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Figure 1: The (3,5) torus knot, a complex periodic 3D curve. (a) The line drawing is nearly useless as a 3D representation. (b) A
tubing based on parallel transporting an initial reference frame produces an informative visualization, but is not periodic. (c) The
arrow in this closeup exposes the subtle but crucial non-periodic mismatch between the starting and ending parallel-transport
frames; this would invalidate any attempt totexture the tube. The methods of this paper provide robust parameterization-
invariant principles for resolving such problems.

Abstract

We propose a general paradigm for computing optimal coordinate
frame fields that may be exploited to visualize curves and surfaces.
Parallel-transport framings, which work well for open curves, gen-
erally fail to have desirable properties for cyclic curves and for
surfaces. We suggest that minimal quaternion measure provides
an appropriate heuristic generalization of parallel transport. Our
approach differs from minimal-tangential-acceleration approaches
due to the addition of “sliding ring” constraints that fix one frame
axis, but allow an axial rotational freedom whose value is varied
in the optimization process. Our fundamental tool is the quater-
nion Gauss map, a generalization to quaternion space of the tan-
gent map for curves and of the Gauss map for surfaces. The quater-
nion Gauss map takes 3D coordinate frame fields for curves and
surfaces into corresponding curves and surfaces constrained to the
space of possible orientations in quaternion space. Standard opti-
mization tools provide application-specific means of choosing op-
timal, e.g., length- or area-minimizing, quaternion frame fields in
this constrained space.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques. I.3.8 [Computer Graphics]: Applications.

Keywords: Quaternions; Frames; Tubing; Curves; Surfaces

�Email: hanson@cs.indiana.edu

1 Introduction

We propose a general framework for selecting optimal systems
of coordinate frames that can be applied to visualizing geometric
structures such as curves and surfaces in three-dimensional space.
The methods contain “minimal-turning” parallel-transport framings
of curves as a special case, are independent of parameterization, and
extend naturally to situations where parallel transport is not appli-
cable.

Motivation. Many visualization problems require techniques for
effectively displaying the properties of curves and surfaces. The
problem of finding appropriate representations can be quite chal-
lenging. Representations of space curves based on single lines are
often inadequate for graphics purposes; significantly better images
result from choosing a “tubing” to display the curve as a graphics
object with spatial extent. Vanishing curvature invalidates meth-
ods such as the Frenet frame, and alternative approaches to tubing
involve heuristics unrelated to parameterization-invariant optimiza-
tion measures in order to achieve such properties as periodicity.
Similar problems occur in the construction of suitable visualiza-
tions of complex surfaces and oriented particle systems on surfaces,
since the intrinsic orientation properties may be poorly exposed by
the original representation. If a surface patch is represented by a
rectangular but nonorthogonal mesh, for example, there is no obvi-
ous way to choose among alternative local orthonormal frame as-
signments; if the surface has regions of vanishing curvature, meth-
ods based on directions of principal curvatures break down as well.
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Figure 2: (a) A smooth 3D surface patch having a non-orthogonal parameterization, along with its geometrically-fixed normals at the four
corners. No unique orthonormal frame is derivable from the parameterization. If we imitate parallel transport for curves to evolve the initial
frame at the top corner to choose the frame at the bottom corner, we find that paths (b) and (c) result in incompatible final frames at the bottom
corner. This paper addresses the problem of systematically choosing a compatible set of surface frames in situations like this.

While we emphasize curves and surfaces in this paper to provide
intuitive examples, there are several parallel problem domains that
can be addressed with identical techniques. Among these are extru-
sion methods and generalized cones in geometric modeling, the im-
position of constraints on a camera-frame axis in key-frame anima-
tion, and the selection of a 2D array of camera-frame axis choices
as a condition on a constrained-navigation environment (see, e.g.,
Hanson and Wernert [13]).

Figure 1 summarizes the basic class of problems involving
curves that will concern us here. The line drawing (a) of a (3,5)
torus knot provides no useful information about the 3D structure.
Improving the visualization by creating a tubing involves a subtle
dilemma that we attempt to expose in the rest of the figure. We can-
not use a periodic Frenet frame as a basis for this tubing because in-
flection points or near-inflection points occur for many nice-looking
torus knot parameterizations, and in such cases the Frenet frame is
undefined or twists wildly. The parallel-transport tubing shown in
(b) is well-behaved but not periodic; by looking carefully at the
magnified portion next to the arrow in Figure 1(c), one can see a
gross mismatch in the tessellation due to the nonperiodicity. While
it would be possible in many applications to ignore this mismatch,
it has been the subject of a wide variety of previous papers (see,
e.g., [16, 24, 5]), and must obviously be repaired for many other
applications such as those requiring textured periodic tubes.

Figure 2 illustrates a corresponding problem for surface patches.
While the normals to the four corners of the patch are always well-
defined (a), one finds two different frames for the bottom corner
depending upon whether one parallel transports the initial frame
around the left-hand path (b) or the right-hand path (c). There is
no immediately obvious right way to choose a family of frames
covering this surface patch.

Our goal is to propose a systematic family of optimization meth-
ods for resolving problems such as these.

Methodology. We focus on unit quaternion representations of
coordinate frames because of the well-known natural structure of
unit quaternions as points on the three-sphere S3, which admits a
natural distance measure for defining optimization problems, and
supports in addition a variety of regular frame-interpolation meth-
ods (see, e.g., [25, 23, 19, 15]). We do not address the related
question of optimal freely moving frames treated by the minimal-
tangential-acceleration methods (see, e.g., [2, 22, 8]); we are in-
stead concerned with closely-spaced points on curves and surfaces

where one direction of the frame is already fixed, and the chosen
functional minimization in quaternion space must obey the addi-
tional constraint imposed by the fixed family of directions. Addi-
tional references of interest, especially regarding the treatment of
surfaces, include [14, 20]. Figure 3 provides a visualization of the
difference between the general interpolation problem and our con-
strained problem: a typical spline minimizes the bending energy
specified by the chosen anchor points; requiring intermediate points
to slide on constrained paths during the minimization modifies the
problem. In particular, 3D spline curves need not intersect any of
the constraint paths. In addition, we note that we typically have al-
ready sampled our curves and surfaces as finely as we need, so that
piecewise linear splines are generally sufficient for the applications
we discuss.

Our solution to the problem is to transform the intrinsic geo-
metric quantities such as the tangent field of a curve and the normal
field of a surface to quaternion space and to construct the quaternion
manifold corresponding to the one remaining degree of rotational
freedom in the choice of coordinate frame at each point. Paths in
this space of possible framescorrespond to specific choices of the
quaternion Gauss map, a subspace of the space of possible quater-
nion frames of the object to be visualized. Mathematically speak-
ing, the space of possible frames is the circularHopf fiber lying
above the point in S2 corresponding to each specific curve tangent
or surface normal (see, e.g., [26, 3]).

Parallel Transport and Minimal Measure. Constraining
each quaternion point (a frame) to its own circular quaternion
path (the axial degree of rotational freedom), we then minimize
the quaternion length of the frame assignment for curves and the
quaternion area of the frame assignment for surfaces to achieve an
optimal frame choice; this choice reduces to the parallel-transport
frame for simple cases. Our justification for choosing minimal
quaternion length for curves is that there is a unique rotation in
the plane of two neighboring tangents that takes each tangent di-
rection to its next neighbor along a curve: this is the geodesic arc
connecting the two frames in quaternion space, and is therefore the
minimum distance between the quaternion points representing the
two frames. The choice of minimal area for surface frames is more
heuristic, basically a plausibility argument that the generalization
of minimal length is minimal area; no doubt this could be made
more rigorous.

By imposing other criteria such as endpoint derivative values and



(a) (b) (c)

Figure 3: (a) The camera frame interpolation problem is analogous to the problem of finding a minimal-bending spline curve through a series
of fixed key points. (b) The optimal curve frame assignment problem is analogous to fixing the end points of a curve segment and choosing
in additiona family of lines along which the intermediate points are constrained to slide during the optimization process; in 3D, the spline
path need not pass through the constraint lines. (c) In this paper, our sample points are generally close enough together that we apply the
constraints to piecewise linear splines analogous to those shown here.

minimal bending energy (see Barr et al. [2, 22]), the short straight
line segments and polygons that result from the simplest mini-
mization could be smoothed to become generalized splines passing
through the required constraint rings; since, in practice, our curve
and surface samplings are arbitrarily dense, this was not pursued in
the current investigation.

For space curves, specifying a frame assignment as a quaternion
path leads at once to tubular surfaces that provide a “thickened” rep-
resentation of the curve that interacts well with texturing, lighting,
and rendering models. For surface patches, the approach results in
a structure equivalent to that of an anisotropic oriented particle sys-
tem (also a species of texture) whose pairs of tangent vector fields
in the surface produce natural flow fields that characterize the local
surface properties and are easy to display.

Background. General questions involving the specification of
curve framings have been investigated in many contexts; for a rep-
resentative selection of approaches, see, e.g., [16, 24, 5]. The
quaternion Gauss map is a logical extension of the quaternion frame
approach to visualizing space curves introduced by Hanson and Ma
[11, 12]. For basic information on orientation spaces and their rela-
tionship to quaternions, see, e.g., [1, 21, 19].

Background on the differential geometry of curves and surfaces
may be found in sources such as the classical treatise of Eisenhart
[7] and in Gray’s MATHEMATICA -based text [9], which inspired a
number of the illustrations in this paper. The classical Frenet frame
is defined and studied in these texts. The frame we refer to as the
parallel-transport frame was first described carefully by Bishop [4],
and has been commonly used in graphics (see, e.g., [5, 24, 17]). A
significant difference between these two methods is that the Frenet
frame is locally defined but possibly discontinuous, whereas the
parallel-transport frame is continuous but non-local, corresponding
to the solution of a differential equation.

2 The Space of Frames

We begin by introducing the key concept of thespace of possible
frames.

Suppose at each sample pointx(t) of a curve, we are given a
unit tangent vector,̂T(t), computed by whatever method one likes
(two-point sampling, five-point sampling, analytic, etc.). Then one
can immediately write down a one-parameter family describing all

possible choices of the normal plane orientation: it is just the set of
rotation matricesR(�; T̂(t)) (or quaternionsq(�; T̂(t))) that leave
T̂(t) fixed.

For surfaces, the analogous construction follows from determin-
ing the unit normalN̂(u; v) at each pointx(u; v) on the surface
patch. The needed family of rotationsR(�; N̂(u; v)) (or quater-
nionsq(�; N̂(u; v))) now leavesN̂(u; v) fixed and parameterizes
the space of possibletangentdirections completing a frame defini-
tion at each pointx(u; v).

We now definef(�; v̂) = (f0; f1; f2; f3) to be a quaternion de-
scribing the family of frames for which the direction̂v is a preferred
fixed axis of the frame, such as the tangent or normal vectors. The
orthonormal triad of 3-vectors describing the desired frame is

F (�; v̂) ="
f20 +f21�f22�f23 2f1f2 � 2f0f3 2f1f3 + 2f0f2
2f1f2 + 2f0f3 f20�f21 +f22�f23 2f2f3 � 2f0f1
2f1f3 � 2f0f2 2f2f3 + 2f0f1 f20�f21�f22 +f23

#
;(1)

where one column, typically the 3rd column, must bev̂.
The standard rotation matrixR(�; v̂) leaveŝv fixed but does not

havev̂ as one column of the3� 3 rotation matrix, and so we have
more work to do. To computef(�; v̂), we need the following:

� A base reference frameb(v̂) that is guaranteed to have, say,
the 3rd column exactly aligned with a chosen vectorv̂, which
is either the tangent to a curve or the normal to a surface.

� A one-parameter family of rotations that leaves a fixed direc-
tion v̂ invariant.

The latter family of rotations is given simply by the standard
quaternion

q(�; v̂) = (cos
�

2
; v̂ sin

�

2
) ; (2)

for 0 � � < 4�, while the base frame can be chosen as

b(v̂) = q(arccos(ẑ � v̂); (ẑ� v̂)=kẑ� v̂k) : (3)

We refer hereafter to the frameb(v̂) as theGeodesic Reference
Framebecause it tilts the reference vectorẑ along a geodesic arc
until it is aligned withv̂; see Figure 4. If̂v = ẑ, there is no prob-
lem, since we just takeb(v̂) to be the quaternion(1; 0); if v̂ = �ẑ,



Figure 4: Example of the Geodesic Reference Frame: on the
northern hemisphere of a 2-sphere, the Geodesic Reference
Frame tilts thêz axis of the north pole’s identity frame along
the shortest arc to align with a specified reference direction.

we may choose any compatible quaternion such as(0; 1; 0; 0). We
escape the classic difficulty of being unable to assign a global frame
to all of S2 because we need a parameterization ofall possible
frames, not any one particular global frame. If one wants to use
a reference frame that is not the identity frame, one must premulti-
ply b(v̂) on the right by a quaternion rotating from the identity into
that reference frame; this is important when constructing a nonstan-
dard Geodesic Reference Frame such as that required to smoothly
describe a neighborhood of the southern hemisphere of S2.

We can thus write the full family of possible quaternion frames
keepingv̂ as a fixed element of the frame triad to be the quaternion
product

f(�; v̂) = q(�; v̂) � b(v̂) ; (4)

where� denotes quaternion multiplication and all possible frames
are described twice since0 � � < 4�. To summarize, if we specify
a frame axiŝv to be fixed, then the variable� in f(�; v̂) serves to
parameterize aring in quaternion space, each point of which corre-
sponds to a particular 3D frame, and each frame has a diametrically
opposite twin.

Surface Patch Example. Figure 5 shows how the frame
choice problem of Figure 2 can be visualized in the quaternion
space of frames. We choose a quaternion projection that shows
only the 3-vector part of the quaternion, droppingq0. A frame
choice is achieved by moving a point around thesliding ring con-
straint defined by Eq. (4) to the desired position. The constraint
rings in Figure 5 are the generalizations to quaternion space of the
constraint lines symbolized in Figure 3(b). The vertexA admits
a family of framesf(�; ẑ) that is a circle in quaternion space, but
projects “edge-on” to a vertical bar in our default projection. The
spaces of frames at the other vertices project as ellipses. The outer
ring in Figure 5(b) is touched by two paths, corresponding to the
clockwise and counterclockwise parallel transport routes in Figure
5(a); the gap between the intercepts in the outer ring corresponds to
the inequivalence of the two frames at the bottom vertex of Figure
5(a).

Closed Curve Example. In Figure 6, we show a simple closed
curve, the trefoil knot, the quaternion plot of its periodic Frenet
frame, and, just to show we can do it, the entire constraint surface
in which the Frenet frame and all other possible quaternion fram-
ings of the trefoil must lie. In the next section, we show the results
of optimizing a continuous family of frames lying within this re-
markable surface.

3 Minimal Frames

We have computed a wide selection of examples using the Evolver
of K. Brakke [6] as our optimization tool. The Evolver is a
public-domain, extensively documented system with a huge range
of constraint-solving capabilities, widely used in mathematics and
certain engineering problems. It has a very simple interface for han-
dling parametric constraints like our sliding ring constraints, and
can also handle a wide variety of energy functionals and boundary
specifications. Most of the examples shown here take only a few
seconds to stabilize in the Evolver; more complex geometries will
of course take longer.

Two enhancements to the Evolver handle the specific is-
sues related to quaternion optimization; the symmetry specifi-
cation symmetry_group "central_symmetry" identifies
the quaternionq with �q if desired during the variation to prevent
reflected double traversals from varying independently, and the sys-
tem is able to use the pullback metric on the sphere

ds2 =
X
i;j

dxi dxj r
�4 (r2 �i;j � xi xj)

to compute distances directly on the quaternion three-sphere. Com-
putation using this metric, however, is very slow, and so in practice
we have used the Euclidean R4 chord approximation, which works
quite well for closely spaced samples and is much faster. (There are
other choices of three-sphere parameterizations and quaternion dis-
tance measures that we have not yet attempted that could be more
efficient still.) The energy functional that we chose to specify for
the Evolver (or that would be implemented in a dedicated system) is
thus simply the sum of the Euclidean lengths of each line segment
in R4:

d =
X
i;j

jxi � xj j

wherejqj = p
q � q =

p
q0q0 + q1q1 + q2q2 + q3q3. For surface

areas, the Evolver breaks polygons into triangles, computes their
areas, and minimizes the total sum as the vertex positions vary.

Our own use of the Evolver required only changing the pa-
rameter “#define BDRYMAX 20 ” in skeleton.h to the
desired (large) value corresponding to the number of desired
sliding rings and recompiling. Then, remembering to set
“space_dimension 4 ” when working in R4, one needs in ad-
dition a piece of code similar to the following MATHEMATICA frag-
ment to translate Eq. (4) into the boundary constraints for each fixed
vector (tangent or normal) and the chosen initial quaternion refer-
ence frame:

Do[ring = Qprod[makeQfromVec[vlist[[i]],P1],
qreflist[[i]]]//Chop;

Write[file," boundary ",i," parame-
ters 1"];

Write[file, "x1: ", CForm[ ring[[2]]]];
Write[file, "x2: ", CForm[ ring[[3]]]];
Write[file, "x3: ", CForm[ ring[[4]]]];
Write[file, "x4: ", CForm[ ring[[1]]]],
{i,1,Length[vlist]}]
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Figure 5: A different viewpoint of the mismatch problem of Figure 2. (a) Choosing different routes to determine the frame at the bottom
point results in the incompatible frames shown here in 3D space. (b) The same information is presented here in the quaternion space-of-
frames picture. We use throughout a quaternion projection that shows only the 3-vector part of the quaternion, droppingq0; this is much like
projecting awayz in a polar projection of the 2-sphere. Each heavy black curve is a ring of possible frame choices that keep fixed the normals
in (a); the labels mark the point in quaternion space corresponding to the frames at the corners in (a), so the gap between the labelsC andC ’
represents the frame mismatch in quaternion space on the same constraint ring. (The apparent vertical line is the result of drawing a squashed
circle of frames at vertexA in this projection.) (c) The method proposed in this paper to resolve this conflict is to fix one point, sayA, divide
the polygonABCB0 into triangles, and slideB, C, andB0 along the constraint rings until the total triangle areas are minimized, and some
compromise withC = C0 is reached.
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Figure 6: (a) A trefoil torus knot. (b) Its quaternion Frenet frame projected to 3D. For this trefoil knot, the frame does not close on itself in
quaternion space unless the curve is traversed twice, corresponding to the double-valued “mirror” image of the rotation space that can occur
in the quaternion representation. The longer segments in (b) correspond to the three high-torsion segments observable in (a). (c) The full
constraint space for the trefoil knot is a very complex surface swept out by the constraint rings. All quaternions are projected to 3D using
only the vector part.



Here Qprod and makeQfromVec perform the quaternion
product and create the quaternion corresponding to Eq. (4) withP1
replacing�. Note that, since the Evolver displays only the first three
coordinates, we have moved the scalar quaternion to the end; then
the Evolver will display our preferred projection automatically.

With these preliminaries, the Evolver can easily be used to min-
imize the length of the total piecewise linear path among sliding
ring constraints for selected curves, and the total area spanned by
analogous sliding rings for surfaces. We made no attempt to go be-
yond piecewise linear curves. One interesting result is that there
appear to be families of topologically distinct minima: depending
on the conditions imposed, one may find either two disjoint curves
(surfaces), one theq ! (�q) image of the other, or a single quater-
nion curve (surface) that contains its own reflection, such as that in
Figure 6(b). The families of frame manifolds containing their own
reflected images have minima distinct from the disjoint families.

We now present some simple examples to give a feeling for the
process.

Minimal Quaternion Frames for Space Curves. The helix
provides a good initial example of the procedure we have formu-
lated. We know that we can always find an initial framing of a
curve based on the Geodesic Reference algorithm; however, sup-
pose we wish to impose minimal length in quaternion space on the
framing we select, and we do not know whether this frame is op-
timal with respect to that measure. Then, as illustrated in Figure
7, we can compute the ring constraints on the possible quaternion
frames at each sample point and let the Evolver automatically find
the optimal framing. The results for several stages of this evolution
are shown in the Figure; the final configuration is indistinguishable
from the parallel-transport frame, confirming experimentally our
theoretical expectation that parallel transport produces the minimal
possible twisting.

In Figure 1, we introduced the question of finding an opti-
mal framing of a particular (3,5) torus knot whose almost-optimal
parallel-transport framing was not periodic. In Figure 8, we show
the solution to this problem achieved by clamping the initial and fi-
nal quaternion frames to coincide, then letting the Evolver pick the
shortest quaternion path for all the other frames.

The types of solutions we find are essentially the same for all
reparameterizations of the curve; regardless of the spacing of the
sampling, the continuous surface of possible frames is geometri-
cally the same in quaternion space, so paths that are minimal for
one sampling should be approximately identical to paths for any
reasonable sampling. On the other hand, if wewant special con-
ditions for certain parameter values, it is easy to fix any number of
particular orientations at other points on the curve, just as we fixed
the starting points above; derivative values and smoothness con-
straints leading to generalized splines could be similarly specified
(see, e.g., Barr et al. [2, 22]).

Surface Patch Framings. A classic simple example of a sur-
face patch framing problem was presented in the discussion of Fig-
ures 2 and 5. This problem can also be handled naturally by the
Evolver: we choose an initial quaternion frame for the mesh and
minimize the area in quaternion space subject to the constraints that
the normals remain unchanged. That is, the frame choices may only
slide around constraint rings such as those depicted in Figure 5(b)
for the frames at the corners. The results are shown in Figures 10
and 9. As a test, we started one case in a random initial state with
a range of2� in the starting values. All converged to the same op-
timal final framing. While more complex examples could be given,
all the essential features of the method short of dealing rigorously
with non-trivial topological manifolds are illustrated by this surface
patch example.

Figure 7: Helix (left) and its evolving quaternion frames (right).
Starting from the Geodesic Reference quaternion frame for a sin-
gle turn of the helix, the very dark gray circle, the Evolver pro-
duces these intermediate steps while minimizing the total quater-
nion curve length subject to the constraints in the space of frames.
The final result is the white curve, which is identical to several deci-
mal points with the parallel transport quaternion frame for the same
helix; note that thequaternion lengthof the white curve is the short-
est, even though in this projection that is not obvious. The numeri-
cal energies of the four curves, from dark to light in color, are 3.03,
2.91, 2.82, and 2.66 for the Parallel Transport frame. The individ-
ual tubings used to display these curves are in fact created using the
parallel transport frame for each individual curve.

Manifolds. For general manifolds, one must treat patches one
at a time in any event, since global frames may not exist at all.
Although the locally optimal patches cannot be globally joined to
one another, we conjecture that some applications might benefit
from the next best thing: matching boundary frames of neighbor-
ing patches using transitional rotations (see, e.g., [18, 10]). We
have carried this out explicitly for simple cases, but omit it here for
brevity.

Extensions to Other Domains. We have focussed for expos-
itory purposes in this paper on frames with intrinsic natural con-
straints imposed by the tangents to curves and normals to surfaces.
However, the method extends almost trivially to applications in-
volving externally specified constraints on frames. Geometric con-
struction algorithms based on extrusions reduce to the tubing prob-
lem. For ordinary camera control interpolation, one could constrain
any direction of the camera frame to be fixed by calculating its ap-
propriate constraint ring in the quaternion Gauss map, and then ex-
tend a method like that of Barr et al. [2, 22]) to smoothly compute
intermediate frames subject to the constraints. For more general
constrained navigation methods like those described by Hanson and
Wernert [13]), the camera vertical direction could be fixed at chosen
points over the entire constraint manifold, and the remaining frame
parameters determined by optimization within the manifold of ring
constraints, possibly subject to fixing entire key-frames at selected
locations or boundaries.

4 Conclusion

We have introduced a general framework derived from the quater-
nion Gauss map for studying and selecting appropriate families of
coordinate frames for curves and surface patches in 3D space. Min-
imizing length for quaternion curve maps and area for surfaces is
proposed as the appropriate generalization of parallel transport for
the selection of optimal frame fields. These smooth frames can
be used to generate tubular surfaces based on the space curves,
thus allowing their effective display on polygon-based graphics en-



gines with texturing. The analogous results for surface patches al-
low the selection of optimal local coordinate systems that may be
adapted for display purposes and related applications such as tex-
turing based on oriented particle systems. Our principal new tool
is the space of all possible frames, a manifold of constraints im-
mersed in the space of quaternion frames. By defining energies
and boundary conditions in this space one can produce a rich va-
riety of application-adapted criteria for specifying optimal families
of frames. Work remaining to be done in the future includes apply-
ing the method to other domains such as geometric modeling and
viewpoint interpolation, studying more carefully the topologically
distinct minimal quaternion area solutions found for certain surface
framings, and studying more challenging problems in the surface
domain, e.g., topological tori with various numerical bumps and
deformations are known to admit global frames, but little is known
about how to compute good ones, and this method is a logical can-
didate.
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(a) (b) (c) (d)

Figure 8: Optimization of the non-periodic parallel transport frame of the (3,5) torus knot introduced in Figure 1 to produce a nearby periodic
framing. (a) The original quaternion parallel transport frame used to produce the tubing in Figure 1(b,c). (b) The frame mismatch, repeated
for completeness. (c) The result of fixing the final frame to coincide with the initial frame, leaving the other frames free to move on the
constraint rings, and minimizing the resulting total length in quaternion space. The length of the original curve was 13.777 and that of the
final was 13.700, not a large difference, but noticeable enough in the tube and the quaternion space plot. (d) Closeup of the corresponding
framing of the knot in ordinary 3D space, showing that the mismatch problem has been successfully resolved. This tube cannowbe textured,
since the frames match exactly.

(a) (b) (c) (d)

Figure 9: Study ofpossibleandoptimal reference frames on a surface patch; the corresponding quaternion fields are given in Figure 10. (a)
The Geodesic Reference frames for the small patch of Figure 2. (b) Two-step parallel transport frames. (c) Random frames. (d) The unique
frame configuration resulting from minimizing area in quaternion space with the upper corner fixed.

0

0.2

0.4

0

0.2

0.4

-0.2

-0.1

0

0.1

0.2

0

0.2

0.4

0

0.2

0.4

0

0.2

0.4

0

0.2

0.4

-0.2

-0.1

0

0.1

0.2

0

0.2

0.4

0

0.2

0.4

-0.2 0 0.2
0.4

-0.25

0
0.25

0.5

-0.5

0

0.5

1
.25

0
0.25

0.5

0

0.2

0.4

0

0.2

0.4

-0.2

-0.1

0

0.1

0.2

0

0.2

0.4

0

0.2

0.4

(a) (b) (c) (d)

Figure 10: Quaternion areas corresponding to the frame assignments in Figure 9. (a) The initial Geodesic Reference quaternions for the small
patch shown in Figure 2. (b) Initial quaternions from parallel transporting the vertex frame down one edge, and then across line by line. (c)
A random starting configuration with the single same fixed corner point as (a) and (b) and a range of�� to +� relative to the Geodesic
Reference frame. (d) The result of minimization of the quaternion area is the same for all starting points. The relative areas are: 0.147, 0.154,
0.296, and 0.141, respectively. Thus the Geodesic Reference is very close to optimal, but is distinct.


