

OntoQueL, the query language of OntoQuest 2.0 is influenced by SPARQL,
OntoQL [1], OWL-QL [10]; since a full treatment of the language is beyond the
scope of this paper, we illustrate it with examples.

The query select succ*(concept:’neuron’, part-of, 3) from MyOnto as graph
returns a 3-level deep part-of hierarchy from the concept-graph starting with the
term ‘neuron’. If we want to get the part-of hierarchy of all observed instances of
the concept ‘neuron’, we will write the query as select succ*(instance-of(’neuron’)
$X, part-of, 3) from MyOnto as graph where observed($X). Due to the built-
in predicate observed, the query does not return phantom instances, but does
return both complete and partially visible instances. If partially visible instances
are not desirable, we add the condition not(partial($X)).

OntoQueL also permits instance navigation queries. The query
select neighborhood(instance:‘Purkinje-cell’ $X) as $G from MyOnto
where $X.length > 4 stop before (exists $Y and phantom-instance($Y) and $Y in
$G) starts with each instance of Purkinje-cell satisfying the length predicate
and follows graph edges until it touches a phantom instance of any kind. The
condition stop before ensures that the phantom instance does not get included
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in the result graph; if want to stop the graph navigation after the phantom node
is included, we will use the construct stop when instead of stop before.

4 Conclusion

In this paper, we presented our model of capturing the semantics of an ontology-
based database system, and the extensions we made to the standard OWL and
BFO semantics. We introduced the problem of instantiation gap and presented
our current solution. However, we believe more elegant solutions to the problem
should be possible. We briefly discussed how the OntoQueL, the query language
of the OntoQuest 2.0 system treats concept-grapha and instance graph queries,
and allows the formulation of more complex queries that current ontology-based
query languages do not support.
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