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ABSTRACT

This paper defines wavelet transforms as a datatype suitable
for inclusion in databases and an algebra for the manipula-
tion of this data type.

1. INTRODUCTION

Of the several trends in the development of modern database
systems, one of the most interesting is towards the inclusion
of data types not contemplated by traditional models and
which can, with a certain amount of impropriety, be called
multimedia data. From a database point of view, a multime-
dia object is usually characterized by a set of visual proper-
ties represented with structurally complex features, and not
by any property related to “multiple media”.

Images, in particular, can be described using a number
of different features. Image databases researchers have used
color histograms [7], structure graphs [5], transforms [3] or
other, more ad hoc, features. These structural features have
remained, for the most part, “black boxes” inside which no
access operations are permitted. In the case of images, for
example, a feature is treated as a collection of opaque el-
ementary components, arranged in some ad hoc serialized
data structure, which is retrieved as an atomic unit such that
some in-memory algorithm operates, to compare it with an-
other, similar feature. All the problematic of considering an
image feature as adata type, with the consequent require-
ments that we will consider shortly, have been largely absent
from the bulk of image database research. This has gen-
erated a situation in which databases of images have been
either simplified into simple memory or linear indices, im-
plemented with ad hoc solutions, or built on top of databases
that were not specifically designed to include them, with a
consequent loss of efficiency.

We believe that the study of image features as transpar-
ent, explicitly manipulable, data types in a database will be
of paramount importance for developing efficient and robust
systems for storing and searching multimedia data. In this
paper we continue our previous work [2] toward a feature-
based image data models, by presenting a data type and an

algebra for one of the most widely used features in image
analysis: multi-resolution transforms. While we present
only a first treatment of an algebra of multi-resolution tran-
frorms, the the algebra and the approach are general enough
to express most queries of practical interest, and they can
be well integrated into a more complete model of feature
databases.

2. THE WAVELET DATA TYPE

Our wavelet data model is based upon the concept of com-
plex object, extensively studied in the database literature
[9]. If T is an uninterpreted data type (which can be ei-
ther a basic type like integer or boolean, or an abstract data
type created by a type constructor function), the common
complex data types built onT aresets{T}, lists, [T ] and
tuples×ti whereti is of some typeTi. Arrays are usually
considered as a special case of lists. As Libkin and Wong
[4] observed, though, in applications that make heavy use
of arrays, it is convenient to define them as an independent
complex data type. In their definition, ak-dimensional ar-
ray is a function from a rectangular subset ofNk (the index
set) to a data typeT . Such an array is indicated as|[T ]|k. If
Uk ⊂ Nk is the data type of allk dimensional index rectan-
gles aligned with the origin ofNk, then|[T ]|k is equivalent
to the function typeUk → T . In addition to the elemen-
twise application of all the operations defined for the data
typeT , Libkin and Wong define four functions in their ar-
ray algebra:

1. |[ e|i1 < e1, . . . , in < en ]| builds ak dimensional ar-
ray with index limitse1, . . . , ek such that the element
of indicesi1, . . . , ik has the valueλe.i1 . . . ik;

2. the indexing functione[i], with i ∈ Nk, which evalu-
ates the array for a particular value of the subscript;

3. the functiondim(e) ∈ Nk, which returns the dimen-
sion of an array; and

4. the functionindexk(e) : {Nk × T} → |[T ]|k, which
converts an indexed set into an array.



A Wavelet transform can be seen as a list of two-dimensional
arrays of varying dimensions, with the following additional
structural constraints:

1. All the arrays in the transform have dimension2k for
somek and, for allk < k0, there is at least one array
with dimension2k;

2. the arrays areindex-constrained.

Two arraysA andB are index constrained if there is a
function f that maps subsets of indices ofB to indices of
A. In other words, letIA ⊆ N2 be the set of indices of
A, andIB ⊆ N2 the set of indices ofB, then the func-
tion f is defined asf : 2IB → IA. The idea of this func-
tion is that it encodes the structural relationship whereby a
pixel in a coarser scale of a wavelet transform represents the
same spatial location as a set of pixels at a finer scale. The
function map(R,Ai, Aj), given a sub-array ofAi returns
the corresponding sub-array ofAj . Note that the index-
constraint relation is transitive and (trivially) reflexive.

If P is a set of arrays such that any pair of members
is index-constrained by some index mapping function, then
P is an index-constrainedset. A wavelet transform is an
index-constrained setW of arrays such that:

1. There is a single arrayA such that every array inW
index-constrainsA, and

2. there are no loops in the index-constraint relation (that
is, it is never the case thatA constrainsB, B con-
strainsC, andC constrainsA).

The operations defined on the wavelet data type are the
same defined on its constituent arrays, the functionmap,
and its inverseimap. All the operations introduced in the
following for the wavelet data type can be defined in terms
of these basic operations. In the following, the wavelet data
type will be indicated asW, regions (whose definition is
standard) as (R), and shapes as (S).

The multi-band operatorM() is defined as follows: given
a regionr and a waveletw, the operator

m : Rm = M(w, r) (1)

creates a multi-band region with the same structure as the
waveletw. The multi-band region thus created has compo-
nents in all the bands of the wavelet transform. It is some-
times necessary to restrict a region to only certain bands of
the wavelets. This can be done using theslice operatorS,
which extracts the region component on a single band of
the transform (regions composed of multiple bands can be
defined as a partially ordered composition of single-band
regions). The form of the operator is

r1 : Rm = S(r : Rm, i1, i2) (2)

wherei1 andi2 are the indices of the band that will be ex-
tracted from the region.

3. GENERAL ORGANIZATION OF A FEATURE
DATABASE

Features are defined as a data type in order to be inserted
in a database. In this section we will give some general
concepts of a possible organization of a relational database
that include features. An important difference between fea-
ture databases and other relational databases is that the lat-
ter do purematchingqueries while, in the case of images
and other multimedia data described by features, the im-
precision with which the features describe the data, and the
inherent semantic polysemy of the data themselves make it
necessary to resort tosimilarity queries. Similarity queries
require several extensions of traditional database concepts,
including the possibility to handle scoring functions, and a
scoring-function dependent join that will not be considered
at all in these brief consideration. The interested reader can
find more details in [6].

In a database, images are organized intablescontaining
an identifier of the image and a number of attributes, some
of which can be features:

id author width height w

1 Simone Santini 640 480 w1

2 Amarnath Gupta 640 480 w2

The non-feature part of this table is managed using typ-
ical database operations, so we will ignore it in the follow-
ing, and consider tables containing only the image identifier
and a feature, which we will indicate asT (id : int, val :
W). Each row has an implicit read-only attribute, called
score, and indicated asς. As a notational matter, the score
of the ith row of tableT will be indicated asT [i].ς, and a
similar notation applies to the other attributes.

In traditional databases, queries are implemented using
the selectoperatorσ: the operationσT (Q) returns a table
composed of all the rows that match the queryQ. In the
case of a similarity database there are two select operators,
which we indicate withσρ andσ|k|. The operatorσρ

T (Q)
returns all the rows of the tableT that receive from the query
Q a score of at leastρ. The score field of the returned rows
is set to the score with respect to the queryQ.

The operatorσ|k|T (Q) returns a table composed of thek
rows that better match the queryQ. The score field of the
returned rows is set to the score with respect to the queryQ.

The projection operatorπ is defined exactly as in the
case of standard databases. The definition of the join oper-
atoron requires handling the scoring functions of the tables
to which it is applied, and will not be considered here.



4. OPERATIONS ON WAVELETS

As mentioned above, a wavelet transform is created from
an image using a constructorW(). The arguments of the
constructor specify the image to be transformed, the type of
the transform, the number of resolution levels of the trans-
form, and any other necessary parameter depending on the
particular transform. For example, the constructorw =
W(img, GABOR, 8, 16) creates a gabor transform with 8 res-
olution levels and 16 direction at every level. A special
form of the constructor is used in order to create an empty
wavelet, in which every coefficient is thenull value of
the typeµ: w = W(µ, p, GABOR, 8, 16), where the null im-
age from which the transform is derived has size2p × 2p.
Two waveletsw1 andw2 are saidisomorphicif they have
the same dimension, number of bands and coefficients data
type.

The slicing operator extract a band from the wavelet
transform given its band indices. The result is a matrix of
suitable size with elements of typeµ:

m : [µ] = S(w : W, i1, i2). (3)

Note that this operator is identified by the same symbol as
the similar operator defined for regions. There is however
no ambiguity, since the signature of the operator is different
in the two cases. The inverse of the slicing operator replaces
a band in a given wavelet transform with the data of a matrix
of suitable size:

w = S−1(w : W,m : µ, i1, i2) (4)

Given a functionf : µ → λ and a waveletw, the apply
operator[] returns a wavelet isomorphic tow, with elements
of type λ obtained applying the functionf to all its coef-
ficients. The operation is written[f ]w. Given a function
f : µ × µ → λ and two isomorphic waveletsw1, w2, the
apply operator will return a wavelet isomorphic tow1 and
w2 but with elements of typeλ in which coefficients are
obtained by applying the functionf to the corresponding
coefficients ofw1 andw2; the operation is writtenw1[f ]w2.

Themapoperator takes an associative and commutative
functionf : µ× µ → µ and makes a “running application”
of the function between all coefficients of the wavelet. The
operator is writtenf\w

Themaskoperator takes a multi-band region and a wavelet
and restricts all operations on the wavelet to the portion in-
cluded in the region. Masking the waveletw with the region
q is indicated asqw.

4.1. Comparison Operators

One of the most important operations in a database is to
compare two features to determine the degree to which they
match. The comparison operator “=” determines the degree

by which two wavelet transforms match. The syntax of the
operator isw1 = w2, which returns the similarity between
the two wavelets in the interval[0, 1]. This general oper-
ator does, in practice, take three different form depending
whether a mask is applied to one of the two wavelets. Let
r : Rm be a region ands : Sm be a shape. Then the seman-
tics of the comparison operator is the following:

w1 = w2 returns the similarity between the wavelet trans-
formsw1 andw2.

rw1 = w2 returns the similarity between the regionr of w1

and the same region ofw2.

rw1 = sw2 returns the similarity between the regions of
w1 and the corresponding region ofw2 that better
matches it, independently of its location.

4.2. Examples

The following simple examples should give a general idea
of the behavior of the operations introduced so far.

• w = w1[+]w2: The waveletw is the sum of the
waveletsw1 andw2.

• v = +\w: Computes the sum of all coefficients of a
wavelet.

• v = +\[norm](w1[−]w2): Computes the Euclidean
distance between two wavelets (norm is the function
that computes the norm of a coefficient of typeµ).

• v = +\[norm]q(w1[−]w2): Computes the Euclidean
distance between the portion of the wavletsw1 and
w2 included into the regionq.

• w = w1[+]qw2: w is equal tow1 outside of the re-
gion q, and equal tow1[+]w2 inside the regionq.

For examples of queries, assume that the database is
composed of a single tableT (id : int, w : W). The sim-
plest query possible in this database involving image con-
tents is query by example: given a wavelet transformw,
find thek images closest tow. This is written as

σ
|k|
T (w = T.w) (5)

The following query finds the images that are similar to
a given image in the regionr:

σ
|k|
T (rw = T.w). (6)

Some queries require, in order to be executed, the defini-
tion of logic operator on scores. We will not consider such
operators here: we will just assume that they are defined



as in Fagin’s paper [1] or as in [6]. Some of the follow-
ing queries will also require the definition of auxiliary func-
tions, which are included into the query language using a
syntax derived from that of the ML programming language
[8]. The query itself is created as the body of an implicit
functionquery which returns an ordered table. For exam-
ple, the query (6) is translated into the function

fun query ( w, r) = σ
|k|
T (rw = T.w)

Note that all the free variables in the query will be mae
into arguments of the query function.

It is possible to use variables in a query by inserting
them in the body of a function with alet statement. The
following query retrieves the images similar to a given im-
age in general shape (that is, in the content of the lowest res-
olution bands) and in the high frequency component taken
in a given fixed rectangle:

let
r1 : R; w : W; m1,m2,m, mt : Rm

r1 = rectangle (100, 100, 50, 20)
w1 = W(int , 8, GABOR, 8, 16)
mt = M(w1, r1)
m1 = S(mt, 8, ∗) ∪ S(mt, 7, ∗)
m2 = S(M(w1, all ), 0)

in

σ
|k|
T (m1w = T.w ∧m2 w = T.w)

end

The definition of the region is the most cumbersome
part of this function definition but, in practice, libraries of
macros are available to make such definition easier.

5. SOME INDEXING NOTES

One of the advantages of defining a feature as a data type
and restricting its manipulation to a finite set of operations
is the possibility of an efficient implementation of such op-
erations which, in turn, would allow an efficient evaluation
of all the queries made using such operators. Implement-
ing a feature algebra efficiently requires two categories of
techniques: algebraic manipulation and low-level indexing.
The algebraic manipulation subsystem performs some sim-
ple query rewriting in order to increase the evaluation effi-
ciency and to traslate the high level algebraic operators into
lower level operators, which can be implemented more effi-
ciently. The most important case in point is the grouping of
the selection and equality operations into a single indexing
operator: the groupσ|k|T (w = T.w) is implemented as a sin-
gle operator, and so are the region-masked operator group
σ
|k|
T (r:Rm

w = T.w) and the shape-masked operator group

σ
|k|
T (s:Sm

w = T.w).
This re-definition allows us to implement the operator in

an efficient way. This is important especially for databases

of large images, such as satellite or medical images, for
which loading a whole transform in memory is a time con-
suming operation. Wavelet are stored using a quadtree struc-
ture for every band, so that region operations can be imple-
mented efficiently.
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