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Abstract. It is predicted that, in the near future, the trans-
port of compressed video will pervade computer networks.
Variable-bit-rate (VBR) encoded video is expected to be-
come a significant source of network traffic, due to its ad-
vantages in statistical multiplexing gain and consistent video
quality. Both systems analysts and developers need to assess
and study the impact these sources will have on their net-
works and networking products. To this end, suitable statisti-
cal source models are required to analyze performance met-
rics such as packet loss, delay and jitter. This paper provides
a survey of VBR source models which can be used to drive
network simulations. The models are categorized into four
groups: Markov chain/linear regression, TES, self-similar
and i.i.d/analytical. We present models which have been used
for VBR sources containing moderate-to-significant scene
changes and moderate-to-full motion. A description of each
model is given along with corresponding advantages and
shortcomings. Comparisons are made based on the complex-
ity of each model.

Key words: Video modeling – VBR – Variable bit rate –
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1 Introduction

The recent development of standards for digital video com-
pression, such as H.261 [1], H.263, [2] MPEG-1 [3] and
MPEG-2 [4], has made it feasible to transport video data
over computer communications networks. It is predicted that
in the near future, transporting video over computer net-
works will become commonplace. Classical models based
on a renewal procees (e.g., Poisson process), traditionally
used in the analysis of telephony networks, are not adequate
to model video traffic. This is due to the fact that the Poisson
process assumes that arrivals are independent, whereas, for
compressed video, they are not. In consequence, new mod-
els are needed to describe compressed video sources, and
derive attendant performance measures.

Compressed video is a traffic source which can have high
peak-to-mean ratios and significantly high autocorrelations.
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This type of source can be deleterious to networks, since
it can cause severe data loss if network resources are not
properly allocated. One way to ameliorate this difficulty is to
control the output bit rate of the encoder. This is referred to
as constant-bit-rate (CBR) encoding. A CBR encoder’s out-
put bit rate is nearly constant, making it possible to transport
its output using a fixed-rate channel. This makes bandwidth
allocation simpler and also renders the video source more
amenable to traffic policing. However, CBR encoding has
the drawback that video quality (distortion) varies signif-
icantly in order to maintain a constant bit rate. Also, the
desired bit rate needs to be determined up front, which for
some applications, such as the real-time encoding of a live
sporting event, might not be optimal since a worst case bit
rate might be chosen.

An alternative to CBR encoding is variable-bit-rate
(VBR) encoding. VBR does not attempt to control the output
bit rate of the encoder, so distortion1 does not vary signifi-
cantly. One way to accomplish this is to keep the quantizer
step size fixed. However, this makes the output bit rate of
VBR encoders vary considerably, making bandwidth allo-
cation difficult. On the other hand, this variability increases
the opportunity for improvements in statistical multiplex-
ing gain (SMG2). Figure 1 depicts the basic trade-off be-
tween distortion versus bit rate for compressed video. We
observe that distortion varies as an encoder controls the bit
rate (CBR), but if the encoder controls distortion (VBR),
then bit rate varies. This behavior highlights the basic dif-
ferences between CBR and VBR encoding.

Increases in SMG occurs due to the fact that the likeli-
hood of multiple bursty sources simultaneously transmitting
at their peak bit rates is small. One of the first investigations
regarding the SMG of encoded video was done by Haskell,
who found that a 2:1 gain was achievable when multiplex-

1 Distortion is a coarse measure of video quality and is measured in
terms of signal-to-noise ratio (SNR).

2 In the literature, two definitions of SMG have arisen. One is the ratio
fo the multiplexer output link utilization forN VBR sources compared to
only one source, given the same packet (cell) loss probability. The second
defines SMG as the ratio of the number of VBR sources to the number of
CBR sources (preferably encoded using the same source material; however,
this is often not the case and is usualy estimated) which a multiplexer can
accommodate given the same link capacity
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Fig. 1. Distortion versus bit-rate curves for compressed video

ing the outputs of several AT&TPicturephoner encoders
[5]. The SMG of VBR sources has been further quantified in
early works by Kishino et al. [6], Morrison [7] and Verbiest
et al. [8], where gains of up to 4:1 were obtained for simple
sequences.

One drawback to multiplexing VBR sources is the possi-
bility of packet loss. Such losses result when multiple inde-
pendent VBR sources cause the multiplexing buffer to over-
flow. Analyzing the multiplexer buffer occupancy behavior
is a major concern for researchers. Simulation studies are
often used in order to quantify the amount of loss, since
analytic methods are often intractable. In order to run these
simulations, source models are used to provide input stim-
ulus to the system under study. While actual video traces
may be used in place of a source model, this limits the input
to a finite realization of the underlying stochastic process,
which reduces the generality of the simulation results. In
addition, it is often difficult to acquire video traces for long
video sequences. For example, trace files for long MPEG-2
sequences are not readily available.

In this paper, we survey statistical source models for
VBR video which have been proposed for both video con-
ferencing and movie sequences. We define video conference
models as those being encoded using either H.261 or MPEG
without B frames. A movie sequence is one which is en-
coded using MPEG withI, B andP frames. Some examples
of models presented for movie sequences are:Star Wars,3

Last Action Hero,4 and The Wizard of Oz.5 Only MPEG-1
models were covered in this survey since a viable MPEG-2
model had not been published by the time this survey was
concluded. For introductory material on the encoding stan-
dards H.261 and MPEG-1, refer to [9] and [10], respectively.

The motivation underlying the choice of these particu-
lar models is to present a representative sampling of current
VBR source models. The models are grouped into four cat-
egories: AR/Markov, TES, self-similar, analytical/i.i.d. This
categorization was motivated by the dominate stochastic pro-
cess used in the model. The AR/Markov models are con-
sidered a classical approach to modeling, while TES and
self-similar are considered to be more novel. We provide
detailed descriptions of each model, where necessary, and

3 Lucasfilm Ltd./20th Century Fox, 1977.
4 Columbia Pictures, 1993
5 MGM, 1939.

discuss the motivations and merits of each model. We also
describe how each model was validated and the number of
parameters used by the model.

The paper is organized as follows. Section 2 discusses
statistical modeling and model validation. Section 3 covers
models based on Markov chains and linear regressive pro-
cesses. Section 4 covers models based on the TES process.
Section 5 describes models based on self-similar processes.
Section 6 presents analytical and non-Markovian models
which are based on i.i.d. processes. Section 7 summarizes the
paper, including a comparison of the number of parameters
required by each model in this survey. Recommendations
and issues relating to model selection are also discussed, as
well as suggestions for further research in VBR modeling.

2 Statistical modeling and model validation

A good model is one which can accurately predict perfor-
mance measures (statistics) of a stochastic system. For exam-
ple, if the researcher is interested in the cell loss probability
for an ATM buffer with VBR sources, then a good source
model is one which produces a sample path which can ac-
curately predict this performance measure, when the system
is simulated. In most cases the validity or “goodness” of a
model is determined by comparing model predictions (e.g.,
simulation statistics using the empirical data as the traffic
source) and the corresponding statistics using the model as
the traffic source. It is possible for a model to predict one
metric accurately and another inaccurately. For example, a
model may provide accurate predictions for cell loss prob-
ability, and be inaccurate predicting mean cell delay. The
researcher must decide beforehand what the desired system
metrics should be, and select a model which can accurately
predict these metrics.

There are reasons to argue that the validation of a source
model requires that its distribution and autocorrelation func-
tion match well their empirical counterparts, while using as
few parameters as possible6. Typically, one tries to fit the
empirical data with a classical distribution such as lognor-
mal or Gamma, but whether or not a good fit is found, the
empirical distribution (say, histogram) is a good fit by de-
fault. A common method used to match distributions is the
QQ plot. Matching the autocorrelation function is a more
difficult task. The autocorrelation function is a proxy for the
temporal (linear) dependence within a stochastic process.
Generally, stochastic processes may be classified into three
types: independent, short-range dependent (SRD) and long-
range dependent (LRD). An independent source is always
uncorrelated, i.e., is identically zero for positive lags; the
converse is false, namely, lack of correlation does not imply
independence. If the autocorrelation function is summable
(e.g., when it decays exponentially fast), then it is referred
to as an SRD process, but if it is not summable (e.g., when
it decays hyperbolically), then the source is referred to as
an LRD process. The requirement to use few parameters is
motivated by the fact that they must be estimated from the
empirical data. Each estimate incurs a certain amount of er-
ror which tends to reduce the accuracy of the model as the

6 Exact matching (at all lags) of the autocorrelation function is a subject
of ongoing debate (see Heyman and Lakshman [11])
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number of parameters increases (although those errors may
occasionally cancel out). In this survey, we classify the mod-
els into two types: hierarchical and non-hierarchical. Models
which capture scene changes explicitly are referred to as hi-
erarchical models. A scene change process aims to model the
relative frequency of individual scene types over longer time
scale (minutes or hours) than the bit-rate process (millisec-
onds). Scene changes occur when the mean of the bit-rate
process changes significantly as a result of a considerable
change in picture content (camera cuts).

The parsimony of a model is determined by the number
of parameters it requires and its complexity by the amount of
computer time and memory required to generate a sample.
Models which require many parameters generally require
many calculations in order to generate a sample, but there
are exceptions (e.g., TES). On the other hand, some models
require few parameters, but take a long time to generate each
sample, since each sample is calculated from all previous
samples (e.g., LRD and self-similar models). It is desirable
to develop a model of minimal complexity which provides
sufficiently accurate predictions of the metrics of interest.

3 Models based on Markov chains/linear
regressive processes

We provide a brief review of Markov chains and linear re-
gressive processes, such as the autoregressive (AR) process,
since many of the VBR source models are based on them.
Both processes incorporate temporal dependence. AR pro-
cesses, in most case, use Gaussian random variables, pro-
ducing sequences which are normally distributed. Markov
chains, those achieving steady state, can produce a wide va-
riety of distributions.

3.1 Review of Markov process

Models based on a Markov process use states to represent
bit-rate regimes (roughly a range of bit rates of a video
sequence). A stochastic process{Xk}, k = 1, 2, . . . with
state spaceS = {1, 2, 3, . . .} is Markovian if for everyn
and all statesi1, i2, . . ., wherein ∈ S it satisfies the Markov
property,

P [Xn|Xn−1 = in−1, Xn−2 = in−2, . . . , X1 = i2]

= P [Xn = in|Xn−1 = in−1]. (1)

Simply put, the current state of a Markov process depends
only on its previous state, and not on any additional previous
states. A stochastic process is called a Markov chain if the
state space is countably infinite or finite.

Markov chains are often used to modulate other pro-
cesses such as Bernoulli, Poisson or AR. The state of the
Markov chain represents a different set of parameters for the
particular process. While in a particular state, the model gen-
erates samples according to the particular process (Bernoulli,
etc.), at the specific parameter settings. This is done for
a period of time until the process switches to a different
state, generating samples using a different set of parameters.
Models of this type are referred to asMarkov-modulatedor
Markov-modifiedmodels. Some examples of such models
are the Markov-modulated Bernoulli process (MMBP) and

the Markov-modulated Poisson process (MMPP). We will
show many examples of video models which use Markov
modulation.

3.2 Review of linear regressive process

In an AR process, the current value is a function of a
weighted linear combination of past values. Formally, it is
expressed as

x(n) = a0 +
p∑

i=1

ai(x)(n − i) + e(n), (2)

wherea0 is called the intercept and{a1, a2, . . . , ap} are AR
coefficients,p is the order of the AR process and{e(n)} are
the residuals, commonly assumed uncorrelated and normally
distributed. The AR coefficients can be determined using
the recursive Levinson-Durbin algorithm [12, Appendix 2A].
AR processes of orderp are denoted byAR(p). A special
case of Eq. 2 is the AR(1) process

x(n) = a0 + a1x(n − 1) + e(n), (3)

where a1 is the autocorrelation coefficient at lag-1 when
the sequence is stationary. Note that Eq. 3 can be seen as a
continuous-state, discrete-time Markov process. A model of
this form was presented in [13].

The AR process is a special case of the autoregressive
moving-average process (ARMA) which adds a moving-
average process (MA), giving

x(n) = a0 +
p∑

i=1

aix(n − 1) +
p∑

j=0

bje(n). (4)

The ARMA process is typically stated as ARMA(p,q), where
p is the order of the AR part andq is the order of the MA
part. Determining the coefficients,bj , is a bit more involved
than an AR process and usually requires some form of spec-
tral analysis [14].

3.3 ATM cell-level model using ARMA

Grunenfelder et al. [14] developed a model, from a 4-s video
conference sequence, for the ATM cell interarrival process
from a video encoder using conditional replenishment7. The
model defined a fixed time interval of 64 slots, where 1
slot equaled the time to transmit a 36-byte cell. The random
process,{Xi}, defined the number of cells generated by the
encoder within this interval, where

Xi = g(αZi−m + Yi + νi), |α < 1

Yi =
m/2∑

k=−m/2

hkεi−k,
(5)

whereνi is white noise. The parameters for the model were
estimated from the long-term mean, variance and autoco-
variance of the empirical sequence. The coefficients,hk, of

7 Encoders using conditional replenishment only transmit the difference
in the pixel areas between a reference and current frame. This is done using
differential pulse code modulation (DPCM). Areas which do not change are
run-length coded (RLC). When this difference becomes excessive, a new
reference frame is generated and transmitted
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the MA part were determined using Fourier analysis. The
ARMA process was referred to as acolored-Gaussianpro-
cess with zero-mean, unit variance which implies that the
autocorrelation function is not from a pure Gaussian pro-
cess.

In digital signal processing terms, the ARMA sequence
is generated using the ARMA filter with white noise as input.
Since the original sequence is not a zero-mean process, the
output of the filter,{Vi}, is transformed using a zero-mean
non-linearity (ZMNL) function, g(.), of the formaVi + b.

This model requires 10,003 parameters, (α, a, b, h1, h2,
. . . h10,000), where the MA coefficients cover approximately
seven frames. Model parameters were estimated from four
seconds of video. This model can be viewed as modeling
the video sequence at the sub-frame layer (slice/group of
blocks) and it matches the pseudo-periodic autocorrelation
function, typical of these sequences, quite well.

3.4 Video conference model using Markov chain

Heyman et al. [15] developed a frame-level8 ATM model of
a 30-min video conference sequence with no scene changes
and moderate motion. The model defines the number of ATM
cells per frame,Xn, and the state of the Markov chain,Yn,
where Yn = bXn/10c9. The transition probability matrix,
P = [pij ], was estimated using

pij =
number of transitions from statei to statej

number of transitions out of statei
. (6)

This model requires many parameters due to the transition
probability matrix. In order to reduce the number of param-
eters, the authors used the DAR(1) process, which estimates
the transition probabilities by using the empirical marginal
distribution and autocorrelation coefficient. The transition
matrix is given by

P = ρI + (1 − ρ)Q, (7)

whereρ is the autocorrelation at lag 1,I is the identity ma-
trix, and each row ofQ consists of the marginal probability
distribution function (pdf) of the empirical data. Since the
empirical data was found to fit a negative-binomial distribu-
tion, each row inQ contained the probabilities (f0, f1, . . . ,
fK , fc

K) defined by

fk =
(

k + r + 1
k

)
pr(1 − p)k,

f c
K =

∑
k>K

fk,
(8)

where the parametersr andp are estimated from the empiri-
cal data, andK is the maximum number of cells in a frame.
By using DAR, the number of parameters was reduced to
only four: peak, mean, variance, and autocorrelation at lag 1.

Interestingly, this model gave rise to better bit-rate pre-
dictions than a second-order AR process, which was also
proposed at the time. This model is suitable for video con-
ferences with no significant scene changes, since it does not
model the scene changes explicitly. The model does rely

8 The frame level corresponds to MPEG or H.261 pictures.
9 bxc is the floor function, wherex is rounded towards−∞

on the use of a classical distribution (negative-binomial) in
DAR; however, the empirical distribution could be used.

Lucantoni et al. [16] proposed a model using a discrete-
state, continuous-time Markov renewal process (MRP),
which they compared to the DAR model. This model is of
the same vein as MMPP, but instead the bit-rate is fixed, not
probabilistic. They divided the range of possible rates into 40
equidistant levels and assigned a state in the Markov chain
to each level. One, and sometimes two, geometric distribu-
tion were fitted to sojourn time at each level. Sample paths
generated by the model are strikingly similar in appearance
to the empirical trace data. They compared the leaky bucket
contour curves, generated using both models, and found that
MRP was better than DAR in approximating the results pro-
duced when using the empirical sequence.

3.5 Hierarchical model using composite AR processes
and Markov chain

Ramamurthy and Sengupta [17] proposed a hierarchical
model which uses a Markov chain to capture the effects
of a scene change. The model consists of two AR processes,
where the first attempts to match the autocorrelation func-
tion at short lags and the second, the autocorrelation at long
lags. The third process is a Markov process which is used
for scene changes. Combining the three processes gives the
final model

Ti = Xi + Yi + Zi, (9)

where

Xi = a1Xi−1 + Ai, (10)

Yi = a2Yi−1 + Bi and (11)

Zi = KiCi. (12)

Equation 10 is used to generate a sequence whose autocor-
relation function matches that of the emprical sequence at
short lags, while Eq. 11 matches it at long lags. Both equa-
tions are AR(1) processes, whereAi and Bi are normally
distributed with means:µ1, µ2 and standard deviations:σ1,
σ2. Equation 12 is used to generate the extra bits needed
when a scene change occurs, whereKi represents the state
of the Markov chain andCi is a normally distributed ran-
dom variable whose mean and variance depends onKi. The
number of parameters required forCi is reduced from four
to two by making the mean and variance a function ofα
and β, whereµ = α, σ = β when Ki = 2 andµ = α/2,
σ = β/2 whenKi = 1. The basic premise behind the use of
the Markov chain, shown in Fig. 2, is to generate the extra
bits needed in the two frames following a scene change. We
will see later a model proposed by Heyman and Lakshman
[21] which also takes into consideration the first two frames
after a scene change. This model requires a total of eight
parameters (α1, µ1, σ1, α2, µ2, σ2, α, β).

3.6 MPEG frame and slice layer models
using Markov chains

Pancha and El Zarki [18] proposed an MPEG-frame and
slice-layer Markov chain model for a 3-min 40-s sequence
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Fig. 2. Markov chain of scene change process

Fig. 3. Markov chain model for video sources

of the movieStar Wars. This model differs from Heyman
and Lakshman’s [21] model in that, rather than each state
representing the number of cells in a frame, each state rep-
resents a bit-rate change of one standard deviation. This is
illustrated in Fig. 3. Transition matrices were given for dif-
ferent group of pictures (GOP) sizes and, in general, the
larger the GOP size, the more states required in the Markov
chain. Also, the slice layer required more states than the
frame layer. The number of parameters required by the mod-
els ranged from 51 for the frame layer to 102 for the slice
layer, where the mean and standard deviation was estimated
from the empirical trace data and added to the number of
transition probabilities which we summarize in Table 1.

3.7 Video conference model using composite AR processes

Yegenoglu et al. [19] analyzed a full-motion color video se-
quence of 500 frames encoded by discrete cosine transform
(DCT), differential pulse code modulation (DPCM) and mo-
tion compensation. The picture resolution was 720× 480
pixels with 16 bits per pixel and the rate was 30 frames per
second. The primary motivation of this model was to pro-
duce a multimodal probability density function (in this case,
Gaussian). Previous work indicated that the probability den-
sity functions of VBR video conference streams appeared
to consist of a combination of probability distribution func-
tions; indeed, the model did produce a multimodal probabil-
ity density function.

The model is based on an AR process whose parame-
ters are modulated by a Markov chain. The model quantizes
bit rates intoN levels, where a quantization level loosely
corresponds to a scene class. The Markov chain defines the
transition process between quantization levels, where a sin-

Table 1. Transition probability count for frame and slice layer models

Transition probabilities

GOP Size (N ) Frame type Frame Slice

1 I 49 64
16 I,P 64 81
2688 I 64 100

gle distinct AR(1) process is defined for each state of the
Markov chain. When the bit rate crosses a quantization level,
the first frame of the new quantization level is sampled from
an i.i.d. Gaussian random variable.

The state of the Markov chain at a particular time instant,
t, is defined asxt, wherext /= xt−1 signifies a state change
has occurred. For each state,i, there are a unique set of
coefficients which is used to determine the number of bits
per frame,yt, given by the regressive relation

yt =

{
a(i)yt−q + G(µ(i), σ(i)2), if xt = xt−1 = i

G(η(i), ν(i)), if xt /= xt−1; xt = i
(13)

whereG(.) is a Gaussian random variable anda(i) is the au-
tocorrelation coefficient at lag 1 at statei. When a state tran-
sition occurs, a sample is drawn fromG(η(i), ν(i)), where
the mean and variance of the bit-rate process is conditioned
on the state of the Markov chain,i. The parameters for Eq. 13
are calculated using the following constraints

a(i) = 1 − D2(i)
2ν(i)

, (14)

µ(i) =
η(i)(D2(i))

2ν(i)
, (15)

σ(i)2 = D2(i)

(
1 − D2(i)

4ν(i)

)
, (16)

where

D2(i) = E[(yt − yt−1)2|xt = xt−1 = i] (17)

is the conditioned expected square difference of the bit rates
in adjacent frames. This parameter allows for the empirical
data to be characterized in one pass, rather than the two
passes it would have otherwise required. The valuesη(i),
ν(i) andD2(i) are estimated from the empirical data.

The probability density function,fY (y), of the number
of bits per frame,yt, is approximated by a combination of
N Gaussian densities,

fY (y) =
N∑
i=1

pifG(η(i),ν(i))(y), (18)

wherepi is the steady-state probability of statei in the un-
derlying Markov chain.

Three states were used to represent the quantizations
(0,44), (44,55) and (55,∞) kbits/s, resulting in good agree-
ment between the distributions of the model and empirical
data using the Kolmogorov-Smirnov test. The model cap-
tured the first, second and fourth moments of the actual data;
however, the third moment in one particular state differed
significantly. This was due to the fact that the actual data
was not symmetrical about the mean beyond 55 kbits/s.

This model requires a total of nine parameters, three
for each quantization level{D2(i), η(i), ν(i)}, where i =
{1, 2, 3}. It is useful for video conference sequences with
small-to-moderate motion and scene changes. The tricky part
is to determine the appropriate quantization levels, a task that
requires visual inspection of the empirical bit-rate distribu-
tion.
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3.8 Block-based video conference model using AR processes

Jabbari et al. [20] developed a block-based bit-rate model
of a video encoder which adhered to the general MPEG
syntax. The encoder differs from the recommended MPEG
implementation in that the resolution is CCIR (720× 480
pixels/frame) instead of SIF (360× 240 pixels/field). Inter-
laced scanning is used, producing two fields for every frame.
In most aspects, the encoder is more similar to MPEG-2
than to MPEG-1. The statistics of encoded blocks contained
within I and P frames were estimated for a sequence of
350 fields (175 frames); the model does not account for B
frames. The model divides each field into three block types:
0, 1 and 2, where a block is defined as an 8× 8 matrix
of pixels. Type-0 blocks are encoded using DPCM and are
used for sequences with very little motion. Type-1 blocks
use motion compensation on sequences containing moderate
motion. Type-2 blocks use DCT on sequences with high mo-
tion. I frames contain only type-2 blocks, whileP frames
contain all three types.

The model consists of a vector-valued sequence

x0(n) = a0x0(n − 1) + e0(n),

x1(n) = a1x1(n − 1) + b0x0(n) + b2x2(n) + e1(n), (19)

x2(n) = a2x2(n − 1) + e2(n),

whose components represent the number of type-0, -1 and
-2 blocks in each frame,n is the frame index andei(n) is
a Gaussian random variable with meanµi and varianceσ2

i
for i = 0, 1 and 2. The determination of the parameters for
Eq. 19 is involved and is not included here; but details can
be found in [20].

The average number of bits for block typei, within frame
n, is given by

ri(n) = ciri(n − 1) + gi(n), (20)

whereci is the first-order AR coefficient andgi is a Gaussian
random variable. This is used to find the total bits per block
type i within framen given as

ui(n) = ri(n)xi(n). i = 0, 1 and 2. (21)

The final model for the total number of bits per frame,uT (n),
is therefore,

uT (n) = u0(n) + ui(n) + u2(n). (22)

The model produced sample data which was shown to match
the distribution of the actual data well via a QQ plot. How-
ever, the model was not used in the simulation of a multi-
plexer and the autocorrelation function ofuT was not given.
A total of 20 parameters are required for this model, of
which

{a0, µ0, σ0, a1, b0, b2, µ1, σ1, a2, µ2, σ2}
are used for the number blocks per frame, andci, µi, σi),
i = {0, 1, 2}, are used for the number of bits per block.

3.9 Hierarchical model using the DAR process

Heyman and Lakshman [21] proposed an ATM frame-layer
model for sequences generated using a DPCM codec (mo-
tion compensation was not used) consisting of three differ-
ent stochastic processes: (1) scene length, (2) size of the first

Table 2. Process summary of hierarchical model

Process Name Process Type Parameters

Scene Length i.i.d α, λ
Number of cells in scene change frame i.i.d α, λ
Number of cells in next frame
after scene change frame deterministic α, β, σ2

Number of cells in frame within a scene correlated ρ, r, p

frame after a scene change, and (3) size of frames within a
scene. Scene change boundaries were determined using the
second difference

∆i =
(Xi+1 − Xi) − (Xi − Xi−1)

1
m

∑m
k=1 Xi−k

, (23)

whereXi is the number of bits in framei. A scene change
is defined to occur when∆i is large and negative (m was
heuristically determined). The scene change process was de-
termined to be uncorrelated; consequently, matching the dis-
tribution was sufficient. The first frame after a scene change
was found to follow a different stochastic process since the
scene content completely changes causing the frame to be
regenerated. It was found that scene length distributions fit
Weibull, Gamma and Pareto distributions well, while the
number of cells within a scene change frame fit Weibull,
Gamma, and in one case normal distributions (some se-
quences, however, did not appear to fit any distribution).
The frame following a scene change frame was generated
using linear prediction of the form

Yi = a + bXi + εi, (24)

wherea andb are fixed coefficients andει is white noise.
Since the frame size within a scene is correlated, a

Markov chain was used where each state represented the
integer part ofXi/50 and the transition probability matrix
was parsimoniously determined using DAR. Each row of the
matrix Q consisted of the negative-binomial probabilities of
the process{Xi/50} (refer to Sect. 3.4). The final model
requires a total of ten parameters, which we summarize in
Table 2.

Frater et al. [22] proposed a similar model; however,
the scene change boundaries were determined in a slightly
different way and processes for the first two frames after a
scene change were not considered. Scene change boundaries
were determined by detecting a large difference in the output
of combination median, averaging filters. The scene length
pdf was found to be of the form

p(x) =
a

xn + b2
, (25)

wherea and b are constants, andn is estimated from the
empirical sequence.

This model also used the DAR process and the negative-
binomial distribution for the frame size process; thereby, re-
quiring a total of five parameters (ρ, r, p, b, n). Even though
the scene change frame process was not modeled, cell loss
simulation results did appear to match well the results pro-
duced when using empirical trace data.
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4 Models based on the TES process

TES processes are designed to fit simultaneously both the
marginal distribution and the autocorrelation function of the
empirical data. It is a general method in that it can match any
marginal distribution exactly and simultaneously approxi-
mate a wide variety of autocorrelation functions. A soft-
ware package calledTEStoolsupportsTES modeling via
a graphical user interface, which facilitates both algorithms
and interactive searches for TES models [23]. Recently, Je-
lenkovic and Melamed [24] have developed an algorithm
which largely automates the search process and invariably
leads to a more accurate model than those obtained via hu-
man interaction.

TES’s ability to match marginal distributions exactly and
approximate many autocorrelation functions makes it an ex-
cellent choice for constructing a source model. We give a
brief overview of TES processes; however, for more in-depth
information, the reader is referred to [25].

4.1 Overview of TES process

TES defines a method for generating an auxiliaryback-
ground process, {Un}, which allows one to vary the nature
of dependence among the target random variables{Xn}.
The process{Xn} is referred to as the foreground process
and is generated from{Un} by using a suitable transforma-
tion. The process{Un} defines a random walk on the unit
circle (circumference 1) based on the modulo-1 (fractional
part) operator, defined as〈x〉 = x − bxc.

Specifically, TES background processes come in two
flavors,{U+} and{U−

n }, defined as,

U+
n =

{
U0, n = 0

〈U+
n−1 + Vn〉, n > 0

U−
n =

{
U+

n, n even

1 − U+
n, n odd

(26)

where the initial valueU0 is uniformly distributed on the in-
terval [0, 1) and{Vn}, called theinnovation sequence, con-
sists of a sequence of i.i.d. random variables which are inde-
pendent ofU0. The background process{U+} can generate
both negative decaying or oscillatory autocorrelation func-
tions, while{U−} generates autocorrelations which alternate
in polarity between odd and even lags.

In general,{V n} is obtained from the innovation density
fV , which is typically restricted to the class of step-function
innovation densities over the interval [−0.5, 0.5) in order
to simplify the parameter search. In the simplest non-trivial
case of uniform innovations,{Vn} is determined by two
parametersL andR, where

Vn = L + (R − L)Zn (27)

is generally referred to as thesingle-step innovation function,
Zn are i.i.d. and uniformly distributed on the interval [0, 1)
and −0.5 ≤ L < R < 0.5. The parametrization (L, R) is
equivalent to the parametrization (α, φ), where

α = R − L,

φ =
R + L

R − L
.

(28)

The (α, φ) parametrization is convenient for calculating the
autocorrelation function. The parameter a controls the mag-
nitude of the autocorrelation function andφ controls its os-
cillations.

Once the background process is determined, the next
step is to define the desiredforeground process{Xn}. This
is done by applying a transformation called thedistortion
function, to {U+

n} or {U−
n }. A common distortion is of the

form D = H−1
Y ◦Sξ, whereH−1

Y is the inverse of the cumu-
lative histogram of the empirical data andSξ is a stitching
transform. Astitching transformationis used, parametrized
by a stitching parameter0 ≤ ξ ≤ 1, where

Sξ(y) =




y

ξ
, 0 ≤ y ≤ ξ

1 − y

1 − ξ
, ξ ≤ y ≤ 1

(29)

Sξ is an intermediate step designed to “smooth” the sample
paths of{U+

n} and{U−
n } when crossing the origin. In most

cases, a value at or near 0.5 is selected forξ. Finally, the
requisite foreground TES sequence is defined by,

Xn = H−1
Y (Sξ(Un)). (30)

4.2 H.261 GOB video conference model
using a TES process

Melamed et al. [26] developed a model for the number of
bits per GOB for H.261-encoded video. In H.261, each frame
(352×288 pixels, common interface format, CIF) consists of
12 GOBs, each containing 33 macroblocks. A macroblock
contains four luminance blocks (block = 8× 8 pixels) and
two chrominance blocks. The simulated system was an 802.3
LAN driven by multiple video sources. Each data packet
consisted of one or more GOBs.

They observed that the bit-rate data, at the GOB level,
contained a significant periodic component. The reason for
this is that each GOB retains significant correlations be-
tween the same blocks in successive frames since a block en-
codes the same portion of a frame and scene content changes
slowly over time (seconds). They removed this component
from the sample data, and then appliedTES to the residual
process,Rn. The periodic component was determined by us-
ing periodogram analysis to estimate the parametersK, ωi,
Ai andBi. These parameters are used to model the periodic
component as

Pn =
K∑
i=1

(Ai cosωin + Bi sinωin). (31)

The residual process is then,

Rn = Xn − Pn. (32)

A single-step innovation density withα = 0.50 andφ =
0.30 was determined forRn (using theTEStool software)
and the stitching parameter,ξ, was set to 0.5. The periodic
process was added to the TES process, yielding the final
foreground process

Xn = H−1
Y (S0.5(U+

n)) + Pn. (33)
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The parameters for the model are then{α, φ, ξ, Ai, Bi},
wherei = 1, 2 . . . K. The model produced an autocorrelation
which matched its empirical data counterpart up to a lag of
100 frames. It then was compared to an earlier AR model
which did not extract the periodic component, but distributed
the bits within a frame equally across GOBs. Simulation
showed the TES model produced lower packet loss and delay
given the same throughput when compared to results using
the AR model.

4.3 Frame and slice layer models
using a generalized TES (G-TES) process

Lazar et al. [27] developed both a frame and slice layer
models for a DCT-encoded version of the movieStar Wars.
They used a generalizedTES process in which the inno-
vation process is not i.i.d. Each scene was modeled as a
stationary process and scene lengths followed a geometric
distribution with parameter

p =
1

1 + E[Ln]
, (34)

where E[Ln] is the expected value of the duration of a
scene,Ln. Scene change boundaries were determined us-
ing the absolute difference in bit rates of adjacent frames.
The model attempts to capture the large change in bit-rate
magnitude observed at scene change boundaries. The scene
change process was incorporated into the innovation process
as

Vn = (1−Wn)(L + (R−L)Zn) + Wn

(
−αc

2
+ αcZn

)
, (35)

where {Zn} is a sequence of i.i.d. random variables with
uniform marginals in the interval [0, 1), and{Wn} is a se-
quence of i.i.d. Bernoulli random variables signaling that a
scene change occurred. TheGTES parameters were deter-
mined heuristically to beαc = 0.28 andR = −L = 0.001.
The average scene length,E[Ln], was found to be about
100 frames.

The same innovation process, with only a slight mod-
ification, was used for the slice-layer model. In order to
replicate the pseudo-periodic behavior of the autocorrelation
function, they added a modulating functionan. The back-
ground process was then defined as

Un = 〈Un−1 + anVn〉, (36)

where

an =




1 if 0 ≤ n%s ≤ s

2
− 1,

−1 if
s

2
≤ n%s ≤ s − 1,

(37)

with s being the number of slices per frame and % is the
modulo operator.

The value ofE[Ln] must now be expressed in terms of
slices, so a scale transformation changed it from 100 frames
to 3000 slices (30 slices per frame). The parametersL and
R were set to 0.003 and 0.008, respectively, whileαc was
left intact.

The final model for both the frame and slice layer was

Xn = H−1
Y (Sξ(Un)), (38)

Fig. 4. Generation of background processes forI, P and B frames in
relation to the GOP sequence

wherean = 1 for the frame layer model, andan is given by
Eq. 37 for the slice-layer model.

The parameters for the model are{αs, αc, ξ, p} for the
frame layer and{αs, αc, ξ, p, an} for the slice layer. The
frame-layer model matched the autocorrelation function of
the empirical data well up to a lag of about 300 frames, but
thereafter it dropped below its empirical counterpart. The
slice-layer model matched the autocorrelation well up to a
lag of 100 frames. The pseudo-periodic behavior was cap-
tured, but the model appeared to underestimate the peaks in
the autocorrelation function. The attractiveness of the GTES
approach is that it provides a way to model VBR video at
two different time scales (slice and frame), while directly
incorporating a scene change mechanism. This is the first
model considered to be of the hierarchical type. The model
was used in simulations to determine the bandwidth alloca-
tion required for sources of different service types.

4.4 MPEG frame-layer model
using a composite-TES (C-TES) processes

Reininger et al. [28] developed a model for MPEG sequences
containingI, B and P frames. The model uses the back-
ground process{U+} for I, B frames and{U−} for P
frames, giving the background sequences,{U I+}, {UB+}
and {UP−}. The scene change process was not taken into
account in this model.

An interesting point regarding this model is that the num-
ber of bits inB and P frames, within a GOP, depends on
the I frame located at the beginning of a GOP. Recall that,
in MPEG, a GOP consists of a set ofI, B and P frames
arranged in a deterministic pattern which repeats through-
out the sequence. For example, given a frame sequence
{. . . I2B3B4P2B5B6P3B7B8I3 . . .}, where the subscript is
the index number of the associated frame type, the back-
ground sequence variates forB3 andP2 are set equal to the
background sequence variate forI2 (U I+

2 = UB+
3 ) = UP−

2 ).
This makes intuitive sense, because bothB and P frames,
within a GOP, reference theI frame in the encoding pro-
cess. An illustration of the relationship of the background
sequences forI, P andB frames is shown in Fig. 4.

The final model is composed of a deterministic com-
bination of each frame type process. Process selection is
determined by the GOP frame sequence pattern, defined by
the MPEG encoding parametersN and M , which are the
I-frame andP -frame distances, respectively. The three ran-
dom processes are defined as

XI+
n = H−1

YI
(SξI

(U I+
n )),
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XB+
n = H−1

YB
(SξB

(UB+
n )), (39)

XP−
n = H−1

YP
(SξP

(UP−
n )).

The model requires nine parameters,{α, φ, ξ}I,B,P , three
for each frame type. One point of interest here is that MPEG
sequences withIBP frames exhibited a pseudo-periodic au-
tocorrelation function similar to that produced by slice-layer
sequences. This behavior is caused by the deterministic se-
quencing ofIBP frames and is captured well by this model.

4.5 Frame-layer model
using a Markov-modulated TES (MRMT) process

Melamed and Pendarakis [29] developed a model for a DCT-
encoded version of the movieStar Wars(this is the same
sequence used in Sect. 4.3) and take scene changes into ac-
count. The approach taken here is different from that in
Sect. 4.3 in that the scene change process is not assumed
to be i.i.d., but Markovian. The first task was then to seg-
ment the video sequence into individual scene segments and
classify each segment. Scene boundaries were detected by
measuring the sustained absolute difference of the bit rates
between a series of successive frames, again, similar to the
technique used in Sect. 4.310.

Once the video sequence is segmented, each segment is
classified using a clustering algorithm based on the mini-
mum Euclidean distance between mean bit rates. Four clus-
ters were sufficient to categorize the video sequence into
four scene classes. ATES model was then created for each
scene class, where each class was mapped to a state of a
Markov chain, illustrated in Fig. 5, whence the nameMarkov
renewal modulated TES(MRMT ) process. Scene durations
were class dependent; however, its autocorrelation function
was practically zero for lags greater than five frames, so it
was assumed to be i.i.d. random variable, represented by
{Ti}, wherei = 1, 2, 3, 4 is the class index. Although it is
not explicitly stated that the scene duration distribution is
geometric, the video sequence is the same as that used in
[27] where its form is stated explicitly.

The final model consists of four TES processes, one for
each class,

Xi+
n = H−1

Yi
(Sξi

(U i+
n )), i = 1, 2, 3, 4 (40)

as well as four renewal processes for the corresponding scene
durations.

The parameters for the model are{αi, φi, ξi, P}, where
i is the class index andP = [pi,j ] transition probability ma-
trix. This yields 12 parameters for the matrix, and 3 for each
TES process giving a total of 24 parameters. The model was
used to generate 171,000 samples and the attendant sample
path, histogram, autocorrelation function and spectral den-
sity were compared to their empirical counterparts. In all
cases, excellent matches were achieved. This model pro-
duced better matches to the autocorrelation function at long
lags, since the Markov chain captures the longer term scene
change behavior.

10 It should be noted that sequences containingI, B andP frames will
require different methods to determine scene change boundaries. It seems
feasible that, in this case, this technique could be applied toI frames only.

Fig. 5. The modulating Markov chain which controls TES process selection
and scene duration based on class type. Transition probabilities,pij , from
classi to classj are determined from the empirical data of scene transitions.
The amount of time spent in a particular state,Ti, is sampled from the
empirical distribution of classi scene durations.{Xi+

n } represents the TES
process for scene classi

5 Models based on self-similar processes

Loosely speaking, a process is said to be self-similar if the
samples for that process appears “similar”, regardless of the
duration of the sampling interval (time scale). One of the im-
portant characteristics of a second-order self-similar process
is that it is also long-range dependent (LRD). An LRD pro-
cess is defined as a process in which its autocorrelation func-
tion is not summable. This behavior differs from short-range-
dependent (SRD) processes, whose autocorrelation functions
are summable and power spectrums are bounded at low fre-
quencies. Recent work by Beran et al. [30] has shown that
long-range dependence is intrinsic to VBR sequences, and
given that there is some evidence that LRD processes can
negatively affect multiplexing performance [31, 32], source
models which capture this characteristic were developed. We
present a brief overview of LRD; however, for more infor-
mation the reader should see [30].

5.1 Overview of long-range dependence

It has been found that LRD processes occur quite often in na-
ture. Natural phenomena such as rainfall, the annual growth
of tree rings, river levels and discharges are often described
as self-similar processes. Hurst first discovered this property
by investigating the amount of storage required in the Great
Lakes of the Nile river basin [33]. He found that the ex-
pected value of the quantityR(n)/S(n) (rescaled adjusted
range statistic R/S), asymptotically followed a power law

E[R(n)/S(n)] ≈ cnH , n → ∞ (41)

wherec is a positive constant independent ofn, R(n) is the
adjusted range,S(n) is the sample standard deviation, and
H is the Hurst parameterwith range 0.5 < H < 1. The
rescaled adjusted range is calculated using

R(n)
S(n)

(42)

=
max(0, W1, W2, . . . Wn−min(0, 0, W1, W2, . . . Wn)

s(n)
,

where



208

Table 3. Hurst parameters of various traffic types.

Traffic type H

Computer traffic [34] ≈ 1
CNN [35] 0.90
Star Wars(Motion JPEG) [35] 0.88
Star Wars(MPEG IBP) [35] 0.86
Star Wars(B/W, DCT) [36] 0.83
Video conference [30] 0.6-0.75
i.i.d [37, 38] 0.5

W0 = 0,

Wk =
n∑

i=1

Xi − kX(n) k = 1, 2, . . . , n
(43)

andXi is the empirical sequence.
The valueE[R(n)/S(n)] is calculated for different val-

ues ofn and plotted in aPox diagramwhere log(E[R(n)/
S(n)]) is plotted on they-axis and log(n) is plotted on the
x-axis. Linear regression is then used to estimate the Hurst
parameter

H =
log E[R(n)/S(n)]

log n
. (44)

Typical values ofH for various sequences are given in
Table 3. Note that the value ofH for i.i.d random processes
is 0.5, while for computer traffic it is approximately 1. Figure
6 shows the effect of the value ofH on a random sequence.
We plotted samples generated using a fractional ARIMA
process for four different values of H. We see that asH
increases, a noticeable low-frequency oscillation is evident
in the sequence envelope.

Once H is estimated, a processes such asfractional
ARIMA, or fast fractional Gaussian noise(ffGn) is used
to create a background sequence, which may be used in
turn to generate the foreground sequence using the desired
empirical marginal bit-rate distribution. Other methods can
be used to estimateH in addition to R/S analysis such as
variance-timeandperiodogram analysis.

5.2 Frame layer model
using a fractional ARIMA (f-ARIMA) process

Garrett and Willinger [36] developed a model a DCT encod-
ing of the movieStar Wars(same one used in Sect. 4.3). To
match both the left and right tails of the empirical distribu-
tion they used a hybrid distribution,FΓ/P , which consisted
of a concatenation of a Gamma distribution for the left tail
and a Pareto distribution for the right tail. Right tail matching
is particularly important because it describes the probabili-
ties of high bit rates, which can significantly affect queuing
performance.

The model uses a fractionalARIMA(0, d, 0) process to
generate the background sequence, whered = H − 0.5, and
its autocorrelation function is given by

ρk =
d(1 + d) . . . (k − 1 + d)

(1 − d)(2 − d) . . . (k − d)
. (45)

The background process,{Uk}, is generated using Hosk-
ing’s algorithm11 [39] which is ano(n2) algorithm. EachUk

is Gaussian with meanµk and varianceσ2
k, which are given

by the functionφ, defined recursively by

φkj = φk−1,j − φkkφk−1,k−j , j = 1, . . . , k − 1 (46)

φkk = (Nk/Dk), (47)

where

Nk = ρk −
k−1∑
j=1

φk−1,jρk−j , (48)

Dk = Dk−1 − (N2
k−1/Dk−1), (49)

and the initial values areN0 = 0 andD0 = 1. The mean and
variance is then

σ2
k = (1 − φ2

kk)σ2
k−1, (50)

µk =
k∑

j=1

φkjXk−j , (51)

where the random variable,X0, is sampled from a standard
normal distribution. Finally, the number of bits per frame
is represented by the foreground sequence,{Yk}, which is
generated using the transformation

Yk = F−1
Γ/P (Fn(Uk)), k > 0 (52)

where FN is the standard normal cumulative distribution
function andF−1

Γ/P (.) is the inverse of the aforementioned
hybrid Gamma/Pareto cumulative distribution function. Note
that the LRD property is still preserved when transforming
from Uk to Xk.

The parameters required by the model are (µΓ , σΓ ,
mT , H), whereµΓ andσΓ are the mean and variance of the
Gamma distribution andmT is the slope of the line which
best fits the tail of the Pareto distribution. The model parsi-
moniously captures the LRD aspect in this sequence using
a single parameter.

5.3 Frame-layer model using a fast fractional Gaussian
noise (ffGN) approximation

Enssle [40] developed a VBR model for an MPEG version
of Star WarscontainingI, B andP frames. The model used
the ffGN algorithm to generate the background sequence.
This method is an approximation to the fractional Gaussian
noise process and has a computational complexity ofo(n).
Consequently,ffGN provides a faster way to generate the
background sequence as compared tofractional ARIMA.

The background process,{Us(t)}, was generated using
ffGN . The Hurst parameter,H, was estimated to be 0.856,
using periodogramand R/S analysis, which compares well
with the value 0.83 found in [36]. TheffGN algorithm re-
quires two additional parameters besidesH, called the base,
B, and quality,Q. Selecting a value forB in the range
1.1 < B < 2 and Q = 20 produced acceptable estimates

11 One interesting feature of this algorithm is that, given a discrete auto-
correlation sequence,ρk, a sampla path can be generated whose autocorre-
lation matches it. We will see this technique used later in a model proposed
by Huang et al. [41]
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Fig. 6a,b. Comparison of the Hurst effect on
random processa samples generated using frac-
tional ARIMA process (x-axis = sample, y-axis
= magnitude)b corresponding empirical auto-
correlation functions (x-axis = correlation coef-
ficient, y-axis = lag)

b

of the autocorrelation function (this was heuristically de-
termined). The background process,{Us(t, H)}, consists of
high- and low-frequency components,

Us(t, H) = Ul(t, H) + Uh(t, H). (53)

The low-frequency component is a weighted sum of inde-
pendent Markov-Gauss processes,

Ul(t, H) =
N∑

k=1

WkG(t, r(k)). (54)

The number of Markov-Gauss processes is

N = dln(Qn)/ ln(B)e, (55)

wheren is the length of the time series and the weight factors
are



210

Wk =

√
H(2H − 1)(B1−H − BH−1)(B−2k(1−H)

Γ (3 − 2H)
. (56)

The lag-1 covariance is given by

r(k) = e−B−k

, (57)

which is used in the Markov-Gauss process

G(t, r(k))

=

{
Gk(1), t = 1

r(k)G(t − 1, r(k)) +
√

(1 − r2(k))Gk(t), t > 1
(58)

whereGk(t) is standard normal.
The high-frequency component of Eq. 53 is

Uh(t, H) =

√
1 − BH−1

4(1− H)Γ (−2H)
G(t), (59)

whereG(t) is standard normal.
Each frame type has an corresponding distribution for

the number of bits per frame, which was determined to fit
the lognormal distribution well. The background process,
Us(t, H), is then distorted using the transformation of the
frame type distribution,F−1

i , to give

Xi(t) = F−1
i (Us(t)), i = 1, 2, . . . , n (60)

which translates to the following

Xi(t) = exp

[√
ln(1 + Φ)Xs(t) + ln E[Xi]− 1

2
ln(1 + Φ)

]
,

(61)

whereΦ = (V ar[Xi])/E[Xi]2 and i is the frame typeI, B
andP .

The model requires three parameters:B, Q andH for the
background process and six parameters:E[Xi], V ar[Xi],
for the lognormal distributions, for a total of nine parame-
ters. The model basically operates as follows. At timet, the
frame typei, which is predetermined by the MPEG GOP
pattern (IBBPBBP. . .), is used to select one of the three
transform functions:XI (t), XB(t) and XP (t). A sample is
then generated of{Us(t, H)} which is used in the selected
transform function. Time is then incremented to determine
the next frame type and the process continues for the dura-
tion of the video sequence.

5.4 Frame-layer SRD/LRD model
using an f-ARIMA process

Huang et al. [41] developed a model for an MPEG encoding
of the movieLast Action Hero, which containsI, B and
P frames. It is referred to as a unified model because it
uses a hybrid function in order to match the autocorrelation
function at both the short-term and long-term lags. The Hurst
parameter,H, was used to generate the LRD part of the
autocorrelation function, and a weighted sum of exponentials
was used to match the SRD part. These parts were then
combined, yielding the hybrid autocorrelation function

ρk =

{
e−0.00565k , k < Kt

1.59k−0.2 , k ≥ Kt

(62)

whereKt is the boundary between the SRD and LRD parts.
The Hurst parameter was determined using both R/S and
variance-time analysis and the SRD parameters were deter-
mined by using regression analysis. Once the autocorrelation
function was determined, Hosking’s algorithm was used to
define the background process,{Un}. Individual histograms
were constructed for each frame type and the attendant back-
ground process was then transformed for each frame type via

Xi
n = H−1

Y (Un). i = I, B, P (63)

Histograms were used since the authors determined that the
empirical distributions did not seem to fit any of the existing
classical distributions.

The model requires four parameters to estimateρk, the
Hurst parameterH, and one parameter for each cell in
the frame type histogram. Samples were produced which
matched the autocorrelation function well for lags up to 500
frames. The portion of the autocorrelation function up to lag
Kt ∼ 75 is fitted well by the exponential function. This is
probably the most accurate model to date in terms of match-
ing the autocorrelation function for both short and long lags.

6 Analytical and non-Markovian type models

The analytical model proposed by Marafih et al. [42] is a
model whose premise relies on a discrete-state Markov chain
and uses analytical methods, such as stationary-interval (SI),
asymptotic method (ASM) and queuing network analyzer
(QNA), in order to estimate multiplexer cell loss. Model
parameters were estimated using the first two moments of the
empirical sequence (I and P frames). Results showed that
the SI model produced results which provided a good upper
bound, while the ASM model provided a lower bound. The
QNA model seemed to match the results using the empirical
data.

Skelly et al. [43] proposed a generalized histogram-based
analytical model for ATM VBR sources. Each source is char-
acterized by a bit-rate histogram and the histogram of the
aggregate (multiplexed) process is obtained by convolving
the individual source histograms. Once obtained, the his-
togram is used to solve an M/D/1/K system and the buffer
occupancy distribution is given by

P (n) =
N∑
I=1

P (n|λI = λ)P (λ = λI ), (64)

where P (λ = λI ) is the bit-rate histogram approximation
of fλ(x), P (n|λ = λI ) is the buffer occupancy distribution
given the arrival rate isλI , and N is the number of bins
in the histogram. In order to generalize the applicability of
their model, they used an MMPP/Ek/1/K as the source model
to determine the buffer occupancy distributions. They found
that a Markov chain of eight states was sufficient; thus, re-
quiring an 8× 8 transition probability matrix. This model
requires 64 parameters for the matrix and 8 parameters for
the average arrival rate for the Poisson process in each state,
for a total of 72 parameters.

Krunz et al. [44] proposed a model for an MPEG en-
coding of the movieThe Wizard of Ozconsisting of 41,760
frames (I, B andP ). Each frame type was fitted using a log-
normal distribution, where parameters were estimated using
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the maximum likelihood estimators (MLE). The frame size
process for each frame type was assumed to be i.i.d., which
greatly simplifies the model. Selection of the appropriate
frame type processes was done deterministically based on
the MPEG GOP structure. While this model is simplistic,
simulation results for cell loss, when multiplexing up to 10
sources, matched the results produced by the empirical se-
quence fairly well. A similar model was proposed by Enssle
[35] for a full-length (123,574 frames) MPEG encoding of
the movieStar Wars.

7 Summary

It is apparent that one has many choices when it comes to
VBR models. In order to narrow the selection, it is important
that the user define the attributes of the source in order to
assist in model selection. Some questions to answer are

1. does the VBR sequence contain significant scene chan-
ges?

2. What is the frame type sequence pattern? Is it H.261 or
MPEG?

3. Does the sequence containB frames?
4. Does the frame type distribution fit any of the classical

distributions, such as lognormal, Gamma, etc.?
5. What level is to be modeled? Frame, slice, GOB, or ATM

cell?

Answering these questions will assist the user in deter-
mining the proper VBR model to use in simulations. A se-
quence which contains different frame types (I, B, P ) would
likely require a model which uses separate processes for each
frame type, so this is an important consideration. Another
matter to consider is the marginal distribution of the source
process. If a classical distribution will fit, then samples can
be generated using many of the existing mathematical trans-
formations; otherwise, samples must be generated using the
inversion method on the empirical histogram. We summarize
the attributes of the models covered in this survey in Table
4.

7.1 Model recommendations

As a result of this survey, several recommendations can be
given which might be helpful in determining an appropriate
model for VBR video. The first is that, if a video confer-
ence model is required (noB frames), and there are few
or no scene changes, then a DAR model is a better choice
than an AR model. Another contender, however, is the MRP
model, which produced better results than DAR, but requires
more parameters. It is conceivable, that, for certain video se-
quences in which the bit rate stays at particular levels for
long periods of time, MRP would be a better choice.

Another recommendation deals with the modeling of the
scene change process. When modeling sequences with nu-
merous scene changes, the user can choose either a Markov-
based model or a self-similar model. The choice, however,
is not clear cut. On the one hand, self-similar models have
the advantage that only a single parameter (H) is required;
whereas, a Markov chain requires many parameters (tran-
sition probabilities). Unfortunately, the drawback to self-
similar models is the computational complexity involved

Table 4. Summary of VBR model attributes

Scene
# Model type Parameters change Level B frames?

1 ARMA [14] 1003 No subframe No
2 DARa [15] 4 No Frame No
3 MRP [16] 40 No Frame No
4 AR/MC [17] 8 Yes Frame No
5 MC [18] 51–102 No Frame/Slice No
6 AR/MC [19] 9 No Frame No
7 AR [20] 20 No Block No
8 DAR/i.i.d [21] 10 Yes Frame No
9 DAR/i.i.d. [22] 5 Yes Frame No

10 TES [26] 2Kb+3+Hc No GOB No
11 GTES [27] 5+H Yes Frame/slice No
12 composite-TES[28] 9+3H No Frame Yes
13 MRMT [29] 24+4H Yes Frame No

14 f-ARIMA [36] 4 Yes Frame No
15 ffGN [37] 9 Yes Frame Yes
16 Unified f-ARIMA [41] 4+3H Yes Frame Yes

17 ΣGI/D/1 [45] 2 No Frame No
18 MMPP/Ek/1/K [45] 72 No Frame No
19 i.i.d [32] [42] 6 No Frame Yes

a MC = Markov chain
b K = óf frequency coefficients to match periodic GOB process
c “H” is number of histrogram cells required by a TES process to match
the empirical distribution

in generating samples can be quite high. This is alleviated
somewhat by usingffGN . Nevertheless, it does appear
from the results given in [36] and [40] that ignoring the
scene change process will most likely yield overly optimistic
simulation results.

The last recommendation deals with models for MPEG
video which containI, B andP frames. It seems clear that
these models require separate processes for each frame type.
The assumption to select each process deterministically ac-
cording to the GOP pattern is valid. However, this is due
to the fact that the GOP pattern is fixed for the duration of
the sequence. Future encoders will most likely vary frame
type sequencing based on video content, which will vary the
GOP pattern. In fact, this mode of operation is fully compli-
ant with the MPEG standard. For such sequences, the frame
type selection process will also be stochastic, thereby inval-
idating the deterministic assumption. This opens a new area
which is yet to be covered in VBR modeling.

7.2 Self-similar models

One issue concerning self-similar models is the relative im-
portance in matching the SRD component of the autocorrela-
tion function. We saw that in Huang et al.’s model [41] both
the SRD and the LRD components were matched. In effect,
the background process exhibits both a rapid decay at short
lags and a much slower decay for long lags. Enssle’s model
(ffGN) does not do this, but claims that the SRD component
is sufficiently captured by the deterministic GOP process. A
question which arises then is the added benefit derived in
capturing the SRD component of an individual frame type.
With regard to the question of the relative significance of the
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LRD component in VBR sequences, recent work by Heyman
and Lakshman [11] suggests that short busy periods (typical
when multiplexing VBR sequences) and finite buffers cause
a “reset effect” which, for the most part, negates any LRD
effects. As a consequence, they argue that SRD, which is
modeled well by using Markov processes, is a more impor-
tant aspect of VBR sequences.

7.3 Recent models

Two new models, which have recently been published dur-
ing the review of this survey, deserve mention. The first is
the model by Krunz and Tripathi [46] for an MPEG VBR
sequence containingI, B andP frames. The model consists
of a composite of three random variables; one for each frame
type. The random variables for bothB- andP -frame types
was found to be i.i.d. with a lognormal distribution. ForI
frames, the scene change process, which was both geomet-
ric and i.i.d., was used to define an average bit-rate level,
while an AR(2) process was used to produce the fluctuations
over this level. The GOP pattern was used to select one of
the three random variables. The model by Jelenkovic et. al.
[47], interestingly, does not model the MPEG sequence at
the frame layer, rather it models the sequence at the GOP
layer. Scene changes are discerned by taking the normalized
second-order difference between GOP sizes and determin-
ing if it is both large and negative. Scenes are then grouped
into four classes based on a clustering of GOP sizes (simi-
larly done in [29]). Each class was then modeled using an
i.i.d. process which was selected using a Markov chain. The
paper also addresses the controversy over the relative impor-
tance of the SRD and LRD components in an MPEG VBR
sequence.

7.4 Further research

Most of the focus in VBR research has centered on packet
loss at a multiplexer buffer. This metric is assumed to be
directly related to video quality of service (QoS). How-
ever, aggregate loss might not be sufficient in determining
end-user “perceived” quality. In fact, loss “bursts” and their
frequency of occurrence might be a more significant met-
ric. More specifically, VBR streams with similar aggregate
loss, but significantly different mean time between losses
(MTBL), might be perceived as having very different quality
by the end user (this phenomena has been suggested in [36]
and [45]). As a consequence, research is needed to determine
how useful these models are in predicting this metric.

Another direction for further work is the performance of
a model when using a “smoother” mechanism. A smoother
reduces the source traffic bit-rate peak-to-mean ratio by in-
jecting extra delay. Models which do not accurately repro-
duce the empirical sample path might not be suitable when
used in conjunction with a smoother. The only paper in this
survey which partially addresses this issue is the one by
Lucantoni et al. [16], where leaky-bucket contour curves
were studied. However, the leaky bucket is more of a traffic
policing device than smoothing device and there are a whole
class of smoothers which have not been studied in conjunc-
tion with any of the proposed models. In addition, the buffer

service policy used by the multiplexer should be taken into
account. Most of the models assume a first-come-first-serve
policy, but others exist such as weighted fair queuing.

Another area often overlooked (or minimized in its sig-
nificance), is the cross-correlation effect between MPEG
sequences which result from the GOP pattern. Sequences
which have GOP parameters (N, M ) which are the same,
or multiples thereof, can haveI andP frames which over-
lap in time. Also, since these frames are much larger than
B frames, their overlap could cause serious degradations in
multiplexer performance. Since the GOP pattern is determin-
istic, this overlap will continue for the duration of the video
sequence.

Finally, while it appears that a single model will not
apply to all video sequences, a generalized modeling frame-
work is required which can be applied to a wide variety
of video content. It is not clear that this objective can be
achieved using Markovian-based models, since none have
been applied to MPEG sequences containingB frames. As
to whether a hierarchical model using Markov chains and
DAR can be used for such sequences, remains to be seen.
The two candidates found in this survey are the self-similar
model, proposed by Enssle, and the MRMT model, proposed
by Melamed and Pendarakis. Given the arguments by Hey-
man that the LRD aspect of VBR sequences is relatively
unimportant when compared to the SRD aspect, it would
appear that a model such as MRMT can provide such a
framework.
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