
Spatiotemporal Annotation Graph (STAG): A Data Model for Composite Digital
Objects

Smriti Yamini
Department of CSE

University of California San Diego
smriti@sdsc.edu

Amarnath Gupta
San Diego Supercomputer Center

University of California San Diego
gupta@sdsc.edu

Abstract

In this demonstration, we present a database over com-
plex documents, which, in addition to a structured text con-
tent, also has update information, annotations, and embed-
ded objects. We propose a new data model called Spa-
tiotemporal Annotation Graphs (STAG) for a database of
composite digital objects and present a system that shows
a query language to efficiently and effectively query such
database. The particular application to be demonstrated is
a database over annotated MS Word and PowerPoint pre-
sentations with embedded multimedia objects.

1. Introduction

The current demonstration is motivated by our on-going
projects with the National Archives and Records Adminis-
tration (NARA) of USA, whose missions include long-term
preservation of now-digital government records and creat-
ing means to search them.

We consider the problem of performing content-based
search on annotated composite digital documents stored in
a digital library. A composite digital document, produced
by popular software like MS Word, Adobe Acrobat and MS
PowerPoint, is a document which in addition to a (semi-)
structured textual content also has (i) multi-author docu-
ment update information (ii) annotations (e.g., comments)
made over the primary document content, (iii) embedded
objects like images, audio and video, some of which can
be, in turn, complex digital documents themselves, and (iv)
in some cases, like PowerPoint documents, the presenta-
tion order of the document components. Today’s operating
environments allow us to search through collections of dig-
ital objects by textual search, and potentially, using struc-
tural search using an XML encoding of the documents. We
believe that a digital library should enable a user to search
over the structure and content of the entire composite docu-
ment, and contend that XML by itself is adequate to capture
the semantics of these composite documents.

We posit three observations to claim the inadequacy of
XML as a data model for composite documents:

� Let us assume a document is structured like a tree.
An annotation is like marking up a portion of this
tree with a different color. Further, annotations can
be nested (like a comment on a comment), and typed
(from different authors). If we model both the base
document together with the annotation structure as a
single tree (i.e., XML), the tree would be deep and
very complex. So it will be very difficult to formu-
late queries on the document itself, the annotation by
itself, and on both. A similar observation led [4] to
propose the multi-colored tree model.

� While XML provides a structure to a document,
the structure itself does not capture any semantics.
Specifically, it is not designed to capture the presen-
tation aspect of the documents. Thus, the order of ap-
pearance of embedded media objects is not captured
by the XML structure. L.Sheng et al discuss multi-
media presentation graphs in [7]. Further, if the me-
dia objects are themselves structured (like MPEG-4
for video), a standard XML representation would not
bring up the domain-specific semantics of the embed-
ded document.

� A direct XML-based representation of a document
cannot capture updates made to the document – while
it is possible to add time-stamps as node attributes,
we cannot represent both document order as well as
temporal order through the same set of nodes in a
tree structure. [6] presented a model for representing
update-able XML documents on the web. If the data
is spatio-temporally varying, such as in an animation,
it cannot be represented at all.

The goal of this demonstration is to present a new data
model called Spatiotemporal Annotation Graph (STAG)
that is based on a directed acyclic graph. We have devel-
oped a set of algebraic operations over STAGs. We show



that the STAG model captures all aspects of composite doc-
uments discussed above and can be queried through an ex-
tension of SQL.

2. Our Data model

Intuitively, a STAG can be thought of as a confluence of
three graphs defined over the same set of nodes and edges
– the first is a data graph whose nodes are atomic data el-
ements and whose edges represent the structural relation-
ships between them; the second graph represents the pre-
sentational relationships among them; and the third adorns
subgraphs of the data graph with different colors, where
the colors stand for annotation assignments made by dif-
ferent parties. In this model, we assume the documents not
to be self-referential, which makes the data graph acyclic.
By construction, the presentation and the coloring compo-
nents of the graph do not produce any cycles, thus making
the whole STAG acyclic. The model of STAG is an ex-
tension of the Annotation Graphs [1] developed for speech
databases.

Figure 1 shows an example of a STAG. The round nodes
belong to the data graph, while the square nodes are the
annotation nodes. Annotations C1 and C3 are made by the
same user and hence have the same color, while annotation
C2 is made by a different user.

A B C

D E C3

C2C1

Figure 1. Example of a STAG

Definition 1 A STAG is a weakly connected directed
acyclic graph G consisting of a set of nodes V , node-types
τ
�
V � , node colors γ

�
V � , a set of edges E, edge-types τ � � E � ,

and edge labels λ
�
E � , such that the following properties

hold:

STAG0: γ0i is a distinguished family of colors called the
base colors – every node and edge of the i-th STAG has the
color γ0i, and no other STAG has the same base color.
STAG1: Every node has a type assigned to it from type
names τ

�
V � . A hierarchy may be defined over node types,

allowing inheritance.

STAG2: A τ �0 edge between two nodes indicate structural
containment in the sense of XML documents. The τ �0 chil-
dren of a node in a STAG are generally unordered. How-
ever, every node has a null-able attribute called l order
that may specify the local order of the node with respect to
its parent. A node’s children will either be unordered, or be
locally ordered – partial local ordering is disallowed.
STAG3: Every node in the graph is spatiotemporal in
the sense that it has a time-stamp of creation/modification,
and a null-able location attribute. Two nodes with non-
null location values may be connected through an edge of
type spatial having a label like contains or overlaps.
Similarly, a temporal edge having a label like after may
connect two nodes, indicating the child node is presented
after the parent. Sibling nodes that are temporal children of
the same parent overlap in time for presentation.
STAG4: Every node inherits the γ0i color from its parent
node. However, any color other than the base color is in-
herited by a node from another node if there is an incoming
spatial edge from that node.

2.1. How to add annotations?

This section gives a brief description about how a user
can annotate a STAG. For example, we have a PowerPoint
presentation. A user may want to annotate some slide or
some part of the slide for his reference or as a note for
anybody who uses those slides. Assume that the presen-
tation is of lecture notes for Distributed Systems. Now
slides on ”Concurrency Control” can also be used for Dis-
tributed Databases. So a user annotates certain text and im-
ages in some of the slides which can be used for distributed
databases with appropriate remarks. Then by simply query-
ing on these remarks we can extract all the material which
is common to both the subjects.

A user can create an annotation by using the following
query:

create annotation as <annotation> on
<object>;

The object here is specified by an object id and it refers
to a subgraph/node. The object id of the object can be ob-
tained by an appropriate query. When a user adds an an-
notation, a new annotation node is created having a color
which is specific to the user and an edge is added from the
newly created node to all the target nodes. And these target
nodes inherit the color of the annotation node.

Similarly, to delete an annotation we have ,

delete annotation <string>; or
delete annotation <object>;



3. Algebra over STAG

The algebra required for manipulation of a STAG is a
blend of operators required for tree operations, graph oper-
ations and extended versions of relational operations.

The color operator returns the color of the edge or node
specified as an argument to it. The operators parent/child
give the parent/child of the given node. The operations
lastchild, firstchild, RightSibling, LeftSibling, Ancestor and
Descendant give the node sharing the respective relation-
ship with the input node.

The Union works like a set-union, same for intersec-
tion. The operators Difference, Projection and Selection
are also defined for a STAG. By projecting a STAG over
a given color we can extract the graph of a document or
annotations made by a particular user. The grouping and
aggregate operators have the same meaning as their rela-
tional counterparts ,the difference being that in this case
they operate over edges and nodes. The temporal operators
like next, follows, parallel and overlaps determine whether
a node is next to another or if a node follows another or if it
overlaps another. Parallel is equivalent to an exact overlap.

4. Demonstration

We will demonstrate a STAG database populated with
everyday digital documents such as emails, Word files and
PowerPoint presentations each of which may have other
embedded objects. An email, for instance, will have a Pow-
erPoint presentation which will further embed images and
audio.

We will first demonstrate how document as the above
can be converted into a STAG instance, and then show how
a collection of such STAG instances can be queried, re-
trieved and visualized using an SQL-like query language
over our algebra.

We are currently evaluating STAG database imple-
mented on PSE [5], a persistent storage system from Object
Store against XXL [2]. We have a command line interface
where a user may invoke various commands to perform
tasks like insert a new STAG, annotate a STAG, query the
STAG database, etc. The interface consists of mainly three
components : the document converter, the query proces-
sor and, the visualizer and document viewer. The Figure 2
shows a the architecture of the system.

4.1. Document Converter

First we need a STAG instance of the user’s document.
This is obtained using an executable called convert2stag.
It is invoked as:

convert2stag ��� d ��� f 	 input f ile 
���� o 	 out put f ile 
��

Converter

Document


�

QP

Query�


� Visualizer
and
DV

Graph/
HTML�

STAG Database



�



Interface

Figure 2. Architecture of the System

It has various command line inputs some of which are : d-
to display the STAG produced, f - for the input file name
and o- for the output file name. If the latter is not provided
then it uses the name of the input file itself. The input file
name should contain the absolute path of the file if the file
is not in the current directory and the right extension. If
the extension of the file does not match the file format, the
system tries to detect the file format and confirms with the
user. If the detected file format is correct it continues to
process the file based on it instead of the file extension.
Otherwise, it exits. The output file has a � stag extension.
Next,we add the newly created STAG to the database. For
this we have a command insertstag which inserts a STAG
from a file into the database. The syntax for the command
is:

insertstag from <file> ;

The 	 f ile 
 must be a � stag file as created in the pre-
vious step.

The functionality of convert2stag and insertstag can be
coupled into a single command for the ease of the user as
a user must execute these two steps in order to insert the
document into the STAG database. The system described
above is a command line interface. It can be extended fur-
ther to a graphical user interface where the user can browse
the directory structure and select the input file and execute
the above steps at the click of a button.

4.2. Query Processor

Once we have populated the database, we would want
to perform different tasks on it like query or annotate
STAGs. Towards this end we have a SQL-like query lan-
guage that would enable a user to query as well as an-
notate the STAGs in the database. There are commands
to create/delete/modify annotations, query annotations by
user/document, to list all the STAGs in the database and



the documents they represent, etc. We will demonstrate
queries like the following:

1. Find the PowerPoint presentation slide where there is
an animation and image overlapping a text box.

select s from PPTGraph
where s.label = ’slide’ and
descendant(s) = (t,i,a) and
t.mediaType = ’Text’ and
i.mediaType = ’Image’ and
a.mediaType = ’animation’ and
(i overlaps t) and (a overlaps
t)

2. Find the PowerPoint presentation which contains a se-
quence of three slides having the same title and the
slide after these has only text.

select p from PPTGraph
where p.docType = ’ppt’ and
child(p) =
sequence(s1,s2,s3,s4) and
s1.label = s2.label = s3.label
= s4.label = ’Slide’ and
s1.title = s2.title = s3.title
and
childCount(s4) =
childCount(s4,’Text’)

The function sequence specifies that p has (locally)
ordered children s1, s2, s3 and s4.

3. Find the e-mail containing a word document that has
some section title with the word ”Demo”, at least
two images and the second last modifying author was
”ag”.

select e from emails
where e.docType = ’e-mail’ and
child(e) = w and
w.docType = ’MSWord’ and
descendant(w) = s and
s.label = ’SectionTitle’ and
substr(s.value,’Demo’) and
w.imageCount() > 2 and
getChild(reverseSort(descendant(w),
’annotation’,’modification
time’),2).author = ’ag’

4.3. Visualizer and Document Viewer

By default, the STAG environment is in the textual
mode. So the result of any query or annotation is dis-
played in the text format that is a graph/subgraph is given
by its adjacency list. When a user wants to annotate a
subgraph(s)/node(s) he/she has to first select it through a

query. Thus on annotation of a STAG, first the selected
subgraph(s)/node(s) is displayed and then the annotated
version of it. However, it is most convenient for poten-
tial users to use a graphical mode where they can view the
STAGs directly. This is called the Visualizer. The user can
change from the text mode to the visual mode by simply
invoking the command visual. Henceforth, the results of
all the queries and annotations will be displayed graphi-
cally. For drawing graphs we use the graph drawing soft-
ware GraphViz[3].

Along with the selected subgraph we also display its
neighborhood. This neighborhood is computed by deter-
mining the k-nearest neighbors of the subgraph where k is
a function of the average height of the tree.

The Document Viewer provides the user with the option
of viewing the changes on the document itself. He/She can
view the original document, document with all the changes
or the document with some selected changes where the
selection is done based on the criteria specified by the
user. User can select certain annotations based on ob jectid
/userid /query. The ob jectid refers to the id assigned to ev-
ery annotation and userid refers to the id of the user who
added the annotations.Irrespective of the format of the doc-
ument, every document would be displayed in the HTML
format. The annotations may be highlighted, underlined,
quoted or within boxes.

References

[1] S. Bird and M. Liberman. Annotation graphs as a frame-
work for multidimensional linguistic data analysis. In To-
wards Standards and Tools for Discourse Tagging: Proceed-
ings of the Workshop, pages 1–10. Association for Computa-
tional Linguistics, Somerset, New Jersey, 1999.

[2] M. Cammert, C. Heinz, J. Krmer, M. Schneider, and
B. Seeger. A Status Report on XXL - A Software Infras-
tructure for Efficient Query Processing. Data Engineering
Bulletin, 26(2):12–18, 2003.

[3] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and
G. Woodhull. Graphviz - An open source graph drawing
tools. In Graph Drawing, pages 483–484, 2001.

[4] H. V. Jagadish, L. V. S. Lakshmanan, M. Scannapieco, D. Sri-
vastava, and N. Wiwatwattana. Colorful XML: One hierar-
chy isn’t enough. In Proc. of the ACM SIGMOD Conference,
2004.

[5] G. Landis, C. Lamb, T. Blackman, S. Haradhvala, M. Noyes,
and D. Weinreb. ObjectStore PSE: a Persistent Storage En-
gine for Java. In Proc. of the 2nd Int. Workshop on Persistence
and Java(tm) (PJW2), 1997.

[6] K. Norvag. Temporal query operators in XML databases. In
Proceedings of the ACM Symposium on Applied Computing,
pages 402–406, 2002.

[7] L. Sheng, Z. M. Ozsoyoglu, and G. Ozsoyoglu. A graph
query language and its query processing. In ICDE, pages
572–581, 1999.


