
MedSMan: A Streaming Data Management System over
Live Multimedia

Bin Liu
School of Electrical and
Computer Engineering

Georgia Institute of
Technology

bliu@ece.gatech.edu

Amarnath Gupta
San Diego Supercomputer

Center
University of California San

Diego

gupta@sdsc.edu

Ramesh Jain
Department of Computer

Science
University of California Irvine

jain@ics.uci.edu

ABSTRACT
Querying live media streams is a challenging problem that
is becoming an essential requirement in a growing number
of applications. Research in multimedia information sys-
tems has addressed and made good progress in dealing with
archived data. Meanwhile, research in stream databases
has received significant attention for querying alphanumeric
symbolic streams. The lack of a unifying data model capa-
ble of representing multimedia data and providing reason-
able abstractions for querying live multimedia streams poses
the challenge of how to make the best use of data in video
and other sensor networks for various applications including
video surveillance, live conferencing and Eventweb. This pa-
per presents a system that enables direct capture of media
streams from sensors and automatically generates meaning-
ful feature streams that can be queried by a data stream
processor. The system provides an effective combination
of extensible digital processing techniques and general data
stream management research.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models, Search process; D.3.3 [Language Constructs and

Features]: Data types and structures

General Terms
Design, Experimentation, Languages

Keywords
multimedia, stream, continuous queries, languages, events

1. INTRODUCTION
Multimedia information retrieval has been a popular topic

of research for quite some time [14, 6, 4, 8, 2]. Most multi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’05, November 6–11, 2005, Singapore.
Copyright 2005 ACM 1-59593-044-2/05/0011 ...$5.00.

media information systems deal with archived video, audio,
and images by using powerful DSP techniques, which remain
a very active research area. In database community, contin-
uous queries, which are persistent queries that are issued
once and then logically run continuously over live and un-
bounded streams, have also become a major research area in
data management (e.g., OpenCQ [12], NiagaraCQ [7], Au-
rora [1], Telegraph [13] and STREAM system [5]). Live sen-
sors ranging from simple RFIDs to webcams become com-
mon in many applications, from homeland security to busi-
nesses, and produce enormous volumes of continuous sensor
data called media streams. Expectedly, the large scale de-
ployment of various sensors gives rise to more complex appli-
cations where multiple live streams of heterogeneous media
must be jointly monitored to query interesting events [10].
A media stream is usually the output of a sensor device such
as a video, audio or motion sensor that produces a continu-
ous or discrete signal, but typically cannot be directly used
by a data stream processor. To evaluate queries on me-
dia streams, one need to continuously extract content-based
descriptors, commonly called features, and identify the cor-
responding media portions by evaluating queries on the gen-
erated feature streams, which are post-processed by one or
more transformers and correlated to the media streams tem-
porally and in terms of content.

The term live multimedia refers to the scenario where
the multimedia information is not produced through man-
ual editing, but is captured in a real-life setting by different
sensors and streamed to a central processor. When multiple
sensors of similar or different types are placed in an appli-
cation, their placement in the physical environment and the
models of the events that they are supposed to capture play
very important roles in the extraction and assimilation of
information. The basic premise behind delivering multime-
dia information is that while an individual media channel or
a derived feature stream captures some aspects of such an
event, it is the synchronous combination of all the streams
that captures the entire intended semantics of the content
and makes the event detection easier or more effective than
only using one media or one aspect of that media.

Our research focuses on applying the knowledge about the
location of sensors in a physical space and the role of spa-
tially and temporally correlated information obtained from
disparate sensors. An environment model is utilized to cap-
ture the physical placements and constraints on the infor-
mation obtained from these sensors. The role of an event

model in extracting and organizing information is also dis-
cussed. Then accessing and processing media streams are
presented. We contend that a live multimedia management
system (LMMS) should use the additional contextual infor-
mation and semantic constraints to answer more complex
queries over live media streams. The system deals with con-
tinuous queries on multiple live media streams by taking ad-
vantages of automatic and real-time multimedia information
processing techniques. We previously studied media/feature
stream generations and feature function implementations
in [11], while this paper focuses on event modelling and
stream query processing.

1.1 A Motivating Example
Consider a broadcast seminar application which remote

participants can decide to “tune in” only when events of
their interests occur. Such a professional conference room
includes a podium connected with a projector that sends out
a video stream VP from the presentation projector, a video
camera CS and a microphone MS reserved for a speaker. K

seats are allocated at the table fitted with individual micro-
phones M1 . . . Mk. A video camera CP captures the podium,
and n other cameras C1 . . . Cn capture different segments of
the conference room, so that a camera Ci (1 ≤ i ≤ n) can be
mapped to a specific subset µ(Ci) of the k participants. In
this scenario highlights can be the relevant media streams
for any time interval when the speaker presents or answers
questions. The system is designed to evaluate continuous
queries, such as the followings:
Query 1 Display the speaker’s video when he is answering
the 4th question about “multimedia”.
Query 2 Display the speaker’s video when he walks around
and speaks.
Query 3 Connect to the speaker’s audio only when he is
speaking loudly for a while.
Query 4 Display the speaker’s video from 1 minute before
he walks around until he stops.
Query 5 Show content of VP while the slide stream goes
from slide-number 12 to 18.

2. THE MEDSMAN DATA MODEL
An event-based query approach provides a feasible way

for users to access the related media stream content of in-
terest at specific levels, and give a meaningful, more refined
view of the world around them. However, the gap between
the low-level sensor signal data and the high level event de-
scription is huge. Therefore, a unifying data model that can
access heterogeneous media streams and provide effective in-
terpretations as well as reasonable abstractions for them is
necessary. This paper proposes a data model that consists
of three components – the media and feature (MF) stream
model modelling the data streams produced by sensors and
feature transformer (or generation) functions, the environ-
ment model providing the prior knowledge of the physical
setting from which stream data is collected, and the event
model capturing the possible events that can occur in the
environment.

2.1 The Environment Model
The environment E of a live multimedia schema (LMS)

consists of a set L of landmarks, a set T of sensor types, a
placement P of sensors, a map µ̄ called the sensorium for
all sensors, together with C, a set of sensing constraints.

A landmark is a named object that is fixed in space, and
is defined by the pair o name, o extent, where o extent is a
point or region in space occupied by the object; thus the the
podium p in our example occupying a specific cuboidal re-
gion within the seminar room is a landmark. We also assume
that standard spatial predicates like inside and overlaps

in 2D and 3D can be used as needed by the system.
The sensor type depicts a classification over sensors, as

well as the properties of the sensor, including its operating
characteristics. Some of the characteristics are used to in-
terpret the signal. Some other characteristics are obtained
by standard signal transformations that produce a feature
stream concurrently obtained with the direct sensor signal.
For a camera one needs to know what RGB values would
constitute a “black frame”, or for a microphone, what FFT
feature should be considered to be noise. A more detailed
discussion on feature streams is in Section 2.3, while a prop-
erty called the expected sensitivity of a device is defined as:

Definition 1. Let S be a non-cardinal scale of measure-
ment with a comparison function ≤S. Given a location ρ

relative to the position of a sensor of type T, expected sen-
sitivity IS is a function that maps from ρ to S.

270◦

0◦

90◦

180◦

0db

-6

-12

FRONT

BEHIND

Figure 1: Expected sensitivity of a hyper-cardioid

microphone.

The benefit of modelling a sensor’s expected sensitivity
can be seen in Figure 1, where the “pick up” and attenuation
characteristics of microphones is depicted as a function of its
radial and angular distance from the sound source. There-
fore, if we know the location of a normal-volume speaking
voice behind a hyper-cardioid microphone, we can estimate
whether that voice is audible from the sensor stream of that
microphone. The placement of a sensor si of type tj in an
environment is a set of functions to assign it: 1) a location in
the same coordinate space as the landmarks, 2) a parameter
called the “sensing direction” and optionally 3) a set of land-
mark objects directly sensed by the sensor. The placement
P of all sensors, though not shown here, can be modelled as
a spatial relation. Once the placement of sensors is known,
the expected sensitivity can be utilized by composing it with
sensor placement parameters. The result of the composition
can be realized by a set of functions, collectively called the
sensorium µ̄ of the environment. One function may, given
a small region, compute the signal effectiveness of a specific
sensor; another function can, given a landmark, determine
a set of sensors (or a specific type) that cover the region
at a specified level of signal effectiveness. In an alternate,
coarser-grain implementation, the sensorium may be mate-
rialized as a relation called the coverage map shown in Table
1. Note that signal effectiveness for any sensor is an ordinal

Region Sensor Type Effect Landmarks

r1 s1 audio loud chair2
r1 s3 audio faint chair2
r1 s2 video covered chair2,

door1
r2 s1 audio loud chair4
r2 s2 video partial chair4, win-

dow2
· · · · · · · · · · · · · · ·

Table 1: A coverage map derived from sensor place-

ment and expected sensitivity

scale that corresponds to its expected sensitivity. Pragmat-
ically speaking, the user may also use a graphical tool to
manually construct a coverage map instead of computing it
from sensor specification.

Movable sensors fall into three different situations. If a
sensor is attached to or follows along with a moving object
(such as a microphone attached to a mobile person), we
consider it a dedicated stream source. If a sensor is not fixed
to a single region but switches between multiple regions,
the coverage map needs to be updated accordingly. If a
sensor changes the coverage regions continually, the coverage
map needs to be recomputed. The latter two situations are
beyond the scope of this paper.

Another aspect of an environment model is the set of de-
vice and domain constraints. The system should ensure that
the returned stream segments as a query result must be valid
for any query. For every sensor type, a set of validity con-
straints are defined and implemented as system-wide distin-
guished predicates invalid(SensorStream), which are used
as guard clauses for each related sensor or feature stream in
a query. As a new sensor is added, one specifies new rules
stating when the sensor input should be considered invalid.

invalid(camera signal(X)) ← black-frame(X)
black-frame(X) ← frame-average(X) < 30
invalid(microphone signal(X)) ← background noise(X)
background noise(X, interval) ← FFT feature(X,Y),
window-average(Y, interval) < Threshold

All the above variables are universally quantified. For cam-
eras, getting a black frame makes the frame unusable. For
an audio channel, the s/n ratio can be determined by val-
idating a window averaging function on the corresponding
FFT feature (i.e., a histogram where the X axis is a bin of
frequency ranges and the Y axis is the coefficient) to test if
the signal have much high frequency noise. The Threshold
value of the sensor noise also depends on the specific ap-
plication knowledge (e.g., a higher threshold is required for
sound noise on a street than in an empty auditorium). Fur-
thermore, the validity constraints should also be tested for
the feature computation modules so that features are only
computed from valid parts of the streams.

Synchronization constraints may also exist. For example,
the microphone controller may allow only one microphone
from the audience to be active at any time. One way to
interpret this rule is – if one audience microphone already
has a valid signal, then no other microphones should be
tested until the active microphone becomes inactive for at
least a period of τ .

check(microphone signal(X))←active(microphone signal(Y))
before(duration>τ) inactive(microphone signal(Y)),X 6=Y

The check is another distinguished predicate, which when
true, initiates an action for the stream manager. The con-
nective before(duration > τ) is used to model the tempo-
ral relationship between two predicates, parameterized by
a duration constraint. A different method is used to spec-
ify constraints like “video cameras of the bridge may be
on for two minutes at 15 minute intervals, unless some no-
table events (like a highlight incident) occur”, where the rel-
ative order of their start-time may not be specified. We ex-
press these constraints as default values of sensor attributes
signal-duration and signal-frequency.

The environment model serves as the setting against which
both the event model and the stream model are specified.

2.2 Event Model
The term event has traditionally been used in the database

community to designate a state-changing phenomenon like
an update in a database, or turning-on of a boolean variable.
In our setting, we refer to an event as a happening that oc-
curs for a certain time interval and at a certain location.
Every event, therefore, has a start, end and a set-valued
location attribute. An event can belong to one or more
event classes. The model allows a hierarchy HE of event
classes that admit multiple inheritance. A subevent E′ of an
event E is an event that occurs such that E′.start ≥ E.start

and E′.end ≤ E.end. However, class-of(E′) need not be
the same as class-of(E). If an event does not have any
subevent, it is called atomic. The start and end times of
a larger event is determined by the start and end times of
all its subevents; the location attribute of an event can be
defined by different aggregate functions over subevent lo-
cations. Two straightforward choices are union of location
names (set-union semantics) and spatial-union of the extents
of the atomic events (spatial-union semantics).

An event-schema S defined over an event hierarchy HE is
a copy of HE adorned by occurrence constraints. Over an
event hierarchy, we may define the event schema of a specific
meeting to be an event with four subevents – “speaker in-
troduction”, “speech”,“questionnaire session” and “speaker
thanks”, where “questionnaire session” may be modelled as
an arbitrary number of alternate occurrences of “audience
question” and “speaker response”. Suppose we put the con-
straints that there will be exactly one occurrence of each of
these four subevents, and that they will occur consecutively.
Furthermore, the duration of the speech will be 30 minutes
and the total questionnaire session will be 10 minutes. Ev-
idently, by this model, no audience member can interrupt
the speaker during the speech, and the event lasts for 40
minutes. The event schema is shown in Figure 2.

The relationships among event instances are defined using
three structures. The subevent relationship induces a tree
TE called the event tree, which is an instantiation of the
event schema. An event tree is not constructed per sensor,
but is a composite structure using multiple sensors. More-
over, the temporal relationship over all events is modelled as
an interval tree TI . In adddition, the transition between two
events may occur by a named state-change. In the meeting
example, the transition from the event “audience member
4 talking” to the event “speaker talking” may be named
“speaker response”. The state changes over the set of atomic
events can be represented together as an edge-labelled tran-
sition graph GT . Note that while TE is an instantiation of
event schema S created during system design, TI and GT are

occurs before

occurs before

and-all

Seminar

Audience Question Speaker Response

Speaker Intr Questionnaire Speaker ThxSpeech

occurs before occurs before occurs before

interval(10min)

Figure 2: A seminar event schema.

occurrence structures and are produced at run-time by de-
tecting event instances from data streams. Join operations
can retrieve the stream contents occurred in TI intervals.
Similarly, the nodes of GT contain pointers to stream con-
tents. If an event that an audience member has spoken in
the middle of the speech is detected, it will not correspond
to the event schema, but will be recorded as an unexpected
event in TI , and in GT . An important aspect of our model
is that the occurrence structures TI and GT adhere to the
event schema only loosely, thus allowing for deviations that
naturally occur in real-life situations. It is possible for a
system designer to accommodate for such deviations by as-
signing a strictness qualifier to a constraint:

event-duration(questionnaire(600)) non-strict

If the constraint is strict instead, the system would still
record events but put them as instances of a special event
class called error-events. The edge-labels for the deviant
transitions of GT may be defined using rules. For example,
there may be a rule that an edge from the “speaker talk-
ing” event to an unexpected “audience member talking” will
be labelled as an “interruption” edge, while returning from
the unexpected state to the schema-defined state will be a
“restoration” edge. If such a rule does not exist, GT will
have specially-marked ε-edges.
Event Operations In an LMMS, event operations are de-
fined at two levels. At a higher level, the user can spec-
ify their event queries by constructing an event expression,
much like the event expressions found in literature. At a
lower level, events are defined in terms of stream operations,
which is discussed in Section 2.3. In the LMMS model, an
event can be named as discussed in the previous paragraphs,
or it can be derived through an event expression.

Definition 2. An event expression is defined by the fol-
lowing rules:

• An empty event φ is an event expression.

• All named events e are event expressions.

• Events specified as a path expression over the event-
subevent tree TE or event classification hierarchy HE

are event expressions.

• Events specified as path expressions over the graph GT

are path expressions.

Operator Meaning

e1 occurs before e2 e1 ends before e2 starts
and-any(e1 . . . en, k) any k of the n events occur

and-all(e1 . . . en) all n events occur
e1 xor e2 either e1 or e2 occurs but not both

e1 overlaps e2 the intervals of e1 and e2 overlap
e1 not e2 e1 occurs and e2 does not occur

interval(e1) there is an interval where e1 occurs

Table 2: Event operators in our system

• If e is an event expression, then expressions of the form
(T before e) and (T after e) where T is a time-
duration are also events whose start time is T units
before (resp. after) the event e.

• If e1 . . . en are event expressions then any formula formed
by using the operators in Table 2 is an event expres-
sion.

• Nothing else is an event expression.

Note that the operations in Table 2 generate event in-
stances. Thus, E = e1 occurs before e2 evaluates to an
event that starts with e1 and ends with e2. Similarly, the
expression E = T after and-all(e1, e2, e3) refers to the
derived event E that starts with the earliest of the events
and ends T units after all the three events have occurred.
A query involving event expressions is typically specified
through the special predicate occurs(event, interval) mean-
ing that the event occurs in the interval. Typically, an event
query will also situate events in terms of their relations with
the objects specified in the environment model. The higher-
level events are related to the observable streams, and event
queries are illustrated through the examples in Section 4.4.

2.3 The Stream Model
The Media and Feature (MF) stream model works in the

settings specified by the environment model, and serves as
the foundation for the event model.

2.3.1 Formal Definitions
Because of their continuous nature and the stream depen-

dency, both media and feature elements require explicit and
exact timestamps. The time attributes provide valuable in-
formation for the stream generating and query processing.
In our framework, the element of a media or feature stream
is defined as a tuple, which consists of a logical sequence
number (sqno) indicating its position in a stream, a tempo-
ral extent defined by a pair of start and end timestamps (ts,
te] (for a time-point attribute ts = te, a single time point
is represented as td), and any other media attribute. We
give a series of conventions and definitions that make more
precise the notions of media and feature streams.

Convention 1. A sequence T , is said to be continu-

ously well-ordered iff (1) T is well-ordered, and (2) for
each time-unit (tsi, tei], there must be one and only one di-
rectly following time-unit (tsi+1, tei+1] in T , where tei =
tsi+1. We refer to a continuously well-ordered set of time-
units as a continuous time set. A corresponding tuple
value holds in each time-unit.

Convention 2. A sequence T is said to be discretely

well-ordered if and only if T is well-ordered, i.e., the con-
tinuity clause does not apply for two consecutive units. We
refer to a discretely well-ordered set of time-points as a dis-

crete time set. At each time-point td, a corresponding tuple
value holds.

Definition 3. A continuous media stream is a se-
quence of tuples, each consists of a sequence number (msqno)
uniquely identifying its position in stream, a pair of start
and end timestamps (ts, te] whose domain is a continuous
time set, and a media valued attribute vm valid only during
(ts, te].

Definition 4. A discrete stream is a sequence of tu-
ples, each consists of a sequence number (msqno) uniquely
identifying its position in stream, a media or non-media val-
ued attribute vm, and a time-point td, defined on a discrete
time set domain, indicating when vm arrives intermittently.

Definition 5. A feature stream is defined as a sequence
of tuples, each consists of a sequence number (fsqno) uniquely
identifying its position in stream, a feature value attribute
vf , a time-point attribute tf indicating when vf is computed,
and a set m̄sqno identifying the media tuples or a set f̄sqno

identifying other feature tuples, from which a feature tuple
is derived.

2.3.2 Stream Semantics and Operator Classes
While being absent in the general purpose Data Stream

Management System (DSMS) [3], direct stream-to-stream
operators are necessary for media stream systems, since me-
dia and feature streams are (1) quite different in operations;
and (2) dependent. Besides, we need to compose media
stream(s) for presenting query results. The four subclasses
of stream-to-stream operators, shown in Figure 3, are:

• MS-to-FS operators that generate feature streams from
media streams;

• FS-to-MS operators that map back to the deriving me-
dia stream fragments from feature tuples;

• FS-to-FS operators that generate feature streams from
existing feature streams;

• MS-to-MS operators that reformat a media stream or
compose a composite media stream from multiple me-
dia streams.

MS-to-FS

FS-to-MS

MS-to-MS FS-to-FSFeature

Stream

Media

Stream

Figure 3: Stream operator classes and semantics.

Time Attributes and Order Our definitions in previous
section require explicit time attributes in stream schemas.
Furthermore, we assume all tuples in a stream are discretely
well-ordered by time-points, or continually well-ordered by
intervals. Note tuples from different streams may not be
totally ordered, but partially ordered. For the presence of
explicit time attributes, tuples in a relation produced from a

stream by sliding window operators are also ordered in time,
rather than a bag of unordered tuples. As we will present in
later sections, the order of tuples is necessary to guarantee
tuple continuity for queries over intervals.
Overlap Join In most multimedia applications, especially
for audio-visual applications, the synchronization between
different media streams needs to be precise to satisfy per-
ceptual continuity, when viewed by the human user. This
fact implies that media tuples from different media streams
require very strict temporal relevance for join, so are feature
stream tuples. Due to the unbounded nature of streams,
continuous queries over streams are often defined in terms of
sliding windows, either tuple-based or time-based [9]. Never-
theless, such windows do not take the tuple intervals into ac-
count. In those applications, a tuple (e.g., temperature read-
ing) is instant-based, rather than interval-based. This is not
true for typical media stream tuples, and may have problems
(e.g., false join) in joining tuples with non-overlapping in-
tervals. A loose window including multiple non-overlapping
tuples cannot satisfy the strict temporal join constraint for
media or feature tuples from different streams. Instead, a
more precise and strict metric is required to join them. We
apply an overlap join TSJ1 defined in [16]: All participat-
ing tuples that satisfy the join condition share a common
time point. Tuples whose temporal attributes overlap in
time have the highest temporal relevance, thus can be joined.
Those non-temporal attributes of tuples can only be joined
after satisfying the premise that the corresponding temporal
attributes are overlapping in time.
Dynamic window Either tuple-based window or time-based
window has a fixed window size predefined in query lan-
guage. However, there are cases in which dynamic windows
(whose lengths are not predefined but detected at run time)
are preferred, for both query semantic reason and cost effi-
ciency. Suppose we want to join a keyword detected when
a presenter is speaking a sentence (during period P1) with
the same keyword detected from a presentation slide video
when a specific slide is shown (during P2). Assume P1 over-
laps with but is not identical to P2. Both P1 and P2 are
unpredictable in terms of period ends and lengths. They
are dynamically determined by some subqueries. Since the
lengths of such periods are not deterministic, a fixed window
(W) is not efficient – if W is short, it may not contain an en-
tire P1 or P2 and require multiple sequential windows and
additional post-processing; if W is too long, it may waste
too much memory since typical media tuples are very space
consuming. Instead, a dynamic window determined by pe-
riod detection operations at run-time is desirable.

2.3.3 Algebraic Operators
Following the definitions in previous sections, media and

feature stream operations are designed for the varying-interval
media and feature tuples. The feature tuples carry pointers
(i.e., sqno) to the deriving media tuples. The basic algebraic
operators to manipulate them are defined in Table 3. Very
often, media stream queries only concern with tuples in pe-
riods of interest, which are either fixed or dynamically deter-
mined by subqueries at run-time. The last three operators
provide the capabilities for such dynamic period queries.

3. OVERVIEW OF THE SYSTEM
Figure 4 shows the overall system architecture. The appli-

cation environment model provides application-dependent

Operator Definitions Stream

Scan Get the next tuple of a same stream (push) M/F
Selection Produce a new stream Rs from stream R with a subset of its tuples M/F

M Projection Create a stream by extracting a substructure from each media tuple M
M Fetch Apply to one or a set of feature tuples to recursively retrieve the set of media M

fragments that produces the feature tuple(s) (pull)
F Fetch Apply to one or a set of feature tuples derived from other feature tuple(s) (pull) F
O Join Join any tuple ri from Ri with any tuple or set of tuples rj , each from Rj (m ≥ 2; 1 ≤ i, j ≤ m; i 6= j), M/F

if ri and all rj have a common intersection in time
F BJoin 1M Join two feature streams generated from a same media stream taking sqno as joining attribute F
F mJoin 1M Join multiple feature streams generated from a same media stream taking sqno as joining attribute F
F BJoin 2M Join two feature streams from two different media streams joining on interval attributes F

F mJoin Multi-way join m (m ≥ 2) feature streams derived from different media streams F
Compose Reformat single media stream for output; or multiplex multiple streams to construct a composite media stream M
M PScan Get the next tuple of a media stream, which falls into a specified period [start, end], and both period variables M

can be set or reset for repeated occurrences
P Detect This class of period detection functions take as parameter a predicate on feature values, and return qualifying F

(p predicate) period(s); periods may repeat and the start and end are dynamically re-computed at run-time
P Aggregate This set of aggregation functions (SUM, AVG, MIN, MAX, COUNT) perform over the given period, which is F

(period) typically not fixed but returned by P Detect functions

Table 3: Definitions for stream algebraic operators

domain knowledge for both the MF stream model and the
event model. At the stream processing level, a user cre-
ates definitions of media streams and declares their instances
via Media Stream Description Language (MSDL). The raw
streams captured from sensors are processed and transformed
to user-defined media streams, which are transmitted to
both the query engine and the feature generation compo-
nent, where various feature streams are automatically gen-
erated via feature generation functions (FGFs) defined in
Feature Stream Description Language (FSDL). The media
streams and derived feature streams are queried by the query
engine, which outputs the qualifying media portions to the
composition component. The composed media results are
returned to the user. To issue continuous queries over live
media streams, a Media and Feature Stream Continuous
Query Language (MF-CQL) is designed and implemented
by exploiting the semantics of media and derived feature
streams, as well as the inter-stream constraints among them.
At the event processing level, a user creates definitions of
event schema via Event Description Language (EDL). The
event detection module takes feature streams together with
their deriving media streams as inputs and detects event
occurrences, with the knowledge and rules provided by the
environment model and the event model.

4. QUERY PROCESSING

4.1 Media Stream Generation
The raw streams captured from sensors are bit streams

without explicit media semantics. To correctly retrieve and
interpret them, the details of registering data (such as media
format, coding and size) must be known [15]. Particularly,
de-multiplexing, decompression, or decryption procedures
may be applied to retrieve individual media tracks from a
raw stream. The heterogeneous nature (such as continuity,
media type and data rate) of media streams greatly increases
the processing complexity. However, some general principles
exist on how to create various media streams from sensors
and separate them into sequences of media tuples.

The media stream generation model M consists of a sensor
type ST , a sensor source SS , a media tuple definition TM ,

Application Environment Settings

MSDL: media stream description language
FSDL: feature stream description language
MF-CQL: media/feature stream query language
EDL: event description language
EQL: event query language

Raw Stream:
Media Stream:
Feature Stream:

User

Interface

Event

Detection

Feature

Generation

Stream Query

Engine

Result

Composition

Sensors

Media

Capture

MSDL

FSDL

MF-C
QL

EDL

EQL

Figure 4: MedSMan system architecture.

a set of sensor-dependent initialization parameters P̄ , and
a media stream type MT . ST plays a significant role in
determining other parameters.

A Media Stream Description Language (MSDL) is de-
signed for defining various media tuples. Based on a specific
TM , a media stream instance conforming to particular ST

and P̄ can be declared and initialized. For example, a video
tuple definition and a video stream instance captured from
a local port (vfw://) can be declared as:

create type frame { integer frame num primary key,
time frame st, time frame et, image content };

create media stream video1 of frame from
sensortype cam sensorsource vfw://0 datarate 10.0;

Since sqno (i.e., frame num in this example) works as a unique
identifer for each tuple in a stream, it is declared as a pri-
mary key. Furthermore, most query operators require the
explicit timestamp attributes ts (i.e., frame st) and te (i.e.,
frame et). The sensorsource (SS) defines a local or remote
URL connecting the capturing sensor. The sensortype (ST)
cam indicates that the output video stream is a discrete me-
dia stream, and requires a datarate parameter denoting the

data rate of a video, which means each video frame spans
an extent of 100ms on average. In contrast, an audio tuple
definition and an audio instance captured from a local port
(dsound://) can be declared as:

create type audioclip { integer clip num primary key,
time clip st, time clip et, audiobuffer clip };

create media stream audio2 of audioclip from
sensortype mic sensorsource dsound:// capturebuffersize 40;

Different from cam, the mic (ST) indicates a continuous au-
dio stream, and requires a capture buffer size (e.g., 40ms)
to cut the stream into a sequence of audioclips.

4.2 Feature Generation
A feature stream is produced by one or more transformer

functions operating on media streams or other feature streams.
A feature tuple value is generated from its deriving me-
dia or feature tuple(s) by one or multiple specific FGFs,
with different generation costs. A feature stream has tu-
ples with complex-valued attributes, and a reference to the
media/feature streams from which it is derived.

A feature stream generation model F consists of a fea-
ture tuple definition TF , a set of deriving media or feature
streams D̄S , a set of feature generation functions F̄G, and
a set of optional parameters P̄F controlling the data rate,
delay, etc. We have designed a Feature Stream Description
Language (FSDL) to create feature tuple definitions. Based
on them, feature stream instances can be declared from de-
riving D̄S by using particular P̄F .

The feature generation functions are implemented as in-
terface between the FSDL and the underlying digital signal
processing techniques. Thus, the FSDL is open for users to
implement their own FGFs.

4.3 The MF-CQL query language
We have designed a query language, MF-CQL, which is

CQL [3] extended with additional syntax and shortcuts to
express the extended semantics beyond DSMS. MF-CQL al-
lows flexible expressions for period detections and period
aggregations, which deliver higher levels of expressive power
for media query applications. Currently, MF-CQL is a stream-
only language. Considering the real-time requirement of
most media stream applications, MedSMan’s operations are
triggered by individual (media or feature) tuple per time.
For most media streams queries, query predicates are based
on their derived feature streams. Then the qualifying frag-
ments of the feature streams are mapped back to their de-
riving media stream fragments by using sqno or interval at-
tribute. We designed syntax for efficiently expressing these
queries. An abstract syntax of MF-CQL is:

select <Media Stream Attr List>
from <Media Stream List>, <Feature Stream List>
[with <Period Variable List>]
[when <Period Detection Operation>];
[where<Condition>];

The select-list specifies the target media or feature attributes
to be output. The where-condition clause uses normal SQL
expressions to specify predicates over feature or media at-
tributes. The involved feature streams and deriving me-
dia streams must both appear in the from-clause. The when

and with clauses are designed for computing dynamic periods
which are determined by other subqueries at run-time.

Region Sensor Type Effect Landmarks

front CP video covered podium
speaker CS video covered speaker
speaker MS audio loud speaker
left-side M1 audio loud chair1..chair3

right-side C1 video covered chair7..chair9
front Projector1 video covered slides
· · · · · · · · · · · · · · ·

Table 4: A coverage map for a seminar application

4.4 Detecting events from streams
The process of translating event expressions and opera-

tions to stream queries and operations we propose at the
analysis level involves three steps:

• The selection of the candidate components for the trans-
lation. This means the selection of entities (expression
and operation) which are extracted from the event ex-
pressions, and which correspond with stream entities.

• The choice of the translation rules allowing to go from
the event level to the stream level, according to the
candidate components found in the first step.

• The translation from the basic event structures to the
suitable stream structures, preserving the original func-
tionalities.

The set of the formal translation rules are composed of au-
tomatic and semi-automatic rules which are provided with
both application-independent system knowledge and the ap-
plication domain knowledge given by a system designer. One
important point is to avoid losing information during the
translation, which is not possible with an automatic trans-
lation without using any application-dependent knowledge
provided by the environment model and the event model.

If a query is posed against the observable events that are
atomic and at the leaf levels of our event hierarchy, it is com-
puted by directly querying the relying streams. If a query
is posed against the higher level events, it is decomposed to
an equivalent query against atomic events. For a complex
query the system will also need to optimize the evaluation
of multiple atomic queries over the same set of media and
feature streams. The decomposition algorithm and the op-
timization issues are beyond the scope of this paper and will
be parts of our future work.

This paper discusses how single atomic event queries over
one or more streams can be answered by two query examples
in our seminar application. Table 4 describes the coverage
map of sensor placement in our seminar application.

Example1 Query 4 requires to detect a composite event
E1 (“Speaker begins to walk and then stops”) which con-
sists of two sequential subevents as E11 (“Speaker begins
to walk”) and E12 (“Speaker stops”). E1 can be expressed
as E11 occures before E12. According to some translation
rules created by using Table 4, the system knows that cam-
era CS covers the speaker’s movement. The atomic events
E11 and E12 can be directly detected using a movement fea-
ture stream, which is derived from CS ’s output video stream
(e.g., video1 defined in Section 4.1). Using FSDL, the move-
ment feature stream is defined as:

create type mvFeature { integer mv sn primary key,

time mv st, time mv et, integer mv pixel };
create feature stream mvFStream1 of mvFeature on video1
with mv sn:=getFrameNum(frame num)

mv st:=getFrameTime(frame st)
mv et:=getFrameTime(frame et)
mv pixel:=getMovementNum(content);

On the other hand, the event operation “occurs before”
requires our system to set up a temporal structure in MF-
CQL expression indicating the detection of E11 is followed
by the detection of E12. We need to know the exact start
indicating E11’s occurrence and end indicating E12’s occur-
rence, and guarantee that start occurs before end, in order to
detect each E1’s occurrence, which is a period event. When
translating such a complex event expression into MF-CQL,
both start and end are expressed and computed by two dif-
ferent subqueries using period variables supported by the
with-clause in MF-CQL. For example, Query 4 can be ex-
pressed as:

select content from video1, mvFStream1
with t1 as getFirstOccur(mv pixel>8000) and

t2 as getFirstOccur(mv pixel<100)
where frame st > t1-1m and frame et < t2 and t1 < t2;

Note the translation from events to the concrete feature
values needs the knowledge of the environment from the sys-
tem administrator rather than the user. The administrator
may manually set up a set of rules for the translation.

A getFirstOccur operator is designed to detect both the
start and end of a period, which takes a predicate (typically
in terms of feature values) as input, and returns the time of
“first” qualifying tuple as the period endpoint. If the events
of interest repeat, our algorithm allows resetting M PScan to
retrieve media tuples in future qualified periods. Figure 5
indicates qualified event periods denoted as P , P ′ and so
forth. Although a single feature stream is used to define
period variables in this example, the predicates in with-clause

can use different features from different media streams.

0
time

8000

100

t1

t2

t1’

t2’P P’

Feature Value

Figure 5: Periods determined by feature detection.

Example2 Query 3 requires to detect an interval-based
event E2 (“Speaker speaks loudly (i.e., greater than some
threshold) for a while”). According to the coverage map, the
microphone MS captures the speaker’s voice; thus E2 can
be detected using a soundEnergy feature stream extracted
from MS ’s output audio (e.g., audio2 in Section 4.1), which
is defined as:

create type sdFeature { integer sd sn primary key,
time sd st, time sd et, double sd energy };

create feature stream sdFStream3 of sdFeature on audio2
with sd sn:=getFrameNum(clip num)

sd st:=getFrameTime(clip st)
sd et:=getFrameTime(clip et)
sd energy:=getSoundEnergy(clip);

However, this feature can only detect whether the sound
energy for a single pre-defined clip interval (40ms) is greater
than the threshold but can not guarantee the continuity for
all clips during a qualified event period. Therefore, we de-
sign a period operation CONTINUE and use the following
predicates to express this query in MF-CQL:

select clip, AVG(sd energy)
from audio2, sdFStream3
when CONTINUE(sd energy > 27.0) > 10;

The inner predicate evaluates if each individual tuple qual-
ifies, while the outer predicate must guarantee both length
and continuity of an event period (or sequence) of tuples
qualifying to inner predicate. Obviously, the order and con-
tinuity between adjacent tuples must be considered. We also
use the environment model knowledge to convert user spec-
ified time interval into the actual number of clips (e.g., 10)
to be counted.

5. IMPLEMENTATION
The prototype of MedSMan is implemented using Java

(JDK 1.5.0). We use APIs provided by Java Media Frame-
work (JMF2.1.1) and OpenCV (integrated with the Java
based query engine via Java Native Interface (JNI)) for real-
time audio/video capturing and feature generating. The
stream description and query languages are implemented us-
ing Java Compiler Compiler (JavaCC).

Our implementation consists of two major components as
media/feature stream generation [11] and stream querying
execution. The former permits a designer to directly cap-
ture various live data streams from different sensor devices,
and form media streams consisting of logical media tuples.
Then, more meaningful feature streams can be automati-
cally derived from media streams for the query purpose.

Stream level queries are parsed and generate physical query
plans. MedSMan runs physical plans in an individual tu-
ple triggering approach for media and feature stream query
execution, thus reduces query delays. Either new arriving
media tuple or feature tuple triggers the entire physical plan
to run. Figure 6 shows the architecture of MF-stream query
execution. Each input MF-CQL statement is parsed into
a query, which then creates a logical query plan. Based
on both query and plan, a QueryDesc is generated, which
starts a QueryDesc Manager and registers itself into the
involving Media Stream Desc or Feature Stream Desc, de-
pending on the triggering stream. Typically, M Scan and
F Scan are the bottom triggering nodes. Each QueryDesc
Manager works as an independent thread, and continually
triggers its plan execution when driven by new arriving tu-
ples from registering media or feature queue managers. Each
queue manager can concurrently drive multiple queries. In-
side each query plan, the nodes of each subtree are executed
in a bottom-up, left-to-right manner, except for join opera-
tors (e.g.,F BJoin1M or F BJoin2M) – they must execute in a
symmetric manner, i.e., every tuple in each join stream will
trigger the join operation.

6. EXPERIMENTS AND ANALYSIS
Experimental Set-up We run a number of query exam-
ples varying in media streams and feature streams. Our
experiments run on a XP machine with dual 2.4GHz CPUs
and 2GB RAM. The experiments use the instances of video

register

plannode

plannode

plannode plannode

physical

plan exec

drive

drive

Media

Tuple

Queue

Feature

Tuple

Queue

notify

Query Desc

Manager

Query Desc

Media Stream Desc Feature Stream Desc

Media Queue

Manager

Feature Queue

Manager

Plannar

Analyzer

plan

query

MF-CQL query stmt

start

fe
tc

h

fe
tc

hdrive

Figure 6: Stream query execution.

(with the format of RGB, 400x320, 10fps, Length:230400,
24-bit), audio (with the format of LINEAR, 44100Hz, 16-
bit,Stereo, 2Channels) and the derived feature streams in
previous sections.

We evaluate performances for different query types in terms
of query delays. For one satisfying tuple in a media stream,
its query delay is defined as the time difference between
when it enters the system and when it leaves the topmost
operator. Query delay is both media stream dependent and
individual tuple dependent, because (1) different media tu-
ples have different tuple extents and feature computation
delays (FCD); (2) a particular media tuple may be joined
with multiple tuples from other streams; thus (3) different
tuples in one stream joined with a common tuple in another
stream may have different delays.

For Example2, Figure 7 (a) shows three detected E2 oc-
currences with qualifying interval of 19, 16 and 15, respec-
tively. The other three detected periods are not qualified
events since their interval is less than 10 clips. Figure 7 (b)
shows the average sound energy feature values for the three
detected event occurrences, respectively.

For Example1, Figure 7 (c) shows the atomic event oc-
currence pairs of E11 and E12, each of which indicates the
start and end for one composite E1 occurrence. Figure 7 (d)
shows the E1’s start (i.e., E11) detection delay and end (i.e.,
E11) detection delay, respectively.

One advantage of our system is that queries can be easily
composed and evaluated against multiple features derived
from single or multiple media streams.

Example3 Suppose we want to query an event like “A
person raises a book”. This query can use a face detection
feature and a color-based object detection feature (by pass-
ing the image of the book cover as a reference (ref image) into
the query) extracted from each frame (content) of a common
video (video1), which are defined as:

create type fdFeature { integer fd sn primary key,
time fd st, time fd et, integer fd num };

create feature stream fdFStream3 of fdFeature on video1
with fd sn:=getFrameNum(frame num)

fd st:=getFrameTime(frame st)
fd et:=getFrameTime(frame et)
fd num:=getFaceDetectNum(content);

create type odFeature { integer od sn primary key,
time od st, time od et, integer od pixel };

create feature stream odFStream2 of odFeature on video1
with od sn:=getFrameNum(frame num)

250 300 350 400
0

10

20

30

40

50

so
un

d
en

er
gy

 (d
b)

clip_num

(a)

250 300 350 400
0

10

20

30

40

50

av
g

so
un

d
en

er
gy

(d
b)

clip_num

(b)

150 200 250
0

5000

10000

15000

(c)

m
ov

em
en

t v
al

ue

frame_num

150 200 250
0

100

200

300

400

500

600

frame_num

de
la

y
(m

s)

(d)

start delay
end delay

E
2

E
2

E
2

E
1

E
1

E
1

E
1E

1

E
11

E
11

E
11

E
11

E
11

E
12

E
12

E
12

E
12

E
12

Figure 7: Period queries.

od st:=getFrameTime(frame st)
od et:=getFrameTime(frame et)
od pixel:=getObjDetectNum(content, ref image);

Figure 8 (a) and (b) shows the face detection result and
the book reference image, respectively. Then, this event
query can be expressed using both features as:

SELECT content FROM video1, fdFStream3, odFStream2
WHERE fd num=1 AND od pixel>1000;

(a) (b) (c)

Figure 8: Querying a person raising a book.

Figure 8 (c) shows a detected event occurrence. Figure 9
(a) shows the total query delay (with average of 740.6ms),
frame interval (with average of 261.5ms) and two FCDs
(with averages of 89.9ms for object detection and 259.3ms

for face detection) for each frame. Since the face detection
feature delay costs more than the specified frame interval
(i.e., 100ms), the video capturing thread is delayed and the
actual frame rate is slowed down. We can reduce the feature
delay impaction by skipping some feature generations at the
cost of losing some query accuracy.

Example4 A more complex example is to use features
derived from different media streams. Suppose we want to
query “A person walks and talks”. This event consists of two
subevent as “a person walks”, which can be detected using
the movement feature from video1, and “a person speaks”,
which can be detected using the sound energy feature from
audio2. Then, we can compose this query as:

SELECT content FROM video1,mvFStream1,audio2,sdFStream3
WHERE mv pixel>8000 AND sd energy>27.0;

Query delays for each video frame and each audio clip are
shown in Figure 9 (b). Note each video frame overlaps with
multiple sequential audio clips. The average delay of the
video frames is 393.1ms, and the average max delay of the
audio clips is 622.5ms for the oldest one waiting in queue,
since an optimization is implemented by making a slower
feature (mv) tuple trigger the faster feature (sd) tuples wait-
ing in queue in order to reduce an extra Scan operator and
queue buffers.

Figure 9: Query delays.

Obviously, FCDs play a significant role in determining dy-
namic tuple intervals, total query delays and the actual cap-
turing rates for media streams. Another observation from
experiments is that we need some “massaging” mechanism
for presenting the media query results in order to reduce the
jitter for better human perception.

7. CONCLUSIONS AND FUTURE WORK
This paper presents our approach to dealing with contin-

uous querying over live heterogeneous media streams by ef-
fectively combining extendible digital processing techniques
with a general media stream management system. To bridge
the two different areas, a unifying data model for media and
feature streams is designed, along with description languages
managing media and feature streams and a query language
manipulating complex queries. Moreover, an event-based
query approach can provide a more feasible way for users to
access the related media stream content of interest at spe-
cific levels and give users a meaningful, more refined view
of the world around them, with the domain knowledge pro-
vided by an environment model. Due to the increasing use of
media data in many emerging applications, we believe this is
an area of significant interest to researchers in stream data
as well as multimedia data. In the near future, we will con-
tinue to work on the hierarchical event model to enable users
to directly compose event-based queries. This event model
should take into account the temporal, spatial and logical
relationships inside an event or between events; thus a for-
mal event query language is necessary for expressing events
and event-based queries, which will be translated into the
lower-level stream operations. On the other hand, we will
investigate how to efficiently serve multiple queries over in-
coming streams by utilizing common elements of different
queries for optimization.

8. REFERENCES
[1] D. Abadi, D. Carney, U. Cetintemel, and et al.

Aurora: A new model and architecture for data

stream management. VLDB Journal, 12(2):120–139,
August 2003.

[2] J. Amores, N. Sebe, P. Radeva, T. Gevers, and
A. Smeulders. Boosting contextual information in
content-based image retrieval. In Proceedings of the
6th ACM SIGMM international workshop on
Multimedia information retrieval, pages 31–38, 2004.

[3] A. Arasu, S. Babu, and J. Widom. The cql continuous
query language: Semantic foundations and query
execution. Technical report, Stanford University, Oct.
2003.

[4] W. G. Aref, A. C. Catlin, and et al. Vdbms: A
testbed facility for research in video database
benchmarking. ACM Multimedia Systems Journal,
Special Issue on Multimedia Document Management
Systems, 9(6):575–585, June 2004.

[5] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems.
In Symposium on Principles of Database Systems,
pages 1–16, Madison,Wisconsin, May 2002.

[6] A. F. Cardenas and P. A. Michael. Image Stack
Stream Model of Multimedia Data. September 2002.

[7] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang.
Niagaracq: a scalable continuous query system for
internet databases. In International Conference on
Management of Data, pages 379 – 390, Dallas, Texas,
May 2000.

[8] M. Flickner, H. Sawhney, W. Niblack, J. Ashley,
Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee,
D. Petkovic, D. Steele, and P. Yanker. Query by image
and video content: The qbic system. IEEE Computer,
28(9):23–32, Sept. 1995.

[9] L. Golab and M. T. Ozsu. Issues in data stream
management. ACM SIGMOD Record, 32(2):5–14,
June 2003.

[10] R. Jain. Experiential computing. Communications of
the ACM, 46(7):48–55, July 2003.

[11] B. Liu, A. Gupta, and R. Jain. A live multimedia
stream querying system. In Proceedings of the 2nd
international workshop on Computer Vision Meets
Databases, pages 35–42, June 2005.

[12] L. Liu, C. Pu, and W. Tang. Continual queries for
internet scale event-driven information delivery. IEEE
Transactions on Knowledge and Data Engineering,
11(4):610–628, 1999.

[13] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman.
Continously adaptive continous queries over streams.
In ACM SIGMOD International Conference on
Management of Data, Madison,Wisconsin, 2002.

[14] A. W. Smeulders, M. Worring, S. Santini, A. Gupta,
and R. Jain. Content-based image retrieval at the end
of the early years. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(12):1349–1380,
December 2000.

[15] R. Steinmetz and K. Nahrstedt. Multimedia
computing, communications and applications. Prentice
Hall, 1995.

[16] A. U. Tansel, J. Clifford, S. K. Gadia, A. Segev, and
R. T. Snodgrass. Temporal Databases: Theory, Design,
and Implementation. Benjamin/Cummings, 1993.

