
On Querying OBO Ontologies Using a DAG
Pattern Query Language�

Amarnath Gupta and Simone Santini

San Diego Supercomputer Center
University of California San Diego, La Jolla, CA 92093, USA

{ssantini, gupta}@sdsc.edu

Abstract. The Open Biomedical Ontologies (OBO) is a consortium
that serves as a repository of ontologies that are structured like directed
acyclic graphs. In this paper we present a language DQL for querying a
database of directed acyclic graphs. The query language has a compre-
hension style syntax and contains a pattern specification sub-language
DPL. DPL can be viewed as an extension of tree-pattern query lan-
guage like XPath. The language allows extraction of nodes, paths and
subgraphs from DAGs, and permits construction of result structures by
composing them. We show that using such a language on OBO ontologies
(such as the gene ontology), we can express more complex and scientifi-
cally valuable queries.

1 Introduction

Query languages and query evaluation techniques for the retrieval and manip-
ulation of graph-structured data have been investigated since the late 80s [1,2],
through the era of object-oriented data models [3,4,5] up to the more recent gen-
eral interest in semistructured data [6,7,8] and ontologies represented in RDF
[9]. Graph-structured data appear naturally in many modern applications, espe-
cially in biological information systems [10], chemical structure analysis [11], and
social network analysis. In these application domains, a surprisingly large frag-
ment of graph-structured data turn out to be directed and acyclic. Specifically
in the domain of biomedical and biological ontologies, the majority of the onto-
logical structures are designed to be directed acyclic graphs (DAGs). The Open
Biomedical Ontologies (http://obo.sourceforge.net/) is an umbrella consortium
that serves as a repository of many different but often inter-related ontologies,
where the nodes of the graphs represent terms used in the vocabulary of a spe-
cialized biological domain, and the edges between nodes are typically labelled
by the strings “isa”, “part-of” or “develops-from”. Furthermore, given the mul-
tiplicity and categories of ontologies emerging today, new needs are developing
to query across ontologies and composing ontologies together. As the ontologies
grow and become more complex, searching through them will require a more
complex query mechanism that natively operates on graphs, especially DAGs.
� Supported in part by NSF ITR Grant EIA-0205061, and the NLADR grant from

NSF.

U. Leser, F. Naumann, and B. Eckman (Eds.): DILS 2006, LNBI 4075, pp. 152–167, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



On Querying OBO Ontologies Using a DAG Pattern Query Language 153

Fig. 1. A simplified fragment of the Biological Process component of Gene Ontology.
The names of the nodes have been abbreviated for clarity.

Despite this need, most of the systems available to life scientists are mostly
operated with visual interfaces allow only simple operations like keyword based
node search, descendant enumeration, shortest path finding and neighborhood
operations on graphs. This paper is an early step toward searching repositories
of large ontological structures using a DAG query language, and similar in its
intent as [12].

Example 1. As a motivational example, consider the well known Gene Ontology
(GO) (www.geneontology.org) that consists of three DAG-structured compo-
nents called biological processes (BP), molecular functions (MF) and subcellular
components (SC). In Figure 1, a fragment of the BP DAG is shown. Here, an
edge represents an superclass relation, such that n1 → n2 means that the process
n2 is a specialization of the process n1. Nodes in this graph represent tuples of a
relation N which, in our simplified example, has three attributes id, name and
definition. To make the node names simpler, just consider that a node with the
substring “ met” is a metabolism process, a node with “ cat” is a catabolism
process and a node with “ biosyn” is a biosynthesis process. Given this example
DAG, a number of different types of queries can be asked:

1. Which biosynthesis processes under lipid biosynthesis are also classified as
amine biosynthesis? (Q1)

2. How does phosphatidylethanolamine biosynthesis (phos biosyn in Fig. 1)
derive from cellular metabolism (cell met)? (Q2)

3. Is there a case where a xenobiotic process (e.g., xen met) is a subprocess of
at least two forms of cellular metabolism? (Q3)

4. construct a reduced data graph by deleting all metabolism nodes except
met, and connecting the non-deleted parent(s) of a deleted node n to its
non-deleted children. (Q4)

Consider the first query. Since the graph represents a classification structure
(i.e., an is-a graph) we interpret the expression “A classified as B” to mean “A
reachable from B” in this DAG. Thus, this query can be expressed as the pattern
query

reachable from(X, lipid biosyn) ∧ reachable from(X, amin biosyn) ∧ substr(‘biosyn’,
X) (Q1′)

www.geneontology.org


154 A. Gupta and S. Santini

root
conditional phenotypes (cp)
cell cycle defects (ccd)
mating and sporulation defects (msd)

mating efficiency (me)
sporulation efficiency (se)
inappropriate sporulation (is)

KAR4
RIM1 ***
ABP1
...

other mating and sporulation defects (omsd)
...
cell morphology and organelle nutrients (cmon)

flocculence (fl)
budding mutants (bm)

bud localization (bl)
multibudded cells (mbc)
pseudohyphae formation (phf)

GDH3
TEC1
RIM1 ***

...
...

stress response defects (srd)
...

Fig. 2. A fragment of the Yeast Phenotype Classification. Some genes (leaf level) like
RIM1 have multiple parents. The edge from the parent term of a gene to the gene is
“produced-by-mutating”.

where the last predicate is a syntactic way to state that X is a biosynthesis pro-
cess; the query would return the set of two nodes (phos biosyn, pNm biosyn).
Notice that since X must be reachable from lipid biosyn as well as amin biosyn,
the query expresses a DAG-pattern, notionally akin to tree pattern queries ex-
pressed by XPath queries. Of course, our data model is much simpler than XML
models, in that we only consider child and descendant relationships and com-
pletely disregard order among the children of a node.

Example 2. Next consider the yeast phenotype classification (YPC) scheme
(available at http://mips.gsf.de/genre/proj/yeast/searchCatalogFirst
Action.do?db=CYGD) – the non-leaf nodes of this scheme represent phenotype
terms, while the leaf nodes represent genes. Since one gene can be responsible
for multiple phenotypes, the structure of the YPC (Figure 2) is a DAG when
leaves are considered (such as the gene RIM1 in the figure) and is an is-a tree
over the rest of the nodes. For the purpose of this discussion, we will ignore all
the descriptors associated with the genes and the YPC terms – we will only use

http://mips.gsf.de/genre/proj/yeast/searchCatalogFirstAction.do?db=CYGD
http://mips.gsf.de/genre/proj/yeast/searchCatalogFirstAction.do?db=CYGD


On Querying OBO Ontologies Using a DAG Pattern Query Language 155

the fact that almost all yeast genes have references to GO-ids. Hence, the YPC
structure is joinable with the BP ontology through the GO-ids. This enables us
to ask scientific queries like: “merge all paths P1 reachable from the node named
tanscription, with all paths P2 reachable from the yeast phenotype sporulation
defect such that X is a node in P1, Y is a node in P2 and X.id = Y.GOid by
creating an edge labeled e from X to Y ”. Biologically, query creates an asso-
ciation between biological processes and relevant phenotypes. Computationally,
the query first retrieves P1 and P2 through a join query and then merges them
through a construction.

The intent of this paper is to present a query language and its corresponding
algebra for the retrieval and manipulation of DAG-structured data to achieve
the capabilities described above. The query language will have a sublanguage
to express query patterns, a formal way to manage collections of intermediate
result graphs, and operations to manipulate and construct graphs.

2 The DAG Data Model

As mentioned, the DAGs we consider have nodes that represent tuples from
some relation N . With no loss of generality, we can assume that the id attribute
of nodes is globally unique, so that nodes are represented by their ids. We only
consider DAGs with unlabeled edges; we also assume that the children of any
node of the data DAG are unordered. Henceforth, unless explicitly mentioned,
we use the term graph (correspondingly, sub-graph) to mean this class of DAGs
and its substructures.

In this paper, our focus is to introduce a language to manipulate the structure
of the graph (we use the term graph to refer to DAGs from this point on); the
retrieval and manipulation of the node content is performed using standard
relational algebra. To manipulate the graph structure, on the other hand, we
need to have a type system with basic types and type constructors. For example,
to define a set of paths, we need to have the type set(list(skolem)) where skolem
is the data type of all ids, and is a data type for which no operations are defined
except value equality. In our model all nodes are typed. If α is the type of a node
then we will use the notation ν[α] for a generic collection monoid of type ν with
elements of type α (e.g., set(GO-node-type)). For this monoid three functions
are defined:

i) nilν : ν(α) (the empty collection);
ii) Uν : α → ν(α) (the singleton);
iii) ν : ν(α) × ν(α) → ν(α) (the join, like the union operator for a set

monoid).

We also define the projection operator pi : α1 × · · · × αn → αi and the record
construction operator ( , , . . . , ) : α1 × · · · αn → 〈α1 × · · · × αn〉. To introduce
a few terms used through the paper, a node n of a graph g is terminal if it has
no outgoing edges, and it is initial if it has no incoming edges; ⊥(g) is the set of
all terminal nodes of the graph g, and �(g) is the set of initial nodes. Since our
graphs are acyclic, for each g, neither ⊥(g) nor �(g) are empty.



156 A. Gupta and S. Santini

3 Our Query Language DQL

We start by observing that the query language presented here assumes that the
data is in the form of a DAG and not a graph containing cycles. While it is easy
to show that the pattern language cannot express a cycle, we do not ask how
the queries would behave if the underlying data had cycles.

3.1 An Informal Introduction

We introduce the query language using the graph G1 shown in Figure 3 as the
reference. First, we focus on the pattern language DP . The pattern (v = 1)
matches a set of nodes for which the value of the variable v is 1. The pattern
true matches all nodes of the DAG. We use the symbol − to denote an edge
from the node to the left of − to the node to the right of it. Thus, the pattern
(v = 1) − (v = 2) matches the edges [1, 1] → [3, 2] and [2, 1] → [4, 2]. DP allows
the use of the Kleene star to refer to 0 or more occurrences of the subpattern
within its scope. The pattern (v = 1)[−(v = 2)] ∗ −(v = 1) matches the graphs
have a node with v = 1 is followed by a chain of any number of nodes with
v = 2, which is then followed by another node with v = 1 (not the same node as
the first since the graph is acyclic). The edge chains matching the pattern are
[1, 1] → [3, 2] → [7, 1], [1, 1] → [3, 2] → [2, 1], [1, 1] → [3, 2] → [4, 2] → [8, 1], and
so on. Now, let us associate variables x and y to two elements of the pattern. The
augmented pattern becomes y : (v = 1)[−(v = 2)] ∗ −x : (v = 1). Although here
the variables are only associated with nodes, in general, variables can associated
with any subpattern, such as an edge chain or a subgraph, as illustrated later in
the paper. The variable association implicitly produces matches for the variables
in addition to the match for the whole pattern. In this example, the pattern
produces the y, x tuples {([1, 1], [2, 1]), ([1, 1], [7, 1]), ([1, 1], [8, 1]), ([2, 1], [8, 1])} if
we eliminate duplicates.

As the final element in this section, we would like to produce a graph for
each xy pair by constructing an edge from each instance of x to its correspond-
ing y. This operation of graph creation requires us to produce a set of edges,

[0, 5]
��

[1, 1]

��������

[2, 1]

����������������� [3, 2]��

����
��

��
��

��
��

� ��������

[4, 2]

��������
��������

��
[5, 3]

��������
[6, 2]

��������

[7, 1] [8, 1]

(1)

Fig. 3. Our running example. Each node has an id (the first number) and an attribute
called v, whose value is shown in the second number.



On Querying OBO Ontologies Using a DAG Pattern Query Language 157

which the pattern language cannot express because the pattern language only
performs matching. To accomplish the graph construction, we place the pattern
in a monoid comprehension framework, and express it as:

∪[{x − y|g 	 y : (v = 1)[−(v = 2)] ∗ −x : (v = 1) ← G1}]

which is read as: Let g be that substructure of G1 that satisfies the specified
pattern π. Using the variables x and y of g construct the edge x − y for each
instance x, y satisfying π, and form a set union of these edges.

3.2 Formal Description of Pattern Language DP

To formalize the ideas described in the previous subsection, we observe that
pattern π in the pattern language DP is generated by the following rules:

i) A predicate C in which the free variables are the names of the components
of the node data type is a pattern; in particular t (the value “true”) is a
pattern;

ii) if π1 and π2 are patterns, then π1 − π2 is a pattern;
iii) if π and π′ are patterns, then π′[−π]∗ and [π−] ∗ π′ are patterns;
iv) if π1, . . . , πn are patterns, and ν is a patterns then {π1−, . . . , πn−}ν, and

ν{−π1, . . . , −πn} are patterns;
v) if π1, . . . , πn are patterns, then π1| . . . |πn is a pattern;
vi) if π is a pattern and v a variable name, then v : π is a pattern;
vii) nothing else is a pattern.

These cases are illustrated in Figure 4.
The grammar of the language is

<π> ::= C|<π> − <π>
| <π>[−<π>]∗
| [<π>−] ∗ <π>
| <π>’{’ − <π>{, −<π>}∗’}’
| ’{’<π> − {, <π>−}∗’}’<π>
| <π>|<π>{|<π>}∗
| (<π>)|<literal> : <π>

Note that the brackets { and } have been placed in quotes when they ap-
pear as terminals to avoid confusion with the repetition operator of the gram-
mar. Condition have higher precedence that the structural operators, and − has
precedence over |. Parentheses can be used whenever necessary. We use the short-
cut # ≡ [−t] ∗ − (or, equivalently, −[t−]∗), making the symbol # the notional
equivalent of // in XPath.

It is important to point out a few distinctive aspects of this DAG pattern
language.

In the informal example, we stated that − represents an edge between two
nodes. In this section, we generalize this notion to represent a “connection” be-
tween two subDAGs, one satisfying pattern π1 and another satisfying pattern π2



158 A. Gupta and S. Santini

Fig. 4. Examples DAGs corresponding to the different patterns described in the text.
(a) π1 − π2, (b) π1[−π2](2, 4), (c) τ{−π1, −π2} and (d) {π1−, π2−}ν.

(construction rule ii above). To this end, we define a stitch relationship (|〉), which
generalizes the child relationship for tree-structured data. given two graphs g1
and g2, let g1|〉g2 be the graph obtained by connecting all terminal nodes of g1
to all initial nodes of g2. Thus the semantics of rule ii is that if combined pattern
π ≡ π1 − π2, and the graph g matches π then there are two disjoint sub-graphs
of g, namely g1 and g2 such that g1 matches π1, g2 matches π2, and g = g1|〉g2.

Next, we use the |〉 operation to generalize the twig structure of tree pattern
languages. For DAGs we need both the split structure of trees denoting branches
emanating from a node, as well as a merge structure denoting edges converging
on to a node. In this vein, the expression within the {...} (rule iv) is a branching
where the patterns on the different branches are required to be distinct. Thus
the whole pattern represents a fork (τ{...}) or merge ({...}ν) pattern, or a com-
bination. Formally, if π ≡ τ − {π1−, . . . , πn−}ν, then g matches π if there are
disjoint sub-graphs of g g′, g1, . . . , gn, g′′ such that g′ matches τ , for each i gi

matches πi, g′′ matches ν, and, for all i g′|〉gi and gi|〉g′′ are sub-graphs of g.
Finally, the language offers a syntax to specify the number of recurrences of a

pattern. We use the shortcuts πn ≡
n

︷ ︸︸ ︷

π − π − · · · − π, π′[−π](m, n) ≡ π′−πm|π′−
πm+1| · · · |π′ − πn (n > m, the shortcut [π−](m, n)π′ is defined analogously),
π′[−π](m, ∞) ≡ π′ − πm[π]∗ (the shortcut [π−](m, ∞)π′ is defined analogously.

3.3 The DQL Language

The use of monoids and the comprehension syntax is common in query languages
that allow complex types [13]. For example, the query Q1 presented in Example
1 can now be expressed as:



On Querying OBO Ontologies Using a DAG Pattern Query Language 159

∪[{x|g � {substr(name, “lipid biosyn”), substr(name,“amin biosyn”)}#x :
substr(name, “biosyn”) ← GO}]

Q2 and Q3 can be expressed with queries having a similar form. For example,
Q3 can be expressed as:

∪[{z|g � (name = “cell met”)#{x, y}#z, (name = “xen met”)#z ← GO}]

This is a conjunctive query the result variable z must satisfy two patterns. Note
the x and y are implicitly existentially qualified, and by the semantics of the {. . .}
construct the same node cannot instantiate both variables. Query Q2 (and all
queries that ask “what is the relationship between nodes satisfying condition C1
and those satisfying condition C2?”) is an example of a graph-returning query.
It is simply formulated as:

∪[{x|g � x : ((name = “cell met”)#(name = “xen met”)) ← GO}]

where the scope for the result variable x is the entire subgraph satisfying the
given pattern.

Now we turn our attention from the pattern language DP to the monoid
comprehension structure in which it is embedded. Since most of the monoids
we need are standard for sets, lists, and arithmetic and if-then-else constructs,
we do not describe them in detail here. However, in addition to the collection
and the simple monoids of the comprehension calculus, graphs come with their
own monoids, each one defined on the set of graphs, and characterized by a join
operation. The most important are:

merge: puts together two graphs by identifying nodes with the same id;
gmax: given two graphs g1, g2, g = gmax(g1, g2) is the smallest graph for which

g1, g2 ⊆ g;
gmin: the largest graph contained in two graphs.

All these operators can be easily extended to take a set of graphs as input. We
omit the proof that these operations are associative, as required by the definition
of monoid. In the previous example, the query

merge{x − y|g 	 y : (v = 1)[−(v = 2)] ∗ −x : (v = 1)} (2)

would return as a result the graph

[8, 1]
�� �������� [7, 1]

��
[2, 1]

		������

[2, 1] [1, 1]

(3)

As we have seen in some examples above, any graph that matches a fragment
of the pattern can be assigned to a variable. This gives us the possibility of
assembling a result out of portions of the graphs in the data base. Consider the
constructive query presented as Q4 in Section 1. Abstractly, the query can be
modeled as:



160 A. Gupta and S. Santini

Given three conditions on nodes A (nodes with attribute name containing
“ met”), B, C (these conditions are empty in example Q4), remove from the
graph all the nodes which satisfy condition A; every time one of these nodes has
a parent that satisfies B and a child that satisfies C, join the parent and the
child.

Consider first this query:

merge{x − y|g 	 x : ([t−] ∗ B) − A − y : (C[−t]∗)} (4)

Here x represents the subgraph “up to” the B-satisfying nodes and y repre-
sents the subgraph beyond the C-satisfying nodes. The edge-construction be-
tween these nodes effectively deletes the nodes satisfying A from the output.
This query performs the required job for the portion of the graph that contains
nodes that satisfy the conditions on A, B, C. However, other portions of the
graph do not match any pattern, and hence, will be lost. The solution in this
case is to use the negation of A to match all paths that do not contain A, and
then merge the graphs thus obtained:

merge(merge{x − y|g 	 x : ([t−] ∗ B) − A − y : (C[−t]∗)},
merge{z|g 	 z : ([¬A−] ∗ ¬A)}) (5)

4 Translating into an Algebra

The algebra in which the patterns are translated can be divided in two parts: on
one hand there are the operations that deal with the values of each nodes, on the
other there are the structural operations that manipulate the graph structure.
The first part is fairly standard (e.g., textbook operations for relational systems,
[13] for object-valued data, [3] for tree-valued data and so on). In this section,
we will concentrate mainly on the second. The graph operations for a graph with
nodes of type α work on three data types: the data type of the nodes themselves
(α), that of paths of nodes (equivalent to lists of nodes, i.e. [α]), and that of
graphs (Γ (α)), with the sub-typing relations α < [α] < Γ (α).

There are three graph manipulation operators in the algebra:

path: the call path(g, n1, n2, h, k) return the set of paths between the nodes n1
and n2 in the graph g such that the length of the path is between h and k;
the typing of this function is

g : Γ (α) n1, n2 : α h, k : int
path(g, n1, n2, h, k) : {[α]} (6)

merge: the call merge(g1, g2) merges the two graphs g1 and g2 by identifying
the nodes with equal value; the operator requires that the two graphs have at
least one node that can be identified: it returns null for disconnected graphs;
its typing is

g1, g2 : Γ (α)
merge(g1, g2) : Γ (α)

(7)



On Querying OBO Ontologies Using a DAG Pattern Query Language 161

σ: the call σ(g, P ) returns the set of all nodes of the graph g that satisfy the
predicate P ; its typing is

g : Γ (α) P : α → 2
σ(g, P ) : {α} (8)

The proof of the following property is quite obvious, and we don’t report it
here:

Theorem 1. The algebra (path,merge, σ) is minimal: none of its operators can
be expressed as a combination of the others.

In addition to the graph operators there are two structural operators: apply and
chain.

apply: The operator apply[ω](A, f) applies the function f to all the elements
of the structure A, and collects the results in a structure of type ω. It typing
is:

A : ν(α) f : α → β ∪ {⊥}
apply[ω](A, f) : ω(β)

(9)

Formally, define the modified singleton for ω as

s′ω(x) =
{

sω(x) if x �= ⊥
0ω if x = ⊥ (10)

then, if A = a1 ν · · · ν an one has

apply[ω](A, f) = s′ω(f(a1)) ω · · · ω s′ω(f(an)) (11)

chain: given a set of paths S, a graph g that contains them, and two integers
h, k, chain(g, S, h, k) builds all the chains that can be built out of paths in
S taking each path between h and k times. Its typing is:

S : {[α]} g : Γ (α) h, k : int
chain[ω](g, S, h, k) : {[α]} (12)

Consider now a pattern π for which a translation is sought in the previous
algebra. Formally, the planning algorithm is a function plan(π, g, U) where π is
the pattern for which a plan is sought, g is the variable name for the input graph,
and U is the variable name for the set of environments which is the collection of
instantiated pattern variables produced at any stage of the plan. The value of the
function plan is a list of algebra functions and variable assignments. We give a
couple of simple examples of plans, before going into the details of the algorithm.
Here, as elsewhere, u1, u2, . . . , and p11, p12, . . . , pij , . . . are unique variable names
generated by the planning algorithm.

plan(z : C, g, e) =
u1 = σ(g, C);
e = apply[set](u1,

fun x => (z �→ x)
)



162 A. Gupta and S. Santini

Note that we write a list of (in this case) two elements as a;b rather than [a,b] for
ease of notation, and that we use the ML-style notation “fun x => v” for λx.v.
The value “(z �→ x)” is the environment constructor: it creates an environment
in which the only assignment is that of the value x to the variable z.
plan(z : C1 − C2, g, e) =

u1 = σ(g, C1);
u2 = σ(g, C2);
p12 = apply[set](u1

fun x1 => apply[set](u2,
fun x2 => path(x1, x2);

);
e = apply[set](u1,

fun x3 => (z �→ x3)
)

We illustrate the algorithm through an example. Consider the pattern

y : (C1[−t] ∗ C2[−t](5, 7) − x : (C3[−C4 − C5] ∗ −C6) − C7) (13)

where C1, . . . , C7 are suitable conditions on the nodes and t stands for the value
true. The first rewriting consists in isolating the portions that are assigned to a
variable (except for the variable that contains the whole pattern; this is necessary
because, in the final algorithm we will have to create not only the sub-graphs
that match the whole pattern, but also the sub-graphs that match the individual
variables). We represent this rewritten pattern as follows:

C1 [−t]∗ C2 [−t](5, 7) x − C7

C3 [−C4 − C5]∗ − C6

(14)

Then we replace all the patterns with [−t] or [t−] with the path symbols #, −,
or (a, b), which indicates a path of length between a and b:

C1 # C2 (5, 7) x − C7

C3 [−C4 − C5]∗ − C6

(15)

Then we expand the “star” elements:

C1 # C2 (5, 7) x − C7

C3 − ∗ − C6

C4 − C5

(16)

The planning algorithm operates on this representation.
First, each repeated pattern is eliminated: For each pattern [−π](n, m), the

planning algorithm is called recursively to generate a plan for x : π, where x is a
new variable, and then the function chin is used to generate the set of structures
that match the repeated pattern. In other words, we have, for a path [−π](n, m),
the fragment



On Querying OBO Ontologies Using a DAG Pattern Query Language 163

plan(x1 : π, g, u1);
u2 = apply[set](u1

);
p45 = chain(g, u2, n, m);

In the representation, the star operator is replaced by the name of the path
set that contains the graphs that satisfy the pattern:

C1 # C2 (5, 7) x − C7

C3 − p45 − C6

(17)

Note that for the purpose of the paper, the name p45 to the variable that
holds the path has been given for ease of exposition, since these are paths that
go from nodes for which condition C4 holds to nodes for which condition C5
holds. The same convention will be followed in the paper for all variable names;
the actual names used by the algorithm may, of course, vary.

Now the instructions are generated to replace each condition Ci with the set
of nodes that satisfy it

U1 = σ(g, C1)
...

U7 = σ(g, C7)

and the sets of paths that join contiguous nodes in the traversal of the structure
are generated, with the conditions established for that path:

p12 = apply[set](U1, fun x => apply[set](U2, fun y => path(x, y, 0, infty))
p23 = apply[set](U2, fun x => apply[set](U3, fun y => path(x, y, 5, 7))
p34 = apply[set](U3, fun x => apply[set](U4, fun y => path(x, y, 1, 1))
p56 = apply[set](U5, fun x => apply[set](U6, fun y => path(x, y, 1, 1))
p67 = apply[set](U6, fun x => apply[set](U7, fun y => path(x, y, 1, 1))

The data structure is updated by eliminating the node sets and replacing each
path symbol with the set of paths that implement it:

p12 ∼ p23 ∼ x ∼ p67

p34 ∼ p45 ∼ p56

(18)

The next step of the algorithm is a traversal of this structure where, for
each pij a loop is generated to chain (denoted by the symbol ∼) every path in
it with the paths of the following set pjk. In addition, the paths that depend
on a variable are joined separately, and environments are created in which the
paths are assigned to the variable. The path corresponding to each variable is
expanded, going from the variables deeper in the structure towards the top. In
this case there is only one variable, so there will be a single expansion:

fun x2 => u1(x2) (Transform the set of environments into
a set of graphs)



164 A. Gupta and S. Santini

p36 = apply[set](p34, fun x34 =>
apply[set](p45, fun x45 =>

apply[set](p56, fun x56 => merge(x34, merge(x45, x56)))
)

)

The structure is then updated as follows:

p12 ∼ p23 ∼ p36 ∼ p67 (19)

and an entry is made in a variable table to associate the variable x with the set
p36. The operation is repeated until the complete structure has been eliminated.
In this case there will be only one more generation:

p17 = apply[set](p12, fun x12 =>
apply[set](p23, fun x23 =>

apply[set](p36, fun x36 =>
apply[set](p67, fun x67 => merge(x12, merge(x23, merge(x36, x67))))

)
)

)

Now all the structures that are necessary to contain the result are contained in
the p variables: the final step is the construction of the set of environments; the
apply functions loop over all the structure sets associated to output variables x
and y:

U = apply[set](p17, fun x17 =>
apply[set](p36, fun x36 => (x �→ x36) ⊕ (y �→ x17)

);

The ⊕ operator creates the tuples of all x, y pairs that satisfy the plan.
The fundamental correctness result for the algorithm is the following:

Theorem 2. Let π be a pattern in DP−v the variable-free fragment of DP ,
g a graph, and U the set of environments created by the execution of the plan
plan(x : π, g, U), with U = {(x �→ qi)} then:

i) qi ⊆ g;
ii) qi |= π.

The proof, not formally presented here, is conceptually very simple: it is based
on the fact that all the paths that are generated are between nodes that satisfy
the corresponding end-path conditions and therefore each path corresponds to
a fragment of the pattern. The semantics of the chain operator guarantees that
this is true for repeated patterns as well. The way in which the sub-patterns for
variables are expanded guarantees that at the end of the plan each graph that
has to be assigned to a variable is present in one of the pij .



On Querying OBO Ontologies Using a DAG Pattern Query Language 165

5 Applying DQL to Life Science Problems

We are in the process of constructing a composite ontology for disease specific
information by combining relevant substructures from multiple different ontolo-
gies and other standard databases. A full description of this on-going work is
beyond the scope and page limit of this paper. Here we present a few illustrations
of how the features of DQL are used in the task.

ICD-10 (http://www3.who.int/icd/vol1htm2003/fr-icd.htm) is a taxon-
omy that categorizes diseases based on the system (e.g., cardiopulmonary)
they affect. The pathway ontology (http://cvs.sourceforge.net/viewcvs.
py/obo/obo/ontology/genomic-proteomic/pathway.obo) relates certain dis-
eases with the molecular pathways they affect. The “biological processes” frag-
ment of the Gene Ontology relates major pathways to component pathways that
constitute the major pathways. These component pathways often formally re-
fer to the molecular elements or biological processes that participate in them.
Finally, genes are functionally annotated by GO-ids to terms from the gene on-
tology. Thus it is notionally possible to start with a family of diseases per the
ICD-10 classification, ultimately relate them to the biological processes and cor-
responding genes. In our preliminary experiments to construct such connections,
we have successfully created integrated graphs for closely related neurodegener-
ative disorders (like Alzheimer’s disease, Parkinson’s disease, Lewy body disease
etc.) and identified subgraphs that are common to these diseases. In performing
these exercises, we have identified a number of “query patterns” that are very
convenient to express with the DQL:

– “Find node n1’s reachability graph in G1 until some node n2 such that n2
can be joined with some descendant of n3 of graph G2.

– “Find that subgraph of the n1’s reachability graph that reaches n2 but not
any n3 that is reachable from both n4 and n5.

– “Merge two subgraphs found by subqueries S1 and S2 such that the merged
nodes refer to the same GO-id or UMLS id”. UMLS is a large vocabulary
from the National Library of Medicine.

6 Related Work

Querying ontologies as graphs is a relatively new area of research. [12] has devel-
oped an algorithm to index DAG-structured data to make queries like transitive
closure and least common ancestor more efficient. [14] has developed an algo-
rithm to perform pattern matching queries on DAGs, and used in on the Gene
Ontology. [15,16] have developed algorithms for DAG searching. However, to our
knowledge this is the first attempt to develop a query language for DAG data,
and apply it to address an emerging area of life sciences.

In terms of query languages, we mark distinction between DQL and schema-
based graph query languages like [4,5] in that ours is a pattern language and
does not operate in the paradigm of querying against a graph-schema. On the
other hand, DQL is closely related to [13,17] on the one hand and XML query

http://www3.who.int/icd/vol1htm2003/fr-icd.htm
http://cvs.sourceforge.net/viewcvs.py/obo/obo/ontology/genomic-proteomic/pathway.obo
http://cvs.sourceforge.net/viewcvs.py/obo/obo/ontology/genomic-proteomic/pathway.obo


166 A. Gupta and S. Santini

languages on the other. We view the primary contribution of this work in ex-
tending a monoid comprehension framework with a DAG-manipulating pattern
language. We contrast our language with Lorel [6], UnQL [8] and StruQL [7]
in two ways. 1) Our pattern sublanguage DP is specifically designed for DAGs
(and not for general graphs) and although not shown here, can be proven to
express serially connected minimal vertex series-parallel graphs (MVSPs) [18].
2) Our language permits more powerful construction capabilities than these lan-
guages. Lorel does not have any graph restructuring operation, UnQL’s graph
construction operations are simpler than ours. StruQL is closer to our language;
but StruQL was designed for web site construction and did not need nesting.
DQL allows naturally allows nesting through environments, where at each level
of nesting we can have selection, aggregation and construction.

7 Conclusion

In this paper, we have made the case that having the ability to query a repository
of ontologies will provide a useful tool to enable new types of analysis that were
not possible hitherto. To this end, we have presented the DQL query language
and the DAG pattern definition sublanguage DP , a corresponding algebra, and
a trace of the query planning process. In this paper, we have taken the narrow
view that ontologies are merely DAGs and adopt a closed world assumption.
The semantic aspect of ontologies that leads to knowledge representation and
logical inference problems have been ignored. This allows us to focus on the
formulation of structural queries. Even with structural queries alone, interesting
life science problems can be addressed. We have not covered systems design and
query evaluation algorithms in this paper.

References

1. Consens, M.P.: Graphlog: Real life recursive queries using graphs. Master’s thesis,
Dept. of Computer Science, University of Toronto (1989)

2. Agrawal, R., Jagadish, H.V.: Direct algorithms for computing the transitive closure
of database relations. In: Proc. 13th Int. Conf. on VLDB. (1987) 255–266

3. Subramanian, B., Zdonik, S.B., Leung, T.W., Vandenberg, S.L.: Ordered types in
the aqua data model. In: Proc. of the 4th Int. Workshop on Database Programming
Languages (DBPL), London, UK, Springer-Verlag (1994) 115–135

4. Gyssens, M., Paredaens, J., den Bussche, J.V., van Gucht, D.: A graph-oriented
object database model. IEEE Transactions on Knowledge and Data Engineering 666
(1994) 572–586

5. Poulovassilis, A., Levene, M.: A nested-graph model for the representation and
manipulation of complex objects. ACM Trans. Inf. Syst. 121212 (1994) 35–68

6. McHugh, J., Abiteboul, S., Goldman, R., Quass, D., Widom, J.: Lore: a database
management system for semistructured data. SIGMOD Rec. 262626 (1997) 54–66

7. Fernandez, M.F., Florescu, D., Levy, A.Y., Suciu, D.: Declarative specification of
web sites with strudel. VLDB Journal 999 (2000) 38–55

8. Buneman, P., Fernandez, M., Suciu, D.: Unql: a query language and algebra for
semistructured data based on structural recursion. The VLDB Journal 999 (2000)
76–110



On Querying OBO Ontologies Using a DAG Pattern Query Language 167

9. Seaborne, A.: SPARQL query language for RDF. W3C Working Draft 21 (2005)
10. Zimnyi, E., dit Gabouje, S.S.: Semantic visualization of biochemical databases.

In: Semantics of a Networked World: Semantics for Grid Databases, LNCS 3226.
(2004)

11. Yan, X., Yu, P.S., Han, J.: Substructure similarity search in graph databases.
In: Proc. ACM SIGMOD International Conference on Management of Data, New
York, NY, USA, ACM Press (2005) 766–777

12. Tri”sl, S., Leser, U.: Querying ontologies in relational database systems. In: DILS
’05: Proc. 2nd International Conference on Data Integration in Life Sciences. (2005)

13. Fegaras, L., Maier, D.: Towards an effective calculus for object query languages.
In: ACM SIGMOD International Conference on Management of Data, San Jose,
CA, ACM (1995) 47–58

14. Chen, L., Gupta, A., Kurul, M.E.: Stack-based algorithms for pattern matching
on dags. In: Proc. 31st Int. Conf. on Very Large Databases (VLDB), Stockholm.
(2005) 493–504

15. Vagena, Z., Moro, M.M., Tsotras, V.J.: Twig query processing over graph-
structured xml data. In: WebDB ’04: Proc. 7th International Workshop on the
Web and Databases. (2004) 43–48

16. Wang, H., He, H., Yang, J., Yu, P., Yu, J.X.: Dual labeling: Answering graph reach-
ability queries in constant time. In: ICDE ’06: Proc. 22nd International Conference
on Data Engineering. (2006 (to appear))

17. Fegaras, L., Elmasri, R.: Query engines for web-accessible xml data. In: Proceed-
ings of the 27th Int. Conf. on Very Large Data Bases (VLDB), San Francisco, CA,
USA, Morgan Kaufmann Publishers Inc. (2001) 251–260

18. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications.
Springer-Verlag, London (2001)


	Introduction
	The DAG Data Model
	Our Query Language DQL
	An Informal Introduction
	Formal Description of Pattern Language DP
	The DQL Language

	Translating into an Algebra
	Applying DQL to Life Science Problems
	Related Work
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




