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Abstract. Many scientific databases need to manage complex 3D geo-
metric data such as models of the cerebral cortex. Often the complexity
of the data forces users to construct muliple, simpler representations,
which cover the real, complete model only partially and approximately.
In order to recover the original information one needs to integrate these
partial and incomplete models. In this paper, we first develop a concep-
tual model for objects and relationships in 3D geometric data, as well as
their partial and approximate representations. We then establish map-
ping relationships between different approximations of the same data.
Finally, we present a geometric information integration technique that
will perform the integration where possible, and determine, for some
cases, when the integration cannot be performed.

1 Introduction

In this paper, we study a general version of the problem of answering queries
using views ([8, 1, 2], see [6] for a recent survey) that arises in certain scientific
application that deal with complex geometric data models. Location-sensitive
data models were studied, for instance, in [7]. Our application context is that of
brain volume rendering, like magnetic resonance imaging (MRI) and functional
MRI, which are routinely used for studying abnormalities of the brain, planning
surgery, and diagnosing brain tumors. Often these studies involve comparing the
structure and behavior of certain brai regions under different treatments, for
different patients or during different phases of a progressive disease. Informally
expressed, a typical query on a brain scan database is the following: Find the av-
erage thickness of region A for patients over age 60, having Alzheimer’s disease,
and showing no shrinkage within 0.5 cm around region B

The cortex is a very complex geometric object, containing numerous folds,
troughs and crevices, making the measurement of even seemingly simple proper-
ties like distance between two points very complicated and inefficient to compute.
Consequently, different research groups have developed software to “simplify”



the cortex geometry, by mapping the original cortex data to geometrically sim-
pler surfaces such as the sphere or the plane. Different representations may be
used to label, measure and visualize different properties of the cortex geome-
try. The convenience of using simplified representations, of course, comes at a
price: The distortion introduced during simplification may allow us to retrieve
the original value of a property only after some mathematical computation and,
often, within a certain error. More importantly, every simplification preserves
only certain properties of the original data, while others are lost. For example,
turning a cortex into a sphere preserves distances but loses the local curvature
of the cortical surface. Given an arbitrary query, it is necessary to first find a set
of usable representations from which each property (i.e., attribute) referred to
in the query can be faithfully retrieved. Thus, the problem of answering queries
using multiple representations, is akin to the problem of answering queries us-
ing views, but with the important distinction that the version of the attribute
seen in a representation, is not identical to the original attribute value but a
functional correlate of it.

In this paper, we reformulate the answering queries using views problem with
two modifications. On one hand, we allow for partial representations which are
not subsets of the conceptual model but which are related to it functionally.
On the other hand, our model allows to include considerations of geometric in-
variance in the representation: it may be possible in some cases to compute a
function both in the representation as in the conceptual model, but the two
functions can’t be related because the transformation between model and rep-
resentation doesn’t have the required invariance properties.

2 Preliminaries

Our domain model is a simple entity-relationship model, similar to that in
[4], M = (E,R,A), where E = {E1, . . . , En} is the set of entity types, R =
{R1, . . . , Rm} is the set of relations, A = {aik : Ei → Tik} is the set of entity
attribute functions. For the sake of simplicity, we will not consider attributes on
relations. An n-ary relation will be represented as a monic from an index set to
the product space of the entity types it associates:

Ri : d→ Ei,1 × · · · × Ei,ri (1)

In the expression of a query involving the relation Ri we will often eliminate the
existential quantifier over the index d, and use the notation

R(e1 : E1, . . . , en : En) ≡ ∃d : R(d) = (e1, e2, . . . , en) (2)

Finally, we will consider conjunctive queries of the type

(a1, . . . , aa, β1, . . . βb)← R1(e11 : E11, . . . , e1m : E1m), . . .
Rn(en1 : En1, . . . , enm : E1m), c1, . . . , cp (3)



where the ci’s are conditions on the attributes of relations or entities. Note that
we don’t allow relation variables, but only entity variables.

The model we will use in the paper is a simple model of the cerebral cortex: in
which the cortex is represented as a surface (immersed in the three-dimensional
Euclidean space) divided into regions; selected points of each region have associ-
ated histological data, such as neuron density measurements, or data about the
neurons found in that region.

3 Representations

A representation M̂q of a model M is defined as M̂q = (Êq, R̂q, Âq). Êq =
{Êq1 , . . . , Êqnq

} is the set of entity representations, R̂q = {R̂q1, . . . , R̂qmq
} is the

set of relation representations, and Â = {âqik : Êqi → T̂ qik} is the set of attribute
representations.

Definition 1. A representation M̂q is legal if there exists a morphism φq such
that

– φq : Ei → Êqi
– φq : Ri → R̂qi
– φq : aik → âqik
– For every R̂qi the following diagram commutes:

d
Ri //

id
��

E1 × · · · × Ep

φq×···×φq

��
d

R̂q
i

// Êq1 × · · · × Êqp

(4)

– For every aqik there exist a function fqik : Tik → T̂ qik such that the following
diagram commutes:

Ei
aik //

φq

��

Tik

fq
ik

��
Êqi âq

ik

// T̂ik

. (5)

If φq is an isomorphism, then the model M̂q is said to be faithful. Similarly
to the morphism φq between the conceptual model and its representation, it is
possible to define a morphism between two representations [3].

Definition 2. ψ is a morphism between the representation M̂q and the repre-
sentation M̂p, represented as M̂q ψ−→ M̂p if ψ : Êqi → Êpi , ψ : R̂qi → R̂pi ,



ψ : âqik → âpik, for every R̂qi the following diagram commutes:

d
R̂q

i //

ψ

��

Êq1 × · · · × Êqn
ψ×···×ψ
��

d
ψR̂q

i

// Êp1 × · · · × Êpn

, (6)

for every aqik there exist a function fqpik : T̂ qik → T̂ pik such that the following
diagram commutes:

Êqi
âq

ik //

ψ

��

T̂ qik

fqp
ik

��
Êpi ψaq

ik

// T̂ pik

(7)

whenever ψaqik is defined.

An ordering relation can be established between representations as follows:

Definition 3. Given two representations M̂q and M̂p, it is M̂q ≤ M̂p if, for

every morphism M̂q ψ−→ M̂p, there is M̂p ψ′

−→ M̂q such that ψ′ ◦ ψ = id.

This partial ordering between representations captures to a certain degree
the notion of “structural representativity” of a representation.

In many cases, the representation of a relation R̂qi is only partial, in the sense
that there exist tuples e1, . . . , en for which Ri(e1, . . . , en) hold, but such that the
relation R̂qi does not hold for the corresponding tuple (êq1, . . . , ê

q
n).

Example
Consider a model of the cerebral cortex, and a representation M̂ of the
cortical surface limited to the occipital cortex. The relation adjacent(e1, e2)
will only be represented if e1 and e2 are in the occipital cortex.

This kind of structural restriction of a relation is captured by the concept of
defining condition:

Definition 4. Given a relation Ri and a representation R̂qi of that relation, let
P qi be a predicate on the entities that Ri relates, and let id|P q

i
: E1× · · · ×En →

E1×· · ·×En be the restriction of the identity of E1×· · ·×En to the set of entities
for which the predicate P qi is true. The predicate P qi is the defining condition for
the representation Rqi if it makes the following diagram commute:

d
Ri //

φq

��

E1 × · · · × En
id|P q

i // E1 × · · · × En

φq×···×φq

��

d̂
R̂q

i

// Êp1 × · · · × Êpn

(8)



In terms of sets, this means that the the co-domain of the relation represen-
tation R̂qi is

cod(R̂qi ) = {(êi,1, . . . , êi,n) : êi,j = φq(ei,j) ∧ ei,j ∈ cod(Rqi ) ∧ P
q
i (ei,1, . . . , êi,n)}

(9)
Attributes that can’t be computed directly from a representation can some-

times be computed indirectly through a representation morphism. Given a rep-
resentation M̂q, the set of attributes directly computable from M̂q is

A0(M̂Q) = {aik : ∃âqik = φq(aij)} (10)

In order to define the set of attributes that can be computed indirectly from
the representation M̂q, it is first necessary to determine which relations can be
reached from M̂q in a given number of steps. The set of representations directly
reachable from M̂q in k steps (or k-reachable from M̂q) is:

Rk(M̂q) =
{
M̂r : ∃ψ1, . . . , ψk M̂

q ψ1◦...◦ψk−→ M̂r
}

(11)

while the set of k-reachable attributes is

Ak(M̂q) =
{
aik : ∃M̂rârik = φr(aij) ∧ M̂r ∈ Rk(M̂q)

}
(12)

The set of representations and the set of attributes reachable from M̂q will be
indicated with R∞(M̂q) and A∞(M̂q) respectively.

From a functional point of view, an attribute aik is k-reachable from the
representation M̂rk if there is a function h such that

Ei
aik //

φr1

��

Tik

f

��
Êrk
i

h

77
ψk−1

// · · · ψ2
// Êr2i

ψ1
// Êr1i

â
r1
ik // T̂ r1ik

(13)

An attribute which is not in A∞(M̂q) is said to be unreachable from M̂q, while
an attribute which does not belong to A∞(M̂q) for any available representation
M̂q is said to be hopeless. Any query involving hopeless attributes can’t be
answered given the available representations.

4 Query rewriting

In a typical database queries are given in terms of the conceptual model M . The
database, on the other hand, contains but a series of representations {M̂1, . . . , M̂r}
and a series of morphisms M̂ i ψij

−→ M̂ j between the representations.



In a rather general interpretation, a query can be formally defined as a partial
recursive function from databases to databases [5]. This definition assume that
the conceptual database is always isomorphic to its representation. In our case,
this is not true, and we must distinguish between an conceptual query and an
grounded query. A conceptual query is a partial recursive function from the set
of models to a result schema given by the signature of the set of attributes that
the query requires If Sr = (T1, . . . , Tr) is the result schema, a query is a function
Q : M → Sr. We will write a query as:

(ai1k1(ξ1), . . . , aiuku(ξu))← Rj1(ζ11, . . . , ζ1n), . . . , Rjp(ζp1, . . . , ζpn),
c1(ν11, . . . , ν1m), . . . , cv(νv1, . . . , νvm) (14)

Note that, for the sake of simplicity, we have assumed that all the relations are
n-ary, and that all the conditions depend on m variables. The variables ξi and
ζij take values in the set of entities, while the variables νij take value in the set
of attributes.

The grounding of a query over the set of representations {M̂1, . . . , M̂m} con-
sists in a representation function φi1×· · ·×φip and a queryQ′ : M̂ i1×· · ·×M̂ ip →
Ŝr such that there is a function f for which the following diagram commutes:

M
Q //

φi1×···×φip

��

Sr

M̂ i1 × · · · × M̂ ip
Q′
// Ŝr

f

OO (15)

Query rewriting consists, given the modelM and a queryQ, in the determination
of a suitable set of representations M̂ i1×· · ·×M̂ ip and a query Q′ which grounds
the original query.

One way to transform the query Q into the query Q′ in a way that maintains
the commutativity of the diagram can be sketched as follows:

1. add formally a representation M̂0 isomorphic to M to the set of representa-
tion;

2. translate Q into a query Q′
0 expressed in terms of M̂0 (which is a grounding

of Q because of isomorphism);
3. replace one relation of M̂0 with its representation taken from some M̂ i;

replace all the attributes in Ŝr that can be computed from M̂ i with the
corresponding representations;

4. if no relations and no attributes are computed in terms of M̂0, stop, otherwise
repeat the previous step.

The substitutions of step 2 come from a set of possible substitutions called
substitution opportunities, defined as follows:

Definition 5. A substitution opportunity is a query fragment including one
relation an w constraints:

Rk(ζk1, . . . , ζkn), c1(ν11, . . . , ν1m), . . . , cw(νw1, . . . , νwm) (16)



for which there is a representation M̂q such that:

1. R̂qk = φq(Rk) exists,
2. All the values of the variables that make c1, . . . , cw true also make the defining

condition P qk true.

The substitution of Rk with the representation R̂ik is indicated as (Rk, c1, . . . , cm) ⇒
(R̂qk, c1, . . . , cm) or, if the conditions c1, . . . , cn can be omitted without causing
confusion, as Rk ⇒ R̂qk.

When we rewrite a query using a representation, it is important to guar-
antee that we don’t lose the possibility of computing attributes. The following
definition is related to the conditions under which this is guaranteed:

Definition 6. A substitution

(Rk(ζ1, . . . , ζn), c1, . . . , cm) ⇒ (R̂qk(ζ
q
1 , . . . , ζn), c1, . . . , cm)

is strictly non-disruptive if the following condition is true:

For each variable ζi : Ei that doesn’t appear in any other relation but the
relation Rk that is being substituted, all the attributes aij(ζi) that appear
in the query can be computed from R̂qk, that is, aij(ζi) = f(âqij(ζi))

The substitution is weakly non-disruptive if each attribute aij(ζi) can be com-
puted indirectly from R̂qk, that is, aij ∈ A∞(M̂q)

The rationale of this definition is the following: if the only relation in which
the entity type Ei appears is replaced with a representation which does not
allow to compute the required attributes, then the attributes can no longer be
computed. Non-disruptiveness guarantees that all the attributes that can only
be computed from the replaced relation will be computable directly or indirectly
from the representation that replaces it.

The following property is the key for the application of substitution opera-
tions:

Proposition 1. Let M̂0 Q−→ Sr be a query, and M̂0×M̂1×· · ·×M̂n−1 Q′

−→ Ŝr be

a grounding for it. Let M̂0× M̂1×· · ·× M̂n−1× M̂n Q′′

−→ Ŝr be a query obtained
from Q′ by a non-disruptive substitution (Rk, c1, . . . , cm) ⇒ (R̂k, c1, . . . , cm),
then Q′′ is a grounding of Q.

Proof (sketch). Assume, for the sake of simplicity, that the relation Rk is binary:
Rk(ζ1, ζ2), with ζ1 : E1, and ζ2 : E2, and that the substitution contains a single
condition c. Also, set W = M̂1×· · ·×M̂n−1, so that the query Q′ can be written

as M̂0 ×W Q′

−→ Ŝr, and assume that the entity types E1 and E2 do not appear
in any other relation.



The query Q can be written as the composition of two functions: Q′ = f ◦σ,
where σ is the selection fuction which selects the entities that satisfy the query
condition, and f is the attribute computation function.

The function σ, in turn, can be decomposed as σ = σ0 ◦ σk. The function σk
produces the set of variable assignments ζ1 ← e1 : E1, and ζ2 ← e2 : E2 that
satisfy (Rk, c1, . . . , cm), with their variable bindings, while σ0 will select those
entities that satisfy all the other conditions and are compatible with the bindings
of Rk. The function σ can be written as σ : E1×E2×· · ·En → E1×E2×· · ·En.

After the substitution, the relation Rk is replaced by R̂k, which selects ele-
ments in Ê1×Ê2. Because of the properties of substitution, every pair in E1×E2

which make c true also make the defining condition of the representation true,
therefore, for every pair (e1, e2) which would be selected by σk, there is a pair
(ê1, ê2) in R̂k. It is therefore possible to define a function σ̂k : Ê1×Ê2 → Ê1×Ê2

which selects the pairs (ê1, ê2) corresponding to the pairs (e1, e2) selected by σk,
that is, a function σ̂k such that

E1 × E2
σk //

φ

��

E1 × E2

φ×φ
��

Ê1 × Ê2 σ̂k

// Ê1 × Ê2

(17)

Defining σ̂ = σ0 ◦σk, one can show that σ : Ê1× Ê2×· · ·En → Ê1× Ê2×· · ·En
and that the following diagram commutes

E1 × · · · × En
σk //

φ

��

E1 × · · · × En

φ×φ×id×···×id
��

Ê1 × Ê2 × E3 × · · · × En σ̂k

// Ê1 × Ê2 × E3 × · · · × En

(18)

In other words, the selection function can be rewritten so that the output is
composed of the same tuples of entity, short of a transformation φ.

Since the transformation is non-disruptive, it is possible to rewrite in the
same way the attribute computing function f as f̂ so that the following diagram
commutes:

E1 × · · · × En
σk //

φ

��

E1 × · · · × En
f //

φ×φ×id×···×id
��

T1 × · · · × Tn

φ×φ×id×···×id
��

Ê1 × Ê2 × E3 × · · · × En σ̂k

// Ê1 × Ê2 × E3 × · · · × En
f̂

// T̂1 × T̂2 × E3 × · · · × En

(19)

In conclusion, the query rewriting problem outlined in this section can be
cast in the following terms:



– Let M be a model, with representations M̂1, . . . , M̂r; M
Q−→ Sr a query; a =

{a1, . . . , ak} the set of attributes required by the query, R = {R1, . . . , Rn}
the set of query relations, and R̂ = {R̂1

1, R̂
2
1 . . . , R̂

m
n } the set of rewriting

opportunity.
– find a subset P ∈ R̂ such that: (1) for each Ri ∈ R there is a φq such that
Rqi = φqRi ∈ P and (2) for each aik ∈ a there is Rqi ∈ ρ coming from a
representation M̂q such that aik ∈ Aki

(M̂) for some ki.

5 Geometric Functions

Up to this point, we haven’t quite considered the geometric nature of our data,
but we have focussed on the structural properties of the representations, that is,
on whether a given representation preserved the relations and the attributes of
the conceptual model.

In particular, so far we have always considered that the conditions ci were
only on the value of attributes, and that the result of the query was also a set of
tuples formed by atribute values. In geometric queries, however, one has often
to compute functions that require the conservation of certain properties.

Example

In the cortex model above, each region has an attribute centi, of type
Point representing the centroid of the region. A typical spatial query,
then, might request all the regions whose centroid is within a certain
distance from the centroid of a given region. That is, the query will
contain a condition like

ci(νi1, νi2) = d(νi1cent, νi2cent) ≤ D (20)

where D is a constant.

This example leads to a number of observations. First, the representation
of the entities νi1, νi2 requires not only that the representation contain the at-
tribute cent, but also that it preserve the properties of the distance function.
By and large, every representation of regions will allow the computation of cen-
troids, but there is a priori no guarantee that the distance between centroids
in the representation will correspond to the distance between the centroids on
the suface. Second, although the surface of the conceptual model is immersed
in R3, for many applications (including brain modeling) the distance that is
computed is not the R3 distance between the centroids of the regions, but the
distance along the surface (more precisely: the lenght of the shortest surface
geodesic that passes through the two points). The way in which this distance is
computed, therefore, depends on the surface that is, on the representation. As a
consequence, when the condition is rewritten, the distance function d will have
to be replaced with a representation dq = φqd. The central concept for this type
of replacement is that of invariance.



Definition 7. Let X,Y be two spaces, and f : Xn → Y a function. Let G :
X → X be a group of transformations on X. The function f is invariant with
respect to the group G if, for every g ∈ G, f ◦ gn = f .

In particular, we are interested in invariance with respect to the following
groups: the identity group (consisting only of the unit) I, the group of transla-
tions T, the group of direct isometries (rotation and translation) D, the group
of homeomorphisms H, and the general permutation group P .

A function invariant to I is the function that computes the coördinates of the
center of a particulat region in a given reference system. A function invariant to
T is that which computes the orientation of a region with respect to a reference
line. A typical example of a function invariant to D is distance, while functions
invariant to H are, for instance, functions that determine whether two regions
touch each other, or count the number of holes in a region.

When we go from the original model to a representation, the transform may
fail to be invariant with respect to some of these groups. Consequently, functions
that rely on the corresponding invariants can’t be computed from the represen-
tation.

Example

A flat map is a projection of the cortical surface on a plane in a way that
maintains, as well as possible, the area of certain anatomically relevant
regions. Since the cortical surface is not topologically equivalent to a
plane, when a flat map is created, cuts are introduced which may go
across regions. The topological invariant connectedness and the isometric
invariant distance are lost in this map: regions that are connected in
the cortex may fail to be connected in the map, and it is impossible
to recover cortical distances from the flat map. Therefore, every query
containing predicates about the connectdeness of regions, or conditions
on the distance between points can’t be answered using the flat map.

The conditions under which this happen depend on the representation mor-
phism φq, in particular, for an invariance involving the entity type Ei, on the
function φq : Ei → Êqi . Consider, in the way of example, the case of distance
computation. The situation is summarized by the following diagram:

Ei × Ei
d //

g

��

φq

##
R Êqi × Ê

q
i

d̂

oo

g

��
Ei × Ei

d

<<zzzzzzzzzz

φq
// Êqi × Ê

q
i

d̂

bbEEEEEEEEE

(21)

From the diagram it is clear that the representation of Ei will be distance-
invariant if for all g ∈ G, φq = g−1 ◦ φq ◦ g, and d = d̂ ◦ φq. In general, if this



is true for a group G, we will say that the representation is G-covariant in the
strong sense (or strongly G-covariant).

In some cases, this condition is too restrictive: all we really need is that there
be a way to compute the distance d starting from the distance d̂, that is, that
there exist a function u such that:

Ei × Ei
d //

g

��

φq

##
R Êqi × Ê

q
i

d̂
||yyyyyyyyy

g

��
Ei × Ei

d

<<zzzzzzzzzz

φq

;;
R

u

OO

Êqi × Ê
q
i

d̂

oo

(22)

note that it follows from this diagram that if d = d̂ ◦ φq, then u = id. In the
general case, one requires that the function u be well defined and computable,
that is, that it be expressible only as a function of d̂ and φq. In general, if this
is true for a group G, we will say that the representation is G-covariant in the
weak sense (or weakly G-covariant).

Definition 8. Let c(ν1 : E1, . . . , νn : En) be a condition in the query, which can
depend on the computation of certain functions on the entity variables νi. Let g(c)
the group of transformations to which c is invariant. A rewriting {M̂1, . . . , M̂m}
is g-preserving if the following conditions are true:

1. there is a representation M̂p which contains a representation of all the entity
types of c;

2. all the variables νi have been replaced with variables νpi which take values in
the representation M̂p;

3. the representation M̂p is g-covariant, at least in the weak sense.

Proposition 2. Let Q be a query and Q′ a rewriting so that for every condition
c invariant with respect to a group G the rewriting is G-preserving and such that
for every attribute function aik invariant with respect to a group H, the rewriting
is H-preserving. Then the query Q′ is a grounding of Q.

The proof is a repeated application of the invariance property, and is omitted.



6 The Query rewriting process

A query like that of (14) can be represented as in the following diagram

R1

~~}}
}}

}}
}}

��   A
AA

AA
AA

A R2

  A
AA

AA
AA

A

~~}}
}}

}}
}}

R3

��
ζ1

e

~~}}
}}

}}
}}
G1

��

ζ2

e

��

ζ3

e

~~||
||

||
||

e

��

G2

  B
BB

BB
BB

B ζ4

e

��

ζ5

G3

��

G2

vvnnnnnnnnnnnnnnn ζ6

G3~~||
||

||
||

e

��
a1 c1 c3 a2 c2 a3 c4 a4

(23)

where we have already identified all the common variables between the condi-
tions, the relations, and the attribute computation inserting, if necessary, vari-
able matching conditions of the form c(ζ1, ζ2) = (ζ1 ≡ ζ2). The symbols Gi

on some of the arrows mean that the condition or attribute at the end of the
arrow is invariant to the group Gi. The process of query rewriting consists of
transforming this diagram, through a process of repeated substitutions of rela-
tions, into an equivalent diagram composed exclusively of representations. For
the query (23), one such diagram is the following:

R1
1

��~~
~~

~~
~

�� ��@
@@

@@
@@

R1
2

��@
@@

@@
@@

��~~
~~

~~
~

R1
3

��~~
~~

~~
~

��

R2
3

��@
@@

@@
@@

����~~
~~

~~
~

ζ1
1

����
��

��
�

G1

��

ζ1
2

��

ζ1
3

��~~
~~
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In this diagram, the superscripts attached to conditions and attributes refer to
the representation that is used to compute them. The diagram uses two repre-
sentations: M̂1, which provides representations for the relations R1, R2, and R3,
and M̂2, which represents the relation R3. Note that the relations R3 is split
between two representations: R̂1

3 is used to compute the condition c2 and the
attribute a3, and the representation R̂2

3, which is used to compute the condition
c4 and the attribute a4. While the entity type of the variable ζ5 : E5 in the
original relation is invariant to groups G2 and G3, in the derived diagram, the
representation Ê1

5 is invariant only to G2, and the representation Ê2
5 is invariant

only to G3. Since the relation is split, it is necessary to bind the variables that
appear in both reprsentations (ζ4 and ζ5, in this case) so that they represent
the same instance of the entity. This is done by introducing binding relations3 on
between the variables ζ1

4 and ζ2
4 and between the variables ζ1

5 and ζ2
5 . We assume

3 We use this symbol to represent the binding relation because, in most cases, the
condition results in a join on the unique identifier of the entities between the different
relations.



that all the instances of all entities have a unique identifier so that the binding
condition can be written as ζ1

4 .id = ζ2
4 .id.

The passage from one diagram to another is done through legal substitutions,
changes that leave the semantics of the query unchanged, while reducing the pres-
ence of the conceptual model and introducing representations of the various re-
lations. Legal substitutions belong to four groups, which we call α-substitutions,
β-substitutions, γ-substitutions, and ε-substitutions, defined below. From the
diagrams above it is clear that attributes and conditions play a similar rôle and,
from the point of view of representation, they are interchangeable, therefore we
will consider diagrams with conditions only, to avoid the multiplication of special
cases.

ε-substitution ε-substitutions are the simplest: they remove from the diagram
a relation that is not used to compute anything. There are two types of ε-
substitution. The simplest is

R ⇒ ∅ (25)

which states that a relation R disconnected from any variable can be eliminated
from the diagram. The second ε-substitution is
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(26)

which states that a relation with variables that do not participate in the com-
putation of any condition or attribute can be eliminated.

α-substitutions. α-substitutions deal with the replacement of a single relation,
or part of a single relation, with a representation. A general form of an α-
substitution is:
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(27)
The conditions under which the substitution can be made are that the entity
types Ei and Ej on which the variables ζi and ζj take values be represented in
R̂k1 and that they both be G-invariant.



β-substitutions β-substitutions intoduce representations for entity variables in-
volved in two or more relations. A rather general example of β-substitutions is
the following:
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(28)
Similarly to the previous case, the substitution can be done if all the entity
types involved in the condition being represented are contained in the chosen
representation, and if they are g(c)-invariant.

γ-substitutions γ-substitutions merge redundant representations that have been
introduced while removing model relations using α- and β-substitutions. Their
general form is the following:
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The problem of query rewriting can therefore be cast into the problem of
finding the optimal path in an optimization tree: the nodes of the tree represent
diagrams and the edges are marked with the substitutions that bring from a
diagram to another. The detailed description of the optimization algorithms is
beyond the scope of this paper.

The following proposition is an immediate consequence of the fact that all
the subsitutions presented here are non-disruptive:

Proposition 3. Let M̂0 Q−→ Sr be a query, and M̂0× M̂1×· · ·× M̂n−1 Q′

−→ Ŝr
be a query obtained from Q through α-, β-, γ-, and ε-substitutions. Then Q′ is
a grounding for Q.

In other words, the set of α-, β-, γ-, and ε-substitutions is sound. Its com-
pleteness is a more complicated issue. It is possible to show that, every query
Q that can be represented by a given set of representations can be grounded in
that set using only α-, β-, γ-, and ε-substitutions. We still don’t know whether
all groundings of Q can be found using only α-, β-, γ-, and ε-substitutions.



7 Conclusions

In this paper we have begun to discuss the problem of answering queries from
multiple partial representations of a conceptual model under two defining con-
ditions: (1) the representations are not subsets of the model (as is the case for
query answering using views), but are functionally related to the model, and
(2) the conditions and attributes are geometric, which entails that they have
invariance properties with respect to certain transformation group that must be
preserved.

We have discussed the relations between representations and model, and
between representations, and we have shown that there are operations, which we
call substitutions, which can be used to rewrite the query Q from the conceptual
model in which it is expressed to the representations that the database use. The
use of these substitutions for query rewriting results in an optimization problem.

We are continuing the work presented in this paper in three directions: first,
we are exploring the completeness properties of the set of substitutions. In par-
ticular, we are interested in whether all possible groundings of a query can be
derived using ony the substitutions. Second, we are studying PTIME optimiza-
tion algorithms to solve the problem posed by the query rewriting. Finally, we
are trying to extend the model to other circumstances of practical interest, most
notably the case in which the representations does not allow an exact computa-
tion of the attributes of the model, but itroduce an error.
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