First Steps for the Rational Design of Drugs

In a pioneering effort that allowed scientists to visualize the behavior of key biological molecules in the body, a team of scientists—using supercomputing resources at SDSC—took an important first step in the relatively new arena of rational drug design. In a paper published in the journal *Science*, the team—which included Paul Bash, Peter Kollman and Robert Langridge of UCSF and U. Chandra Singh with the Scripps Clinic—reported that they had determined the relative free energies of binding for different chemical inhibitors at the same active molecular site. The result was significant since what makes one drug more powerful or effective than another is that, at the molecular level, it binds more readily at the site at which it acts.

Engineering Designer Plants

It’s the most abundant protein found in nature, with a whimsical name reminiscent of the company best known for its cookies. But more important than its mere abundance, RuBisCO is the key enzyme in the initiation of photosynthesis, the process by which green plants make usable energy from sunlight. In 1988, with the help of a new detector for x-ray crystallography and SDSC’s CRAY X-MP, a team of scientists led by Chapman et. al. reported, for the first time, the three-dimensional structure of RuBisCO, with a subsequent goal of building a new, improved RuBisCO to engineer designer plants that would photosynthesize more efficiently, creating more food for a hungry world.

Atmospheric Carbon Dioxide from Fossil Fuels

Beginning in the late 1950s, Charles Keeling from UC San Diego’s Scripps Institution of Oceanography (SIO) continuously collected data on the distribution of carbon dioxide around the globe. In 1989, Keeling—with SIO colleagues Stephen Piper and Robert Barastow, using SDSC resources—constructed a three-dimensional computer model of the terrestrial carbon cycle that took advantage of the data collected by Keeling. The model was the first to confirm the importance of fossil fuel combustion in loading the atmosphere with carbon dioxide, especially over the northern hemisphere.
1988

UCSD/SDSC Researchers Solve Structure for the Body’s “Transistors”

Protein kinases have been likened to cellular regulatory circuits in living organisms that perform similar functions as transistors or chips in a computer. In 1991, a team of researchers from SDSC and UCSD reported in a cover story in Science that they had solved its three-dimensional structure; the solution—with the aid of the CRAY supercomputer at SDSC and a stereoscopic visualization system in SDSC’s Advanced Scientific Visualization Lab (VizLab)—was considered one of the Grand Challenges of computational and biological science. Researchers around the globe then began searching for specific kinase inhibitors that target specific diseases, including diabetes and tumor initiation and growth.

1989

NSFnet backbone becomes a production network.

1990

KidLab, an after-school program for 10-12 year olds, established at SDSC.

1991

1992

SDSC Takes Big “STEP” with Innovative Program for Local Teachers

With the beginning of the 1992 school year, SDSC launched its Supercomputer Teacher Enhancement Program (STEP) and presented its first half-day-in-service to 25 educators and parents from Grant Math Science Magnet School. The program—a forerunner to SDSC’s award-winning TeacherTech program—was designed to show teachers how scientists use computers to make discoveries, and it introduced teachers to ways elementary school students could use computers to learn about math and science.

1995

Catching an Alleged Cyber-criminal

On February 15, 1995, SDSC Senior Fellow Tsutomu Shimomura and Systems Analyst Andrew Gross collaborated with federal agents to track down alleged computer criminal Kevin Mitnick. Shimomura and Gross applied their knowledge of computer network security to help agents apprehend Mitnick, then considered the “most-wanted computer criminal in the United States,” after an intruder broke into a network of computer systems at Shimomura’s home and at SDSC. Mitnick, now a computer consultant and author, was convicted of various computer- and communications-related crimes; he was released from prison in January 2002.
TOP 30

1991

Catching a Speeding Enzyme in the Act
With large-scale computer simulations run at SDSC, researchers showed how one of the fastest enzymes—acetylcholinesterase (AChE), which controls communications among nerves and muscle cells—works. The speed of AChE had been puzzling, since its active site appeared to be accessible only by a partly blocked channel on the enzyme’s surface. Earlier work showed that “breathing” motions in AChE open and close the channel to allow acetylcholine (ACh) to enter the active site. The new work showed that the breathing motions allowed ACh to bind almost as fast as if the channel were always open. A team of researchers, including J. Andrew McCammon (UC San Diego) combined computational models and theoretical calculations to obtain their results, published in the August 4 Proceedings of the National Academy of Sciences.

SDSC becomes first site to send messages cross country through the NSFNET T-3 backbone; at 45 Mb/s, it’s the fastest openly available network for research and education.

UCSD/SDSC researchers solve the structure for protein kinase, likened to the body’s transistor, and considered one of the Grand Challenges in biological sciences; research makes cover of Science.

1992

SDSC Releases Glue that Holds Data Together
In 1998, the Storage Research Broker (SRB) 1.1 was released as the “middleware” that holds together data cache sites for NPACI, the National Partnership for Advanced Computational Infrastructure. The SRB software, built on the work of Reagan Moore at SDSC, is still used by many U.S. and international computational science research projects. It is considered a “middleware” in the sense that it is built on top of other major software packages (various storage systems, real-time data sources, etc.) and it has callable library functions that can be used by higher-level software. SDSC’s Chaitan Baru, Michael Wan, Arcot Rajaker and Wayne Schroeder were members of the original team that developed SRB.

First workshop to discuss issues related to the National Metacenter, a synthesis of the intellectual and computational resources of the four NSF supercomputing centers — SDSC, Cornell Theory Center, NCSA, and PSC — was held at SDSC.

Intel Paragon supercomputer arrives at SDSC.

1993

CRAY C90 supercomputer arrives at SDSC; officially installed during November press briefing.

Computer studies of corannulene, a bowl-shaped molecule that constitutes one-third of the molecular shell of the Bucky Ball, subject of cover story of Chemical and Engineering News; research by Kim Baldridge and Jay Siegel from SDSC/UCSD.

Computer Simulations Reveal New Anti-HIV Strategy, Leading to AIDS Drug
Molecular dynamics simulations, conducted by a team led by UCSD chemist J. Andrew McCammon, provided new insights into attacking a third target against HIV—integrase—that helps the virus hijack the body’s cells. The simulations, published in 1999 in the Biophysical Journal, led to the development of Isentress, marketed by Merck as a new HIV drug approved for patient use by the FDA. Hailed as the most important new AIDS drug in a decade, the drug was the first AIDS medicine to block integrase, considered crucial in the process HIV uses to replicate.

Intel Paragon supercomputer arrives at SDSC.

UC receives a 3-year, $15 million grant from DEC to develop an advanced information and data management system to increase the productivity of researchers studying global change—called Project Sequoia.

SDSC launches STEP (Supercomputer Teacher Enhancement Program) to develop education outreach programs for K–12 with local educators.

1998

SDSC unveils “Grand Challenge Equations” exhibit.
1999

World's Largest Repository of Protein Structures Housed at UCSD/SDSC
On July 1, 1999 responsibility for the Protein Data Bank (PDB)—the world’s largest archive for biomedical structures—formally shifted to the Research Collaboratory for Structural Bioinformatics (RCSB) with a new PDB website and ftp archive. Today, the program is managed jointly by two partner sites: Rutgers University, under the direction of Helen Berman; and SDSC and the Skaggs School of Pharmacy and Pharmaceutical Sciences at UCSD. The PDB houses about 100,000 biological structures, including proteins associated with the common cold, avian flu, HIV, West Nile virus, Alzheimer’s disease, and a wide variety of cancers.

1999

A data transfer speed record of 630 Mb/s is achieved across the 100-mile CASA Gigabit Testbed link between SDSC and Caltech, accelerating solution of the reaction of atomic hydrogen with molecular heavy hydrogen (deuterium) by a factor of 3.3.

1996

CRAY T3E supercomputer installed at SDSC.

SDSC establishes the telemanufacturing facility to rapidly prototype 3D models from digital geometry data.

SDSC receives $8.4M contract from DARPA to develop Distributed Object Computation Testbed (DOCT) for handling complex documents on geographically distributed data archives and computing platforms; to focus on the needs of the US Patent and Trademark Office.

A model of the nicotinic acetylcholine receptor is developed by Igor Tsigelny, Naoya Sugiyama and Palmer Taylor at UCSD/SDSC, in collaboration with Steven Sine at the Mayo Foundation; enzyme is a target for addictive activity from nicotine.

1995

SDSC Technologies Provide Huge Image Archive to Study Human Embryology
SDSC-developed storage and visualization technologies were integrated into a National Library of Medicine project to create one of the largest-ever medical image databases. The project, called “Human Embryology Digital Library and Collaboratory Support Tools,” was designed to demonstrate how leading-edge information technologies in computation, visualization, collaboration, and networking can expand the capabilities of medical science in developmental studies, clinical work, and teaching. The database allowed project participants to study data sets of sizes up to a terabyte, in multi-gigabyte images, using the IBM HPSS archival storage system at SDSC, the Storage Resource Broker, and the MPIRE 3-D system to support the 3-D rendering of data.

1995

Transporting Theater-goers at Hayden Planetarium to the Orion Nebula
Astronomically accurate visualizations made possible for the first time by SDSC researchers and the IBM Blue Horizon supercomputer at SDSC transported space theater visitors to the Orion Nebula—the first destination of the virtual starship departing from the reopened Hayden Planetarium at the American Museum of Natural History in New York. The visualizations were made possible by SDSC’s Galactic MPIRE volume-rendering software package, under the technical leadership of SDSC’s Dave Nadeau.

1994

A model of the nicotinic acetylcholine receptor is developed by Igor Tsigelny, Naoya Sugiyama and Palmer Taylor at UCSD/SDSC, in collaboration with Steven Sine at the Mayo Foundation; enzyme is a target for addictive activity from nicotine.

Baldridge at SDSC and Jay Siegel, at UCSD.

The cover of Chemical and Engineering News features an image of cyclohexatriene molecule; research results from computational and experimental collaboration of Kim Baldridge at SDSC and Jay Siegel, at UCSD.

1994

NIH approves $3.286M to SDSC to fund the National Biomedical Computation Resource (NBCR).

Thinking Machines CM-2 arrives at SDSC to support UCSD education and research.

Chris Mihos and Lars Hernquist of UC Santa Cruz collaborate with computer artists at NCSA, using computational resources at SDSC CRAY C90, to create high-resolution images of a galaxy encounter for IMAX cosmic voyage, which debuts at the Smithsonian National Air and Space Museum in D.C.

1994

A data transfer speed record of 630 Mb/s is achieved across the 100-mile CASA Gigabit Testbed link between SDSC and Caltech, accelerating solution of the reaction of atomic hydrogen with molecular heavy hydrogen (deuterium) by a factor of 3.3.

A model of the nicotinic acetylcholine receptor is developed by Igor Tsigelny, Naoya Sugiyama and Palmer Taylor at UCSD/SDSC, in collaboration with Steven Sine at the Mayo Foundation; enzyme is a target for addictive activity from nicotine.

Tsutomu Shimomura, SDSC Senior Fellow, collaborates with federal agents to track down alleged “notorious cybercriminal” Kevin Mitnick, then considered the “most-wanted computer criminal in the United States.”

CRAY T3E supercomputer installed at SDSC.

SDSC establishes the telemanufacturing facility to rapidly prototype 3D models from digital geometry data.

SDSC receives $8.4M contract from DARPA to develop Distributed Object Computation Testbed (DOCT) for handling complex documents on geographically distributed data archives and computing platforms; to focus on the needs of the US Patent and Trademark Office.

A model of the nicotinic acetylcholine receptor is developed by Igor Tsigelny, Naoya Sugiyama and Palmer Taylor at UCSD/SDSC, in collaboration with Steven Sine at the Mayo Foundation; enzyme is a target for addictive activity from nicotine.

1995

SDSC Technologies Provide Huge Image Archive to Study Human Embryology
SDSC-developed storage and visualization technologies were integrated into a National Library of Medicine project to create one of the largest-ever medical image databases. The project, called “Human Embryology Digital Library and Collaboratory Support Tools,” was designed to demonstrate how leading-edge information technologies in computation, visualization, collaboration, and networking can expand the capabilities of medical science in developmental studies, clinical work, and teaching. The database allowed project participants to study data sets of sizes up to a terabyte, in multi-gigabyte images, using the IBM HPSS archival storage system at SDSC, the Storage Resource Broker, and the MPIRE 3-D system to support the 3-D rendering of data.

1995

Transporting Theater-goers at Hayden Planetarium to the Orion Nebula
Astronomically accurate visualizations made possible for the first time by SDSC researchers and the IBM Blue Horizon supercomputer at SDSC transported space theater visitors to the Orion Nebula—the first destination of the virtual starship departing from the reopened Hayden Planetarium at the American Museum of Natural History in New York. The visualizations were made possible by SDSC’s Galactic MPIRE volume-rendering software package, under the technical leadership of SDSC’s Dave Nadeau.

1994

A data transfer speed record of 630 Mb/s is achieved across the 100-mile CASA Gigabit Testbed link between SDSC and Caltech, accelerating solution of the reaction of atomic hydrogen with molecular heavy hydrogen (deuterium) by a factor of 3.3.
TOP 30

1997
- SDSC named leading-edge site for the National Partnership for Advanced Computational Infrastructure (NPACI), launched in October.
- CAIDA established with a NSF seed grant to promote a more robust, scalable Internet infrastructure; principal investigator, kc Claffy.

1998
- The Storage Research Broker (SRB) 1.1 is released as "middleware" to hold together data cache sites from NPACI, led by SDSC. The SRB software is built on work led by SDSC's Reagan Moore; Chaitan Baru, Michael Wan, Arcot Rajasekar and Wayne Schroeder are members of the original team that developed SRB.
- With large-scale computer simulations run at SDSC, researchers led by J. Andrew McCammon at UCSD show how one of the fastest enzymes in the world, acetylcholinesterase, does its work; results are published in the *Proceedings of the National Academy of Sciences*.

1999
- The world’s largest and most powerful transmission electron microscope is operated from UC San Diego and the National Center for Microscopy and Image Research (NCMIR) in a successful demonstration of trans-Pacific telemicroscopy by American and Japanese researchers.

2001
- SDSC published "Women in Science," featuring bios of women who had a career in, or made significant contributions, to a scientific discipline.
- TeacherTech launched, bringing computer science to the classroom. SDSC organized the first San Diego TeacherTech during the summer of 2001, a program designed to help educators bring new technology tools and technology-enabled science concepts into K-12 curricula. Within five years, the program attracted more than 1,200 teachers from more than 150 area schools to its workshops; it was estimated that these educators reached as many as 200,000 students from San Diego County and Baja, Mexico. In 2006, SDSC TeacherTECH was presented with a Partner of the Year Award by the San Diego Science Alliance.
- The Research Collaboratory for Structural Bioinformatics (RCSB), under the management of Helen Berman at Rutgers University, and Phil Bourne at UCDS/SDSC, assumes primary responsibility for the Protein Data Bank — the world’s largest archive for biomedical structures used in pharmacological and medical research.

2002
- SDSC Experts Help Reveal Impact of Climate Change on Mexico

In a study published in *Nature*, a team of researchers from SDSC, the University of Kansas, and the Universidad Nacional Autonoma de Mexico (UNAM) reported they had analyzed the potential impacts of climate change on the ecosystems of Mexico—the first such analysis for the entire country—including 1,870 species of mammals, birds, and butterflies. The interdisciplinary study was made possible with the help of a powerful software program, the Genetic Algorithm for Rule-Set Prediction (GARP), created by SDSC's David Stockwell.
In the Beginning...

Michael Norman, professor of physics at the Center for Astrophysics and Space Sciences (CASS) at UC San Diego, together with colleagues at CASS and SDSC, ran the world’s largest and most complex scientific simulation of the evolution of the universe ever performed. Using SDSC’s IBM Blue Horizon supercomputer, the team tracked the formation of enormous structures of galaxies and gas clouds during the millions and billions of years following the Big Bang. Norman ran his “Enzo” cosmology program for more than 100 hours on all 128 computing nodes of the Blue Horizon.

Envisioning the “Big One” for Southern California

A collaboration of 33 earthquake scientists, computer scientists, and others from eight institutions produced the largest and most detailed simulation yet of just what might happen during a major earthquake—magnitude 7.7—on the southern San Andreas Fault. The simulation, known as TeraShake, used the new 10 teraflops IBM DataStar supercomputer and large-scale data resources of SDSC. The simulation provided more detail into how intensely the earth would shake during such an event, and what impact it would have on structures, particularly in the populated sediment-filled basins of Southern California and northern Mexico.

Predicting “Solar Storms”

At times, “solar storms” ejected from the sun’s corona—it’s ghostly outer atmosphere—can eject plasma in the direction of the Earth, resulting in potentially serious disruptions in satellite operations, communications, and even electrical power grids. Since society is heavily dependent on these infrastructures, predicting “solar storms” are of tremendous importance. The March 29, 2006 solar eclipse gave scientists from the Solar Physics Group at SAIC (Science Applications International Corporation) an opportunity to check their predictions of the state of the solar corona based on a computational model using observed photospheric magnetic field data. Using dedicated time on SDSC’s IBM supercomputer DataStar and NASA’s Columbia system, this work represented the most true-to-life computer simulation ever made of the solar corona.
TOP 30

2006
Predicting Protein Structure in Record Times
Researchers from SDSC, contributing their massive computational capabilities to a collaboration with colleagues at the University of Washington and IBM, helped achieve the largest-ever protein structure prediction—and completed the complex simulation in less than three hours, a task that previously took weeks. The ground-breaking demonstration used UW Professor David Baker’s Rosetta Code and ran on more than 40,000 central processing units of IBM’s Blue Gene Watson supercomputer, using the experience gained on the IBM’s Blue Gene system at SDSC. Ross Walker, a SAC computational scientist at SDSC, managed the Baker’s group access to SDSC machines, helping them to optimize their code.

2006
HPWREN Comes to the Aid of Local Fire Fighters
Firefighters facing fast-spreading wildfires, especially in remote areas where communications and other resources are scarce, added “cyberinfrastructure” to their firefighting arsenals during the 2006 “Horse Fire” in California’s Cleveland National Forest. Experts from the High Performance Wireless Research Educational Network (HPWREN)—a resource supported by the NSF and staffed by researchers at SDSC, Scripps Institution of Oceanography, and San Diego State—responded to the urgent request of state firefighters for quick and reliable wireless communications among widespread teams. Within a day, HPWREN experts were on the scene, establishing high-speed wireless data links needed to contain the flames.

2007
Zeroing in on the Cause of Alzheimer’s and Parkinson’s Disease
Scientists led by UCSD’s J. Andrew McCammon use molecular simulations and SDSC resources to identify a potential mechanism underlying the drug resistance of the worst mutant HIV strain; in same work, the researchers identify a separate region of protease enzyme that might serve as new drug target.

CENIC announces that the first production 10 Gigabit Ethernet campus connection in the U.S. has been installed from UCSD.

SDSC receives $2.2M award from NIH to provide Next Generation Biology Workbench, building on the work of the “Workshop” concept developed by Shankar Subramaniam at UCSD/SDSC.

Astrophysicist Richard Klein from UC Berkeley and others use simulations run at SDSC to explode one of two competing theories about how stars form inside immense clouds of interstellar gas; results published in Nature.

The TeraGrid enters production with two clusters installed at SDSC: IBM/Intel IA-64 TeraGrid Phase 1 Cluster and IBM/Intel IA-64 TeraGrid Phase 2 Cluster.

Scientists led by UCSD’s J. Andrew McCammon use molecular simulations and SDSC resources to identify a potential mechanism underlying the drug resistance of the worst mutant HIV strain; in same work, the researchers identify a separate region of protease enzyme that might serve as new drug target.

SDSC receives $2.2M award from NIH to provide Next Generation Biology Workbench, building on the work of the “Workshop” concept developed by Shankar Subramaniam at UCSD/SDSC.

Astrophysicist Richard Klein from UC Berkeley and others use simulations run at SDSC to explode one of two competing theories about how stars form inside immense clouds of interstellar gas; results published in Nature.

SDSC launches DataCentral, the first program of its kind to support large community data collections and databases.

Data experts at SDSC collaborate with American Red Cross to help locate missing loved ones in the wake of Hurricane Katrina; results in “Safe and Well” website.

SDSC is the first academic institution in the world to install the new IBM eServer Blue Gene Solution computing system.

Mike Norman, and colleagues at Center for Astrophysics and Space Sciences at UCSD, run the world’s largest and most complex scientific simulation of the evolution of the universe ever performed.

SDSC’s High Performance Storage System (HPSS) reaches the milestone of one petabyte of stored data.

SDSC’s High Performance Storage System (HPSS) reaches the milestone of one petabyte of stored data.
NARA and SDSC, with concurrence from NSF, sign a landmark MOU that provides an avenue for preserving valuable digital data collections; first time NARA establishes an affiliated relationship for preserving digital data with an academic institution.

Researchers at SDSC — working with colleagues at the University of Washington — achieve the largest-ever protein structure prediction and complete the simulation in less than three hours.

The most true-to-life computer simulation ever made of our sun’s corona — created by researchers at Science Applications International Corp., with the help of SDSC resources — successfully predicted its actual appearance during the total solar eclipse of March 29.

The source of spider silk’s strength, as strong as steel, is simulated by MIT scientists in collaboration with applications scientist Ross Walker at SDSC, on SDSC’s IBM Blue Gene/L supercomputer.

A team led by Laura Carrington at SDSC successfully completes a record-setting, petascale-level simulation of the earth’s inner structure; a finalist for Gordon Bell Prize.

A team of researchers from NCAR, SDSC, LLNL and IBM, Watson, led by Allan Snively at SDSC, set U.S. records for size, performance, and fidelity of computer weather simulations, modeling the kind of “virtual weather” that society depends on for accurate weather forecasts; a finalist for Gordon Bell Prize.

Scientists are coming to the YouTube generation with the advent of “SciVee,” a collaboration between the NSF and SDSC, under the direction of Phil Bourne, UCSD/SDSC.

CAIDA researchers Dmitri Krioukov and kc Claffy, along with Marián Boguñá (Universitat de Barcelona), reveal in Nature Physics a previously unknown mathematical model called “hidden metric space” that may explain the “small world phenomenon,” offering a potentially more efficient way to pass messages on the Internet.

A team of researchers from SDSC, the National Center for Atmospheric Research (NCAR), Lawrence Livermore National Laboratory, and the IBM Watson Research Center set U.S. records for size, performance, and fidelity of computer weather simulations, modeling the kind of “virtual weather” that society depends on for accurate weather forecasts. The research, led by Allan Snively at SDSC, was a finalist for the Gordon Bell Prize.

Researchers at SDSC — working with colleagues at the University of Washington — achieve the largest-ever protein structure prediction and complete the simulation in less than three hours.

The most true-to-life computer simulation ever made of our sun’s corona — created by researchers at Science Applications International Corp., with the help of SDSC resources — successfully predicted its actual appearance during the total solar eclipse of March 29.

The source of spider silk’s strength, as strong as steel, is simulated by MIT scientists in collaboration with applications scientist Ross Walker at SDSC, on SDSC’s IBM Blue Gene/L supercomputer.

A team led by Laura Carrington at SDSC successfully completes a record-setting, petascale-level simulation of the earth’s inner structure; a finalist for Gordon Bell Prize.

A team of researchers from NCAR, SDSC, LLNL and IBM, Watson, led by Allan Snively at SDSC, set U.S. records for size, performance, and fidelity of computer weather simulations, modeling the kind of “virtual weather” that society depends on for accurate weather forecasts; a finalist for Gordon Bell Prize.

Scientists are coming to the YouTube generation with the advent of “SciVee,” a collaboration between the NSF and SDSC, under the direction of Phil Bourne, UCSD/SDSC.

CAIDA researchers Dmitri Krioukov and kc Claffy, along with Marián Boguñá (Universitat de Barcelona), reveal in Nature Physics a previously unknown mathematical model called “hidden metric space” that may explain the “small world phenomenon,” offering a potentially more efficient way to pass messages on the Internet.

A team of researchers from SDSC, the National Center for Atmospheric Research (NCAR), Lawrence Livermore National Laboratory, and the IBM Watson Research Center set U.S. records for size, performance, and fidelity of computer weather simulations, modeling the kind of “virtual weather” that society depends on for accurate weather forecasts. The research, led by Allan Snively at SDSC, was a finalist for the Gordon Bell Prize.

Researchers at SDSC — working with colleagues at the University of Washington — achieve the largest-ever protein structure prediction and complete the simulation in less than three hours.

The most true-to-life computer simulation ever made of our sun’s corona — created by researchers at Science Applications International Corp., with the help of SDSC resources — successfully predicted its actual appearance during the total solar eclipse of March 29.

The source of spider silk’s strength, as strong as steel, is simulated by MIT scientists in collaboration with applications scientist Ross Walker at SDSC, on SDSC’s IBM Blue Gene/L supercomputer.

A team led by Laura Carrington at SDSC successfully completes a record-setting, petascale-level simulation of the earth’s inner structure; a finalist for Gordon Bell Prize.

A team of researchers from NCAR, SDSC, LLNL and IBM, Watson, led by Allan Snively at SDSC, set U.S. records for size, performance, and fidelity of computer weather simulations, modeling the kind of “virtual weather” that society depends on for accurate weather forecasts; a finalist for Gordon Bell Prize.

Scientists are coming to the YouTube generation with the advent of “SciVee,” a collaboration between the NSF and SDSC, under the direction of Phil Bourne, UCSD/SDSC.

CAIDA researchers Dmitri Krioukov and kc Claffy, along with Marián Boguñá (Universitat de Barcelona), reveal in Nature Physics a previously unknown mathematical model called “hidden metric space” that may explain the “small world phenomenon,” offering a potentially more efficient way to pass messages on the Internet.

A team of researchers from SDSC, the National Center for Atmospheric Research (NCAR), Lawrence Livermore National Laboratory, and the IBM Watson Research Center set U.S. records for size, performance, and fidelity of computer weather simulations, modeling the kind of “virtual weather” that society depends on for accurate weather forecasts. The research, led by Allan Snively at SDSC, was a finalist for the Gordon Bell Prize.

Researchers at SDSC — working with colleagues at the University of Washington — achieve the largest-ever protein structure prediction and complete the simulation in less than three hours.

The most true-to-life computer simulation ever made of our sun’s corona — created by researchers at Science Applications International Corp., with the help of SDSC resources — successfully predicted its actual appearance during the total solar eclipse of March 29.

The source of spider silk’s strength, as strong as steel, is simulated by MIT scientists in collaboration with applications scientist Ross Walker at SDSC, on SDSC’s IBM Blue Gene/L supercomputer.

A team led by Laura Carrington at SDSC successfully completes a record-setting, petascale-level simulation of the earth’s inner structure; a finalist for Gordon Bell Prize.

A team of researchers from NCAR, SDSC, LLNL and IBM, Watson, led by Allan Snively at SDSC, set U.S. records for size, performance, and fidelity of computer weather simulations, modeling the kind of “virtual weather” that society depends on for accurate weather forecasts; a finalist for Gordon Bell Prize.

Scientists are coming to the YouTube generation with the advent of “SciVee,” a collaboration between the NSF and SDSC, under the direction of Phil Bourne, UCSD/SDSC.

CAIDA researchers Dmitri Krioukov and kc Claffy, along with Marián Boguñá (Universitat de Barcelona), reveal in Nature Physics a previously unknown mathematical model called “hidden metric space” that may explain the “small world phenomenon,” offering a potentially more efficient way to pass messages on the Internet.

A team of researchers from SDSC, the National Center for Atmospheric Research (NCAR), Lawrence Livermore National Laboratory, and the IBM Watson Research Center set U.S. records for size, performance, and fidelity of computer weather simulations, modeling the kind of “virtual weather” that society depends on for accurate weather forecasts. The research, led by Allan Snively at SDSC, was a finalist for the Gordon Bell Prize.

Researchers at SDSC — working with colleagues at the University of Washington — achieve the largest-ever protein structure prediction and complete the simulation in less than three hours.

The most true-to-life computer simulation ever made of our sun’s corona — created by researchers at Science Applications International Corp., with the help of SDSC resources — successfully predicted its actual appearance during the total solar eclipse of March 29.

The source of spider silk’s strength, as strong as steel, is simulated by MIT scientists in collaboration with applications scientist Ross Walker at SDSC, on SDSC’s IBM Blue Gene/L supercomputer.

A team led by Laura Carrington at SDSC successfully completes a record-setting, petascale-level simulation of the earth’s inner structure; a finalist for Gordon Bell Prize.
The CIPRES portal, used to help researchers track evolutionary relations among species, becomes the most heavily used portal in the TeraGrid, accounting for 20% of active TeraGrid users during the first quarter of 2010.

Researchers at SDSC, SDSU and UCSD create the largest-ever simulation of a Magnitude 8 earthquake, primarily along the southern section of the San Andreas fault.

Researchers from UC Irvine led by Rommie Amaro and Robyn Bush with SDSC’s Trestles system, UC’s Rommie Amaro and Robin Bush with SDSC’s Ross Walker created a method to predict how pocket structures on the surface of influenza proteins promoting viral replication could be identified as these proteins evolve, allowing for possible pharmaceutical exploitation.

Trestles, an HPC system designed to offer modest-scale and gateway users rapid job turnaround to increase researcher productivity, is launched under a $2.8 million NSF grant.

The Center for Large-scale Data Systems Research (CLDS), bringing together industry and university research to investigate “big data” challenges, is launched under the direction of SDSC researcher Chaitan Baru.

Providing a Portal to Build the Tree of Life
To help scientists build the Tree of Life—to infer the evolutionary history of Earth’s myriad species starting from biomolecular sequence data—the NSF funded a project called CIPRES (CyberInfrastructure for Phylogenetic REsearch). As part of this project, SDSC developed the CIPRES portal—a browser interface to the most widely used phylogenetic codes—along with faster versions of these codes. In December 2009 the portal was migrated to the TeraGrid, the nation’s largest open-access network of high-performance computers. Within the first quarter of 2010, the portal had 500 users, the most of any TeraGrid portal and 20 percent of all active TeraGrid users. Each month since then, more than 100 new users have accessed TeraGrid resources through the portal, attesting to the broad impact of this enabling interface.

Using Simulations to Create Customized Therapies for Virulent Flu Strains
The search for effective flu drugs has always been hampered by the influenza virus itself, which mutates from strain to strain, making it difficult to target with a specific pharmaceutical approach. Researchers from UC Irvine, with assistance of SDSC expertise and computer resources, found a new approach to create customized therapies for virulent flu strains that resist current antiviral drugs. The findings, published in *Nature Communications*, offered an avenue to build new drugs that exploit so-called flu protein ‘pockets.’ Using powerful computer simulations on SDSC’s Trestles system, UC’s Rommie Amaro and Robin Bush with SDSC’s Ross Walker created a method to predict how pocket structures on the surface of influenza proteins promoting viral replication could be identified as these proteins evolve, allowing for possible pharmaceutical exploitation.

Internet Censorship Revealed Through a Maze of Malware
In January 2011, Egypt—with 23 million Internet users—vanished from cyberspace after its government ordered an Internet blackout amidst anti-government protests. The following month, the Libyan government, also under siege, imposed an Internet “curfew” before completely cutting access for almost four days. To help explain how these governments disrupted the Internet, a team of scientists led by kc Claffy, director and founder of CAIDA at SDSC, conducted an analysis based largely on the drop in a specific subset of observable Internet traffic that is a residual product of malware. Their analysis, funded by the NSF and Department of Homeland Security—and including scientists from Italy and The Netherlands—was the first published research to demonstrate how malware-generated traffic pollution could be used to analyze Internet censorship and other macroscopic network outages.

Mike Norman named SDSC director.

SDSC officially launches the *Triton Resource*, an integrated data-intensive computing system primarily designed to support UCSD and UC.

SDSC completes a comprehensive upgrade to its tape-based archival storage capacity, increasing its total to 36 petabytes, the largest digital storage capacity of any academic center in the world.

SDSC awarded a 5-year, $20 million grant from NSF to build Gordon, a powerful supercomputer featuring “flash memory” and “supernodes” to solve critical data-intensive science problems.

As part of this project, SDSC developed the CIPRES portal—a browser interface to the most widely used phylogenetic codes—along with faster versions of these codes. In December 2009 the portal was migrated to the TeraGrid, the nation’s largest open-access network of high-performance computers. Within the first quarter of 2010, the portal had 500 users, the most of any TeraGrid portal and 20 percent of all active TeraGrid users. Each month since then, more than 100 new users have accessed TeraGrid resources through the portal, attesting to the broad impact of this enabling interface.

In January 2011, Egypt—with 23 million Internet users—vanished from cyberspace after its government ordered an Internet blackout amidst anti-government protests. The following month, the Libyan government, also under siege, imposed an Internet “curfew” before completely cutting access for almost four days. To help explain how these governments disrupted the Internet, a team of scientists led by kc Claffy, director and founder of CAIDA at SDSC, conducted an analysis based largely on the drop in a specific subset of observable Internet traffic that is a residual product of malware. Their analysis, funded by the NSF and Department of Homeland Security—and including scientists from Italy and The Netherlands—was the first published research to demonstrate how malware-generated traffic pollution could be used to analyze Internet censorship and other macroscopic network outages.
A study led by SDSC’s James Short predicts that by 2015, the sum of media delivered to consumers on mobile devices and to their homes would take 15+ hours a day to consume. That’s equal to nine DVDs worth of data per person per day.

The NSF awards SDSC a $12 million grant to deploy Comet, a new petascale supercomputer designed to transform advanced scientific computing by expanding access and capacity among traditional as well as non-traditional research domains.

Researchers from SDSC, the U.S. Geological Survey, and the San Diego Zoo’s Institute for Conservation Research develop methodology that for the first time combines 3D and advanced range estimator technologies, providing detailed data on the movements of terrestrial, aquatic, and avian wildlife species.

A published global genome study using SDSC’s data-intensive Gordon supercomputer have researchers rethinking how avian lineages diverged after the extinction of the dinosaurs. The four-year project, called Avian Genome Consortium, is published in the journal Science in late 2014.

Researchers from SDSC, the U.S. Geological Survey, and the San Diego Zoo’s Institute for Conservation Research develop methodology that for the first time combines 3D and advanced range estimator technologies, providing detailed data on the movements of terrestrial, aquatic, and avian wildlife species.

A published global genome study using SDSC’s data-intensive Gordon supercomputer have researchers rethinking how avian lineages diverged after the extinction of the dinosaurs. The four-year project, called Avian Genome Consortium, is published in the journal Science in late 2014.

A study led by SDSC’s James Short predicts that by 2015, the sum of media delivered to consumers on mobile devices and to their homes would take 15+ hours a day to consume. That’s equal to nine DVDs worth of data per person per day.

The NSF awards SDSC a $12 million grant to deploy Comet, a new petascale supercomputer designed to transform advanced scientific computing by expanding access and capacity among traditional as well as non-traditional research domains.

Researchers from SDSC, the U.S. Geological Survey, and the San Diego Zoo’s Institute for Conservation Research develop methodology that for the first time combines 3D and advanced range estimator technologies, providing detailed data on the movements of terrestrial, aquatic, and avian wildlife species.

A published global genome study using SDSC’s data-intensive Gordon supercomputer have researchers rethinking how avian lineages diverged after the extinction of the dinosaurs. The four-year project, called Avian Genome Consortium, is published in the journal Science in late 2014.

A study led by SDSC’s James Short predicts that by 2015, the sum of media delivered to consumers on mobile devices and to their homes would take 15+ hours a day to consume. That’s equal to nine DVDs worth of data per person per day.

The NSF awards SDSC a $12 million grant to deploy Comet, a new petascale supercomputer designed to transform advanced scientific computing by expanding access and capacity among traditional as well as non-traditional research domains.

Researchers from SDSC, the U.S. Geological Survey, and the San Diego Zoo’s Institute for Conservation Research develop methodology that for the first time combines 3D and advanced range estimator technologies, providing detailed data on the movements of terrestrial, aquatic, and avian wildlife species.
About this Brochure

On November 14, 1985, the San Diego Supercomputer Center opened its doors on the northwestern corner of the UC San Diego campus and showed off its first supercomputer, a CRAY X-MP/48 — clocking at what one newspaper article called a “mind-boggling” billion calculations per second... a gigaflop. Actually, the peak performance was closer to 800 million calculations per second, but still pretty fast then. Some 100 researchers — all from traditional disciplines such as astrophysics, biochemistry, geology, and oceanography — applied for time on the new supercomputer, which promised to usher in a new era of scientific discovery.

Since that day, scientific and technological advances made possible, and/or created by SDSC staff and resources like the original CRAY, have made a major mark in academia, industry, and society-at-large — “turning data to discovery,” a phrase that has become associated with SDSC. The Center has brought together researchers at UC San Diego and across the nation and world, in partnerships and collaborations that now are the hallmark of today’s scientific enterprise. SDSC also has proven to be a good neighbor, providing its expertise and considerable resources to local educators and students, firefighters and other “first-responders,” families of military serving overseas, and others in time of need.

To help commemorate SDSC’s 30th anniversary, SDSC has pulled together a timeline of the most significant events in the Center’s history. This timeline, now located outside SDSC’s data center in the building’s East Wing addition, serves as a physical reminder of the historical milestones that have made SDSC a local, state, and national resource for high-performance and data-intensive computing, and a leader in research and development of the nation’s vast cyberinfrastructure.

As an added element to this celebration, this brochure spotlights 30 significant moments and/or advances in science, technology, and outreach made possible by the Center and its staff. The “Top 30” list, published in this document, represents but a small sampling of the hundreds of major accomplishments over SDSC’s history; clearly, many other achievements also deserve recognition. We are confident this list will be discussed and debated, and ultimately revised and updated when the next such list is developed!