The powerful earthquake struck suddenly, shaking the seven-story building so hard it bent, cracked and swayed in response.

But this was no ordinary earthquake. In a groundbreaking series of tests, engineering researchers from UC San Diego’s Jacobs School of Engineering jarred a full-size 275-ton building erected on a shake table, duplicating the ground motion recorded during the January 17, 1994 Northridge earthquake in Los Angeles, California.

To record the impact on the building, the structure was fitted with some 600 sensors and filmed as the shake table reproduced the earthquake, yielding a flood of data about the structure including stress, strain, and acceleration—so much information that engineers were having a hard time making sense of it all.

A Virtual Building

That’s where visualization experts from the San Diego Supercomputer Center (SDSC) at UC San Diego came in.

“By recreating the shake table experiment in movies in a virtual environment based on the observed data, this lets engineers explore all the way from viewing the ‘big picture’ of the entire building from a 360-degree viewpoint to zooming in close to see what happened to a specific support,” said SDSC visualization scientist Amit Chourasia. “Integrating these disparate data elements into a visual model can lead to critical new insights.”

Added José Restrepo, a professor of structural engineering at UCSD, “These visualizations give us an intuitive way to see how the building behaves in our shake table experiments—this tool will be very valuable in helping us understand the tests in ways we can’t from traditional approaches, and also in sharing this research with other engineers and the public.”

The costliest quake in U.S. history, the magnitude 6.7 Northridge event prompted calls for more scientific evaluation of structural elements, leading the engineers to conduct the building tests on one of the world’s largest shake tables at UCSD’s outdoor Englekirk Structural Engineering Center.

A paper by Chourasia describing the project was published in a special graphics issue of *ACM Crossroads*, the student journal of the Association for Computing Machinery.

In addition to helping engineers understand the earthquake’s impact on the building, the visualizations can also give researchers a tool to do “what if” virtual experiments.

“We found that the recorded motion aligns very well with the movie we created,” said Steve Cutchin, director of Visualization Services at SDSC. “This is important because knowing the model is accurate means it can be used to take simulated earthquake data and predict the sensor values—you can ask, ‘What if a larger 7 point earthquake hits?’ and simulate how the building will shake in response.”

SHAKING THINGS UP

SDSC visualization scientists create “virtual building” to help engineers understand structural response in earthquake test

by Paul Tooby
Cyberinfrastructure for Engineering

To make the visualizations more useful and provide a rich visual context, the researchers wanted to incorporate recognizable elements from the surroundings, which meant integrating features from the actual video footage recorded during the test. “Our goal was to have fidelity not only in rendering quality but also in visual realism,” said Chourasia. In addition, the integrated video would let the researchers validate this virtual reconstruction visually.

Once Chourasia and his colleagues had developed the building model and animated the deformation caused by the shaking, they worked to align the virtual camera and lighting with the real world video camera so that the scene would match in the recorded footage and the virtual version.

“However, when we tried to composite the actual video footage, we found that the instruments had sampled the data at 50 Hertz but the video was recorded at 29.97 Hertz,” Chourasia explained. “And there wasn’t any timing synchronization between the building sensors and camera.” This posed a serious hurdle for compositing.

“After viewing the video footage, we noticed that the recording also contained audio data, because the moving building and shake table make noise, and this proved to be the key.” By “listening to the building” and analyzing the audio and sensor signals, the researchers were able to synchronize the video and instrument data for the visualization.

In the future, the visualization researchers plan to develop lighting models for more realistic rendering and to find automated ways to match the real and virtual cameras. They are also distilling lessons learned from this study into requirements for a visualization workbench for analysis of the dissimilar types of data that come from structural and seismic experiments.

This research was supported by the National Science Foundation.

Project Participants
Amit Chourasia, Steve Cutchin, Mike Rossmassler, Ruben Soto-Alcauter and Andrew Collier, SDSC/UCSD; José Restrepo and Marios Panagiotou, JSOE/UCSD

Related Links
Shake table Movies
http://visservices.sdsc.edu/projects/nees/movies/combined_640.mov
Shake table visualization project
http://visservices.sdsc.edu/projects/nees/article.php

Virtual Building
(Above) To help UCSD engineers understand how a building shakes in an experimental earthquake, SDSC experts developed a “virtual building,” recreated from building sensor data and merged with actual video footage for greater realism. The small images show how engineers can view the building from any angle and zoom in and out, giving them an intuitive tool to understand how the structure responds, and to communicate their research to colleagues, students, and the public. Image: A. Chourasia, SDSC/UCSD.

Seven Story Test Building
(Left) Engineering researchers from the Jacobs School of Engineering (JSOE) at UC San Diego shook this full-scale building using the university’s large outdoor shake table in a first-of-its-kind earthquake experiment to test new structural methods that can potentially save lives and property. Photo: JSOE/UCSD.