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Abstract

In this paper, an RDF algebra based on a layered RDF
graph model is proposed to incorporate semantics in-
ferencing into query answering. We achieve this by
providing a set of interpreting rules to expand the pat-
tern graph specified in a user’s query into a fuller one
which explicitly captures the required inferencing se-
mantics.

1 Introduction

The Semantic Web was first proposed in [6] as “an
extension of the current Web in which information is
given well-defined meaning, better enabling computers
and people to work in cooperation”. Since then, it has
attracted a collaborative effort led by W3C with par-
ticipation from many researchers and industrial part-
ners. The Resource Description Framework (RDF) [5]
along with its companion specification RDF Schema
(RDFS) [7] have emerged as the basic building block
for the semantic web by providing the fundamental
mechanisms for describing the semantic relationships
between Web resources.

In the RDF model [20], the atomic constructs are
statements, which are subject-predicate-object triples
describing a set of resources connected via proper-
ties. A collection of RDF statements can be intuitively
viewed as a graph: resources are nodes and properties
that connect them are edges. In addition, the RDF
graph structure is enriched with the model-theoretical
semantics endorsed by RDFS [16], which defines the
inheritance hierarchies of classes and properties.

1.1 Motivation

A basic requirement for the interoperability of RDF-
based systems is to not only deal with the lexical and
structural properties of RDF statements, but also sup-
port the semantic inference of such data to discover
the complex relationships among described resources.
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Many RDF-based software toolkits attempt to meet
this demand by applying different methods. Some [25]
implement native rule-based inference engines while
others [1, 4] solve the problem by plugging in existing
description-logic-based reasoners such as Fact [17] and
Racer [14]. The inference provided by the systems in
the first category is based upon manually added in-
ference rules. No generic inference facilities have been
investigated, based on RDF/RDFS semantics, which
would apply to any schema instance. Furthermore, un-
derstanding the precise semantics of these system pro-
prietary rules is difficult due to the lack of a common
formal framework, let alone adapting to them. For the
second approach, the limitation is that a third-party
reasoner is often treated as a black box and hence no
interference or composition with other operations can
be easily incorporated. More importantly, these rea-
soners are designed for statically checking the knowl-
edge base consistency, concept satisfiability and sub-
sumption, etc. It is hence not possible or practical to
directly use such reasoners for the dynamic retrieval-
oriented query service. For example, Racer [14] pro-
vides a functional API for retrieving all individuals
that are instances of a given concept. However, it is
impossible for Racer to express the query to “find in-
stances x and y which share a common parent”.

We see the needs for both querying and inferenc-
ing RDF data and advocate in the view of RDF the
paradigm of inferencing as part of query answering [3],
which has begun to gain recognition from researchers
in the database community. The view is to incorporate
inference, besides structural extraction and manipula-
tion, into query algebra operators.

1.2 Related Work

There are already a number of RDF query propos-
als including RQL [19], SquishQL [21], TRIPLE [2§],
RDQL [26], SeQL [8], SPARQL [23], etc. The query
capabilities of a variety of RDF language proposals
have been compared against each other using the met-
rics in a recent survey [15]. This metrics is composed of
both general and RDF-specific query language desider-
ata. The general desired query properties include 1)



relational completeness which requires the capabilities
of selection, projection, theoretic set operations, etc.,
2) operational closure requiring that the results of an
operation are again elements of the data model, 3) ad-
equacy which means that the underlying data model is
fully exploited, 4) orthogonality which asks for uncor-
related semantics of primitive operators. The RDF-
specific properties refer to the capability of querying
the graph structure of RDF using constructs like path
expression, optional path, and functionalities that ex-
ploit the RDF features such as namespace, reification,
and entailment.

There also exist efforts in utilizing the research
result of querying general graph models for query-
ing RDF. Among these graph data model proposals,
GOOD [13] and graphDB [11] are based on object
models, Graphlog [9] and G-log [22] are based on logic
models and Gram [2] presents a set of algebraic opera-
tors. Most of them require the graph data to be com-
pliant with a certain rigid schema, and then base the
graph-oriented query operations on complicated com-
binations of value searches and joins. Since all these
proposals are developed before the emergence of RDF
none of them suit to satisfy the RDF-specific proper-
ties. With respect to algorithmic aspects of querying
and indexing graphs, there is a recent survey on graph
searching [27].

Through the study of literature, we observe two
weaknesses in current RDF query research. First, an
input RDF is more than a simple subject-predicate-
object graph structure, it also incorporates RDFS vo-
cabulary (a.k.a. RDF schema [7]) that annotates the
class and property types of data resources as well as
describes the inheritance hierarchies of these types.
Among the implemented RDF query language propos-
als [15], many of them lack inference (or so-called en-
tailment) capabilities which allow implicit knowledge
to be obtained by reasoning over the explicit knowl-
edge. Others have restricted inference capabilities by
applying different subsets of entailment rules.

Second, there lacks a comprehensive query alge-
bra for RDF, one like the relational algebra for re-
lational databases, which provides a set of opera-
tors with clearly defined semantics as the formal ba-
sis for systematic RDF query implementations. To
our best knowledge, RAL [10] is the only RDF alge-
bra that has been proposed to date. RAL has three
types of operators: extraction, loop, and construc-
tion. All operations in RAL have the following form
o[f](x1,22,...,xn: expression), where o is a general
symbol for any operator, expression is a collection of
nodes, and f is a function having as input/output col-
lections of nodes. In other words, the fundamental
query data model of RAL is relational node set, and
the extraction-based RAL operators are basically rela-
tional operators. Therefore, RAL does not encompass
adequate capabilities needed for querying the RDF-

specific graph structure. For example, path expres-
sions and optional path are not considered in RAL. In
addition, RAL largely overlooks the need for inferenc-
ing for RDF. For instance, if the domain of a property
is of a specific class, RAL cannot be used to infer that a
resource that has this property is actually an instance
of this class.

1.3 Owur Contributions

The contributions of this work include the following.

1. We introduce in Section 3 the notion of “layer”
in an RDF graph model based on which queries
that require implicit inferencing over RDF schema
(hence called schema-aware queries) can be iden-
tified and distinguished from those involving only
graph operations.

2. We propose (also in Section 3) a new RDF al-
gebra which targets to satisfy both general and
RDF-specific query properties, with inference in-
corporated into query answering.

3. For the pattern-matching-centric algebra opera-
tors, we provide a set of interpreting rules (in Sec-
tion 4) to expand the pattern graph specified in a
user’s query into a fuller pattern which explicitly
represents the needed inference semantics.

4. The proposed matching pattern interpretation
module can be incorporated into any RDF query
implementation for the inference capability.

To recap, the focus of this work is to design a new
RDF algebra and its interpreting rules which turn
the implicit inference semantics into explicit pattern
matching.

2 Preliminaries
2.1 Graph Data Model for RDF

The underlying structure of any expression in RDF is a
collection of triples, each consisting of a subject, a pred-
icate and an object. A set of such triples is called an
RDF graph with predicate edges connecting subjects
and objects. Formally, the universe of an RDF graph
G, universe(G), is a set of resources which essentially
are anything that can have a universal resource iden-
tifier (URI). Assume U, B, L represent sets of URI
references, blank nodes (i.e., anonymous objects), and
RDF literals respectively, universe(G) is the set of el-
ements of UBL (i.e., the set union of U, B and L) that
occur in the triples of G.

An RDF model M is a set of triples (statements)
each represented by (s,p,0) € (UUB) x Prx (UUBU
L)) (Pr CU U B). The subject and object of a triple
can be blank nodes. Suppose Gy = (N, E,ln,lg) is
a graph corresponding to M. Then Iy : N — UBL,



lg:E — Pr. A construction function from M to G
includes the following steps for each (s,p,0) € M: 1)
add nodes ng, n, to N (different only if s # o), 2)
assign Iy (ns) = s, In(no) = 0, 3) add a directed edge
ep from ng to n, into E, and 4) assign lg(ep) = p.

Subgraph Isomorphism and RDF Entail-
ment. Subgraph isomorphism is to decide if there is
a subgraph of one graph which is isomorphic (i.e., ex-
isting a one-to-one correspondence mapping between
vertices and edges) to another graph. For two RDF
graphs GG; and G2, a subgraph isomorphic mapping
w: Gy — Go preserves the UBL of GG; in that of
Go, e, p(ur) = ug and p(ly) = lp for all uy € Uy
and l; € Ly (resp. ug € Us, Iz € Lo), and pu(Gy)
as the collection of all (u(s1), u(p1), 1(01)) such that
(s1,p1,01) € G7 is a subgraph of Ga. Assume G
and Go are two simple RDF graphs, i.e., those that
do not use RDFS vocabulary (introduced next) with
a predefined semantics. Then G entails G2, denoted
G1 E G, if and only if Go — G1 [12]. Roughly speak-
ing, the notion of entailment captures information in-
ferencing, in that if G | G2, the information in Gy is
also (explicitly or implicitly) present in G;.

2.2 RDFS Vocabulary and Its Interpreted Se-
mantics

RDF’s Vocabulary Description Language, also called
RDF Schema (RDFS for short) [7], is introduced by
W3C to extend the semantics of RDF with class and
property descriptions. Specifically, resources may be
divided into groups called classes. The members of
a class are known as instances of the class. A re-
source is declared to be an instances of a class using
the property rdf :type. The most important classes in-
clude rdf s: Resource,rdfs:Class,rdfs: Literal, rdf s:
Datatype, rdfs: XM LLiteral, rdf : Property. The re-
lationships between subject resources and object re-
sources are called properties. The domain and range
of a property describe the classes of resources to which
the property applies and leads to respectively. The im-
portant properties are rdf : type, rdf s : domain, rdfs:
range,rdfs : subClassO f,rdf s : subPropertyOf, etc.
With the predefined semantics for these reserved words
defined in RDFS vocabulary, RDF graphs are no
longer simple but support typing and inheritance. For
example, Figure 1 shows an example of a set of art
resources described by an RDF schema.

For simple RDF graphs, entailment means direct
graph mapping. On the other hand, if G; and Gs2
are two RDF graphs that use RDFS vocabulary with
predefined semantics, then the model theory defined
rules of entailment [16, 12], as shown below, need to
be applied first to infer the implicit information in each
graph based on which G = G5 can be determined.

Rule Set 1: Simple Graphs
GG  foramappu:G — G (1)

Rule Set 2: SubClass (sc)

(a, type, class) = (a, 5¢, ) 2)
(a, sc,b), (b,sc,c) k= (a,scc) (3)
(a,sc,b), (z,type,a) E (z,type,b) (4)

Rule Set 3: SubProperty (sp)

(a, type, property) k= (a, sp, a) (5)
(a,sp,b), (b,sp,c) k= (a,sp,c) (6)
(a,sp,b), (,a,y) F (z,b,) (7)

Rule Set 4: Domain/Range (dom/range)

(a,dom, ), (z,a,y)E (z,type,c) (8)
(a,range,d), (z,a,y)FE (y,type,d) 9)

Rule set 1 essentially describes the semantics of
simple graphs. Subclass rules (corresponding to rules
rdfs9, rdfs10 and rdfs11 in [16]) generate the transitive
closures of subclass — class and instance — class
links. Subproperty rules yield the transitive closure
of subproperty — property links and also propagate
property values down the subproperty chain (rdfs5,
rdfs6 and rdfs7). Domain/Range rules infer resource
types based on domain and range scopes (rdfs2 and
rdfs3).

Utilizing these entailment rules, more information

may be inferred from an RDF graph. For example,

by applying rules in rule set 2, &r2 YR prtifact

is an inferred fact in Figure 1 from &2 rdf type

df s:subClassO
Painting and PaintingT fs:oubClassOf Artifact. In

case that the original knowledge base represented by

the RDF graph is incomplete, e.g., the link &2 rdf:type

Painting is missing, then we can infer this fact from

&rl paints &r2 and range (paints)=Painting.

RDF Graph Closure and Reduction. Given
an input RDF graph G, its closure and reduction refer
to respectively the fullest and the minimal structures
that are both equivalent to G in representing path con-
nectivity. The former is computed by applying the
specified entailment rules in an exhaustive manner for-
wardly, whereas the latter is derived by an inverse pro-
cedure. Usually, an RDF store tends to keep only the
triples in a reduced RDF graph and delay the needed
closure computation until runtime. The reason is that
a full closure computation may generate explosively
many new triples which unnecessarily aggravate the
memory consumption for a unforeseeable application
workload.

3 Layered Graph Algebra for RDF
3.1 “Layers” in RDF Graph

We consider an RDF graph has three “layers”. Layer
1 consists of only those subject-predicate-object triples
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Figure 1: RDF Graph Example

that do not involve RDF'S vocabulary. This is referred
to as a schema-less barebone data layer. Layer 2
is the schema layer, containing the schema informa-
tion, i.e., application-specific classes and properties, of
the triples at the data layer. In this layer, RDFS vo-
cabulary including rdf:type, rdfs:domain, rdfs:range,
rdfs:subClassOf, rdfs:subPropertyOf are involved in
describing the meta information, such as the appli-
cation class to which an instance resource belongs,
the property type of a predicate and its correspond-
ing domain and range, the class and property hierar-
chies, etc. Layer 3 is the meta meta-data layer, com-
posed of the type declarations of application classes
and properties as rdfs:Class and rdf:Property respec-
tively, links from instance resources or application
classes to rdfs:Resource, and relationships among RDF
classes and properties (i.e., rdfs:Class, rdf:Property,
rdfs:Resource, rdfs:Literal, rdfs:XMLLiteral, etc.).
For instance, an application class Painting in Fig-
ure 1 is an application class and hence an instance
of rdfs:Class, which is a subclass of rdfs:Resource,
and creates, sculpts and paints are instances of
rdf:Property, etc.

Both layer 2 and layer 3 involve RDFS vocabu-
lary, e.g., using rdf:itype to describe the class of a
resource. However, the domain and range values of
the property rdfitype for triples (in appearance of
edges in RDF graphs) in these two layers are differ-
ent. Specifically, the rdf:type edges in layer 2 can
only point to application-specific classes and prop-

erties but not RDF classes and properties. For ex-
ample, triple &r2 o type Painting belongs to layer

. df:
2, whereas triples Paintingr Jitype rdfs: Class and

&g TP rdf s: Resource belong to layer 3. Also,

the domain of the rdf:type properties in layer 2 cannot
be RDF classes or properties.

3.2 Schema-aware RDF Queries

Corresponding to the layered graph model, we clas-
sify the RDF queries into three categories: 1) data
layer queries that use no RDFS vocabulary and query
only against the data layer resources, 2) schema-aware
queries that enquire information in the schema layer,
and 3) meta-data queries that are concerned about the
meta meta-data layer data. Schema awareness is one of
the most important requirements for RDF queries. In
the layered model, it translates directly to the aware-
ness of layer 2 of the RDF graph.

Among existing RDF query proposals, RQL and
SeRQL support entailment in RDF natively and
SeRQL even allows to distinguish between subclasses
and direct subclasses. For example, an RQL query
can be used to express “subClassOf(Artist)” or
“select $C1,8C2 from{$C1}creates{$C2}”, where
Artist is an application class and variables $C1,$C2
are capitalized to indicate that they range over ap-
plication classes. Suppose that the second query
is posted against the RDF graph in Figure 1, then
the answer pairs for ($C1,8C2) include not only
(Artist,Artifact), but also (Sculptor,Sculpture)
and (Painter,Painting) since sculpts and paints
are subPropertyOf creates. However, to our best
knowledge, little work has been done to systematically
incorporate such inferencing into the general graph-
oriented querying model to enhance schema awareness
for RDF queries. We hence propose a new RDF alge-
bra to overcome this.

3.3 Graph-based RDF Algebra - LAGAR

Inspired from TAX [18], a tree algebra for XML that
exploits a set of operators centered around a pattern
tree structure for identifying the subset of nodes of
interest in the input tree collection, we correspond-



ingly propose a LAyered Graph Algebra for RDF
(LAGAR for short). Since the RDF model is based
on graphs rather than trees, we first introduce the no-
tion of pattern graph which is central to the semantics
of many operators in LAGAR.

Definition 3.1 (Pattern Graph) Formally, a pat-
tern graph P is a graph with its labeled edges and nodes
constrained by formulas. Le., P = (N,E, Fn,lg) such
that Fy : N — pred(0,Ng), lg: E — re(Eg), where
N¢g and Eg are two sets composed of UBL and Pr
(Pr C UB) of the data graph G respectively, wildcard
* and RDFS vocabulary; 6 is a comparison operator
(e.g., =, #, >) against string constants or variables,
and re(Eq) denotes a regular expression over Eg vo-
cabulary. More generally, Fry may be a boolean com-
bination of predicates.

Like the pattern tree for TAX, the notion of graph
pattern here provides a simple yet intuitive specifica-
tion of nodes and their connecting relationships of in-
terest. This matching function h: P — G is a total
mapping (i.e., embedding) from nodes and edges of
P to nodes and paths of G such that: 1) h preserves
the structure of P, i.e., whenever (u ~> v) is an edge
in P, h(v) is a node that is connected to h(u) via a
path with the concatenated edge labels satisfying re;
2) h(v) satisfies the formula Fyy for all v € N.
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Figure 2: Pattern Graph Examples

For example, Figure 2 gives three pattern graphs
for the RDF in Figure 1. The (path-like) pattern
graph Pa in Figure 2 requests for triples whose sub-
jects are connected to objects via either “paints” or
“sculpts” predicates, and also the adjacent triples
that have “title” predicates. In the (twig-like) pat-
tern graph Pb, a pattern node specifies the constraint
that requires the corresponding objects must be the
RDF literal “Smith”. The (dag-like) pattern graph
Pc is interested in sculptors whose first_names or
last_names are “Smith”. It involves RDFS vocabu-
lary and hence is schema-aware.

The Operators. To satisfy both general and RDF-
specific desired properties, we design our LAGAR al-
gebra which can be classified into four main categories
of operators as below.

Pattern-matching operators. In this category, op-
erators are oriented to structural selection and ex-
traction by employing pattern graphs.

Construction operators. These operators are de-
signed to facilitate the result graph construction
for RDF queries by providing means for creating
and inserting new nodes/edges and manipulating
the extracted structures.

Graph-set operators. Operators in this category
take as input a collection of graphs (a collection of
nodes or edges are the extreme cases) and perform
set-theoretical operations, although some may not
have exactly identical semantics as their relational
counterparts.

Functional operators. We classify into this cate-
gory the operations of aggregation, and the apply
function borrowed from the functional language
context that can be used to apply a user-defined
function to each member of the input collection.

A fundamental property of LAGAR is that each
operator in the algebra accepts a collection of RDF
graphs as input and returns graphs as the result. This
property ensures computation closure and compos-
ability. Generally, a LAGAR operator is denoted as
opggt(C’), where op is the specific operator, C' denotes
the input graph collection, pa is the input parame-
ter adornments, and out is the produced output. Im-
plicitly, the apply function is used to apply opggt to
each graph G; in C, and the union of all outputs of
opyu(Gi) composes the output of op9i*(C).

We show in Table 1 the important LAGAR oper-
ators in each of the four categories. Among the pat-
tern matching operators in the first category, selection
and projection appear to have similar input parameter
adornments, i.e., P for the pattern graph and SL (resp.
PL) for the list of node types to be retained in the
output structure. However, selection and projection
have different semantics that respectively correspond
to the two return semantics for matching P against a
graph G; € C. Specifically, the output of o2(C) is a
collection of witness graphs of P, one per embedding
of P into G; (G, € C) restricted to the set of nodes
which correspond to the pattern nodes appearing in
the adornment list SL. For the pattern matching of
of;L (C) that results in multiple witness graphs which
share a common node u in G; as the image of a node
in P, u is repeated in the output of this selection.

In contrast, the output of 75%(C) includes the im-
ages of all embeddings of P into G; (G; € C) that are
confined by the pattern nodes in PL, however empha-
sizing that the precedence order among the retained
nodes in the original structure is preserved. That is,
for any two nodes u and v in the output of 75(C),
whenever u precedes v in the sense that there is a path
from w to v in G; € C, u proceeds v in the output.



| Description | Notation | Semantic |
Pattern-matching Operators
Select a2t (C) return witness graphs of P in G; (VG; € C'), nodes restricted to SL.
Project 7B (0) same as above, with nodes preserving their precedence order in Gj.
Product x(C1,C?) pair each graph G; in C; with each graph G; in C> and connect
their root nodes (i.e., those that have only outgoing edges) to a
common new root via the property edges of a null type.
Join )l (Ch, Co) {Gi;|Gij = o2 (x(Gi,G4),YGi € C1,VG, € C2)}
(P is to be matched against x(G;, G;), at least one f in the Fy of
P is $u=3%u ($v matches nodes in G;, and $u matches nodes in G;).
Outer Join :lxﬁL (C1,Co) P; and P; are the two parts in P that are matched against each
G, in C and each G in C respectively, if no witness graph G’
obtained from UISDJ_Lj (G;) satisfies the join condition $v==3$u,
then output just UISDiLi(Gi); otherwise, output a2 (x (Gi, Gy)).
Graph-set Operators
Groupby 'ych () partition graphs in C' by the grouping function gf, then within each
partition connect all roots of the graphs being projected by GL list.
Distinct o(C) keep only the unique graphs in C' up to isomorphism, G1, G2 are
isomorphic if exist maps ul, (2 s.t. ul(G1) = G2 and (2(G2) = G1.
Union U(Cq, C2) the set theoretical union of C7 and Cs.
Merge +(C1, Cy) 0(U(G1, G2)), i.e., blank nodes in G2 that are identical to those in
G'1 are removed and then the remaining G2 is union-ed with G;.
Intersect N(C1, C?) the set theoretical intersection of C7 and Cs.
Difference —(C4,C2) the set theoretical difference of C7 and Cb.
Construction Operators
Insert Node O(C, G, c,id) create and insert into GG; a instance of class ¢ which has an id being

Insert Edge
Change NValue
Change EProp
Delete Node
Delete Edge

®(Ca Gi: id87p7 ido)
p(C, Gi, ’id7 l)

ﬁ(c7 Gi7 idS7 id07p)
e(C, Gi, Zd)

w(C, Gy, ids, idy)

either a uri, blank, or a literal (c is rdfs: Literal in the last case).
create a property edge labeled p to connect subject ids to object id,.
change in G; the literal value of a node with id to be new value .
change in G; the old property type on the edge ids — id, to be p.
remove the node with id in G;.

remove from G; the edge that connects subject ids to object id,.

Functional Operators

Aggregation

Apply

Aafus(C)

0s(C)

apply the aggregate function af and insert the generated value(s)
back at the position according to the update specification us.
apply function f (user-defined or an operator) to each G; in C.

Table 1: LAGAR Operators
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Figure 3: Selection vs. Projection

This implies that the semantics of projection may be
regarded as eliminating nodes other than specified in
PL from G; rather than repeatedly output nodes in
each different witness graphs. Such a difference in the
output structures of o2 (C) and 73L(0) is illustrated
in Figure 3 for the same pattern graph P, graph col-
lection C, and output list SL.

For aggregation operations, the purpose is to map
collections of values to aggregate or summary val-
ues. Common aggregate functions are MIN, MAX,
COUNT, SUM, etc. Due to the property of “close-
ness”, the output of an aggregation operator is still
graphs, but are updated with the computed summary
values based on the update specification us. The ex-
ample us can be simply a node identifier id, function

9 lowest —common —ancestor(idy, ids), etc.

Similar to TAX [18], grouping and aggregation are
separate orthogonal operators in LAGAR. The ratio-
nale for this separation arises from the difference in



nature of the two operators — grouping for RDF graphs
involves partition of the graphs and restructuring the
output, whereas aggregation is mainly value-based in-
stead of structure-based.

It is worthy to note that the operators listed in Ta-
ble 1 are not meant to be complete nor exclusive. They
however represent a clean core set of operations which
are primitive, orthogonal, composable, and intuitive
for manipulating the graph-structured RDF data en-
riched with RDF vocabulary. It should be rather easy
to derive other operators that are of interest to RDF
data from this core set.

Comparison of LAGAR with Other Alge-
braic Approaches. Here we particularly compare
our proposed LAGAR with RAL [10] and some repre-
sentative graph data model proposals [13, 11, 2].

In the design of RAL [10], the operators are de-
fined to work on collections of “nodes”, which form
the RAL query data model. Edges are not considered
the “first-class” citizens and they can only be accessed
via projecting on the specified property type of a col-
lection of nodes. Furthermore, RAL follows the ap-
proach of binding variables to graph nodes, and then
manipulating the use of these variables through loop-
ing constructs where needed. A natural implementa-
tion of a loop-based RAL query expression corresponds
to a “nested-loops” execution plan. In comparison,
the guideline for designing our LAGAR is to avoid
the functional-programming-style recursion where pos-
sible, and thus devise a bulk manipulation algebra that
enables the access and processing of RDF elements in
a “set-at-a-time” fashion. For queries involving recur-
sion such as introduced by the apply function, an im-
plementation of LAGAR can provide an explicit sup-
port for iteration.

Among the existing well-known graph data mod-
els, GOOD [13] represents the scheme as well as the
object instances using a graph and express data ma-
nipulations by graph transformations, while GraphDB
[11] and Gram [2] propose explicit graph data models.
In terms of query algebra design, Gram [2] uses a data
model where walks (paths) are the basic objects and
walk expressions are regular expressions with alternat-
ing sequences of node and edge types. The data model
exploited by GraphDB [11] is a collection of object
classes divided in: simple classes (simple objects that
represent nodes), link classes (links between nodes that
represent edges) and path classes (representing several
paths in the database).

The commonality among these existing graph data
models is that a collection of graphs are transformed
in the first phase of query processing into a collec-
tion of walks or other component units of graphs but
not graphs themselves. Then most of the query oper-
ations can be performed in a way similar to the rela-
tional algebra to further manipulate the derived collec-
tions. The ultimate output graphs can be constructed

in one final step. Such a paradigm of query process-
ing may incur large overhead accumulated by repeated
construction and deconstruction steps. It would hence
not be appropriate or efficient to employ these graph
query algebras to handle queries that semantically re-
quire many of such round-trips or to deal with data
with high connectivity such as RDF. In contrast, our
LAGAR algebra handles collections of graphs directly.
Like TAX for XML data, LAGAR avoids the afore-
mentioned problems but needs to tackle the issue of
heterogeneity. The notion of pattern graph provides
the central semantics of LAGAR operators and it of-
fers the needed standardization over a heterogeneous
set. Hence, LAGAR is a “proper” algebra that applies
to a heterogeneous collection of graphs.

Another important feature of LAGAR is its schema-
awareness and the capability of inferencing over the
class and property hierarchies of RDF data. We will
show in the next two sections that LAGAR allows effi-
cient inference based on graph-pattern-based matching
algorithms. The limitation of our LAGAR algebra is
however primarily its inadequacy in exploiting all ele-
ments of the underlying data model. For example, the
concepts of RDF containers, reification, namespace,
etc., have not yet been accommodated in LARGA. In
this sense, additional operators will be needed to han-
dle these model elements. In this paper, we confine our
discussions to the proposed LAGAR operators and fo-
cus on the inference-enabling pattern graph interpret-
ing process for the pattern-matching operators.

4 Inference-enabling Pattern Graph
Interpretation

As defined earlier in Section 3.3, the basic elements of
a pattern graph P are nodes constrained by formulas
comparing against UBL U {*} U Cy4rs (Crqrs repre-
sents the RDFS classes) and edges against re(Pr U
{*}UPrgss) (Prass denotes the RDFS properties). For
a given P and an RDF graph G that both use RDFS
vocabulary, pattern matching is no longer simply em-
bedding P directly into G. We may need to utilize
the entailment rules (see Section 2.2) to derive a “full”
pattern graph which explicitly represents the match-
ing semantics. We call this the interpretation process
of a pattern graph and describe it next.

4.1 Pattern Graph Interpretation Module

To incorporate inferencing into schema-aware query
answering, we propose a pattern graph interpretation
module to be plugged in any RDF query implementa-
tion system. The interfacing of this module with other
parts of an RDF query implementation is illustrated
in Figure 4.

After the input query is parsed, the pattern graphs
involved in it are either extracted directly if the RDF
query system is implemented based on graph pattern
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matching, or otherwise compiled from the native syn-
tax or operator and constructed inside of our interpre-
tation module. Each pattern graph P is then decom-
posed into the component triples ¢p; each composed of
two nodes and an edge possibly with variables. These
triples are divided into two groups, i.e., schema-related
and data-layer, based on whether schema layer infor-
mation or RDFS vocabulary is involved. Triples in
either group can be further classified into a fixed set
of atomic patterns called triplet graphs. In other
words, triplet graphs are categorized triple compo-
nents of a pattern graph.

Each triplet graph can be interpreted using a cor-
responding interpreting rule. For a schema-related
triplet graph, applying its interpreting rule may result
in a “blown” pattern graph. Finally, the interpreted
triple patterns are merged together to compose a pat-
tern graph PP (""'P denotes “interpreted”) which is
ready to be matched against the input RDF graph. If
the RDF query system is not implemented based on
graph pattern matching, then the interpreted “full”
pattern graph PP is translated back into the native
syntax or operator.

For example, below we show how a pattern-
matching LAGAR operator is used to express a
schema-aware RQL query and how it is further de-
composed and classified into several triplet graphs.

Example 1

RQL query:
select z, $X, y
from {z : $X} paints {y}
and {y} title “Sunflower”

LAGAR operator: Uf)’$X’y(C’), where P is a pattern
graph somewhat like P(a) in Figure 2 (with no
alternative label “sculpts” though on the left direct
edge) and C'is the input RDF graph collection.

4.2 Interpreting Data-layer Triplet Graphs

Table 2 shows eight atomic data-layer triplet graphs.
They differ in the number and positions of variables
(i.e., those prefixed by ’7’, a symbol borrowed from the
RQL syntax) in them. A pattern node, either at the
subject or object position, of a triplet graph is associ-
ated with a variable only if it appears in the selection
list SL of o or the projection list PL of 7. Data nodes
matching these variables are to be extracted, similar
to the use of ’$” in XQuery for variable bindings.

4.3 Interpreting Triplet Graphs

In a schema-related triple pattern, we use capital let-
ters A, B, .., Z to denote the pattern nodes and edges
that are to be matched with schema-layer data, while
denoting those that are to be matched with data-layer
resources by non-capital letters a,b,..,z. For exam-
ple, compared to the data-layer triple pattern (z, a, y),
(?x : A,a,y) is a schema-related triple pattern addi-
tionally requiring that the matching subjects must be
instances of class A. All schema-related triple patterns
can be classified into the atomic triplet graphs listed
in Table 3. They differ in the number and positions of
class or property variables (i.e., capitalized variables).

The interpretation of a schema-related triple pat-
tern needs to utilize the predefined semantics of RDFS
vocabulary by reversely applying the appropriate en-
tailment rules mentioned in Section 2.2. For example,
suppose a resource &r; is the subject of a triple that
matches (?z,a,y), we need to check if &r; is an in-
stances of class A, either directly or transitively. In

. . df:
other words, if there are triples &r; TP o and

C Tdfs:sub_cgthOf A in the input RDF graph, then

&r; rditype 4 according to the SubClass entailment

rule set. Below we give the interpreting process for
this example triple pattern.

Triplet Graphs: The pattern graph P used above is (22 A, a,y) "= typeOf (72, a,y), (7, type, A)
composed of two triplet graphs: one is (T2 :7X,a,7y) Gy . 1Y) N, TYpe,
(the only non-variable a here stands for property —  ("w,a,y), Tz, type, 70), (7C, sc, A)

“paints”) and the other is (Ty,b, z) whose only variable se Tule 2,3

is y while b and z are constants. The possible types
of triplet graphs will be introduced next.

(?x,a,y), (2x,type, 7C), (7C, (sc)x, A)

In the above example, the final interpreted term is a
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(x,a,y) all-constant triplet graph is considered as a boolean pattern testing
if such a triple exists in the input RDF graph.
(?x,a,y): extracting the subject nodes of the triples that match (z,a,y).
(x,?a,y): extracting the predicates of the triples that match (x,a,y).
(x,a,?y): extracting the object nodes of the triples that match (z, a,y).
(?x,?a,y) extracting the subject and property pairs of the matching triples.
(?z,a,?y) extracting the subject and object node pairs of the matching triples.
(x,?a,?y) extracting the predicate and object pairs of the matching triples.
(?x,?a,7y): extracting all three elements of the matching triples.

Table 2: Semantics for Data-layer Triplet Graphs

| Interpreting Rules for Schema-related Triplet Graphs

All-constant Boolean Triplet Graphs

(A,a,y) = (Pz,a,y), (Tz,type, 7C), (7C, (sc)x, A)

(z,Py) = (x,%a,y), (Pa, (sp)*,P)

(v,a0,B)  — (ﬂza y), (?y, type, ?D), (?D, (sc)*, B)

(A Py) = (22,%a.y), (22, type,?C), (°C; (sc)x, A), (%a, (sp)*, P)

(A,a,B) — (?z,aq, 7y), (P, type, 2C), (?C, (sc)*, A), (y, type,?D), (?D, (sc)*, B)

(@ PB)  — (0.20.7). (yotype. 2D). (2D, (5014, ). (20, (sp)x. P)

(4,P.B) _— (22,%,7y), (?a,type, 7C), (1C, (s}, A), (?a, (sp), P), (?y,type, ?D), (2D, (sc)s, B)

Schema-data Variable Based Triplet Graphs

a

(7C,a,y)  — (Tz,a,y), Pz, type, ?C), (?C, (sc)*,7A), (a,dom,?A)

(z,7Py)  — (z,%a,y), (a, (sp)*,P)

(r.0,7D) — (r.0%), (?y.type, 2D), (2D, (sc)+.?B), (a, range,B)

(707 7P’ y) (:%type ?D) (Du (SC)*u ?B)7 (?P> range, ?B)v (?P7 dom, ?A)7 (707 (SC)*, ?A)

(?C,a,7D) — (a,dom,?A), (a,range,?B), (?C, (sc)x,7A), (?D, (sc)x,?B)

(z,?P,7D) — (x, type,?C’), (?C, (sc)*,7A), (7P, dom,?A), (7P, range,?B), (1D, (sc)*,?B)
(?C,?P,7D)— (7P, type, rdf s: Property), (?P,dom,?A), (?P,range,?B), (1C, (sc)*,?7A), (7D, (sc)x, ?B)

Table 3: Interpreting Schema-related Triplet Graphs

conjunction form of mixed types of triplet graphs. For
example, (?z,a,y) is a data-layer triplet graph while
the other two are schema-related. In (?C, (sc)%, A),
pattern node 7C' is connected to class A via an edge
labeled by (sc)*. This means that the class bindings
of 7C are transitive subclasses of A since sc represents
rdfs:subclassO f. Repeated variables in the conjunc-
tion form indicate the joint points where the corre-
sponding triplet graphs meet. In this case, the ex-
panded pattern graph PP that captures the match-
ing semantics of (7z:A,a,y) is shown in Figure 5.
Besides containing pattern nodes and edges that are
to be matched with the application classes and prop-
erties in the RDF graph, schema-related triplet graphs
may also involve RDF'S vocabulary such as type and sc
(stand for rdf:type and rdfs:subClassOf respectively).
In this case, interpreting them needs to not only re-
versely apply the entailment rules, as illustrated by the
example below, but also explore related schema infor-
mation. For instance, (?C, a,y) means (*:?C, a,y) and
it requests to extract the class(es) of the subjects in
the triples that match (x,a,y). No entailment rule is
appropriate to be applied to (?C,a,y), nor can it be
directly matched against the RDF graph since that the

class variable 7C is specified to be connected to an in-
stance resource y via a predicate a rather than RDF
vocabulary. We interpret this by making use of the
schema knowledge which confines the bindings of 7A
within the domain of property a.

IO (22270, a, y)

1 (2, a,y), (2, type, 70),
(?C, (sc)x,7A), (a,dom,?A)

(7C,a,y)

In the first step of this interpretation, a pattern
node variable 7z is introduced to explicitly indicate
that its binding set cannot be empty. In other words,
(?C,a,y) requires that there exists at least one in-
stance s of any class binding of ?C' such that (s, a,y)
is a triple in the data layer of the input RDF graph.
Note that x is the new variable name and the label
of its corresponding pattern node is actually "*’. This
is the case for any newly introduced variable. Also
note that only the bindings of the original variable(s)
in each rule head are to be returned, while those of the
newly introduced variables in each interpreting rule are
intermediate results that lead to deriving the required
variable bindings.



Figure 5: P of (?2:C, a,y), only bindings of
the underlined 7z are returned

7A
(so)x

type

KO0

Figure 6: P of (?C,a,y), only bindings of
the underlined ?C' are returned

In the second step, the interpretation explores the
schema knowledge which relates 7C' to the domain
value A of property a via the subClassOf links. The
final interpreted form (corresponding to the first row
in the second subgroup of rules in Table 3) is shown
in Figure 6 and it is ready to be matched against the
input RDF graph.

Similarly, the interpreting rules for the other
schema-related triplet graphs are given in Table 3.
For a schema-related triple pattern that contains non-
capital variable(s) to be matched with data-layer re-
sources, we find that its interpreted term resembles
that for the triplet graph obtained by removing such
variable(s). For instance, (?z,?P,y) is interpreted as
(?x,?a,y), (?a, (sp)*,?7P), which only differs from the
interpreted form of (z,?P,y) by the ‘?’-prefixed z. We
hence do not elaborate on the interpreting rules for
such triplet graphs in Table 3.

4.4 Properties of PP

Feasibility. As can be observed from Table 3, an
important property possessed by the PP of each
atomic triplet graph is feasibility. The notion of fea-
sibility comes from the context of answering query
using views with binding patterns [24] where it de-
scribes the property that the complete answer to a
query is computable based on the given binding pat-
tern views. Here, all the interpreted conjunctive forms
in Table 3 present similar binding patterns, namely, at
least one subgoal has a free variable and two bound
variables while the others each has two free variables
and one bound variable. For example, in the inter-
preting rule (z,?P,y) — (z,%a,y), (?a, (sp)*, 7P), the
binding pattern for the first subgoal is (x%, ?a’,y?).
Thus the bindings of 7a can be derived from this sub-
goal, which makes ?a a bound variable in other sub-
goal(s), e.g., (?a’, type®, 7QF). This way, free variables
in some subgoals become “bound” in others. Even for
those schema-related triplet graphs that contain non-

capital variables such as (?z,?P,y), each P has at
least one subgoal with no less than one bound vari-
able. This guarantees a feasible order in executing the
matching of PP,

Minimality. Another important property is the
minimality of each PP, This refers to the fact
that each P™P captures the inferred, redundant-free
structural constraints for the corresponding triplet
graph. For example, suppose that the first inter-
preting rule in Table 3 is changed to (A,a,y) —
(22,a,y), (%, type, 2C), (2C (sc)x, A), (a,dom, ?B),
(A4, (sc)x,?7B). The last two added constraints are re-
dundant since the newly introduced variable 7B is un-
necessary for checking if (direct or indirect) instances
of A (i.e., bindings of ?z) exist to satisfy (?x,a,y).

The redundancy issue that may arise from com-
posing the interpreted forms of the component triples
of a pattern graph P is worthy noting. To check
and remove redundancies in the merged pattern graph
Pintr the approaches of variable unification and graph
matching may be employed. We’d like to also point
out that, although each interpreting rule “blows up”
a triplet graph by a certain constant number, the size
of PP is in linear of the size of P.

4.5 Discussions

In general, the complexity of our proposed LAGAR
operator set is ExpTime since its expressive power
is equivalent to that of SHZQ, a variation logic under
the Description Logic (DL) category. Compared to the
DL-based reasoning approach, the algebraic approach
we adopt for inferencing is different from the former
in the following aspects.

First, the major task of a DL-based reasoner is to
statically check the concept coherence, satisfiability
and subsumption; while the inferencing capability that
concerns us comes from the on-demand schema-aware
queries. Second, the two approaches differ in their
implementation strategies. A modern DL reasoning
system is often based on an optimized tableaux algo-
rithm. Our algebraic approach first analyzes whether
the query’s resolution demands inference rules to be ap-
plied based on the identification and extraction of the
“schema-aware” parts. If such parts exist, it classifies
them into different triplet graphs and then applies the
corresponding interpretation rules to turn them into
full matching patterns. Note that the inference engine
in a DL system assumes that the facts are known be-
forehand, which is however, in contradiction with the
on-demand retrieval-oriented query paradigm.

To summarize, the inference need arising from the
schema-aware queries is turned into pattern matching
operations using our approach and the complexity of
it is now closely related to the graph database search
efficiency.



5 Conclusion

In sum, we addressed in this paper the need for consid-
ering inferencing as part of schema-aware RDF query
answering. We proposed a layered RDF graph model
and built on top of it an RDF algebra which exploits
the model theory defined entailment rules and schema
knowledge for semantics inferencing. We are currently
still at the early phase of designing and implement-
ing a full-fledged RDF query algebra. In the future
work, we will analyze the optimization opportunities
in a greater depth and seek for solutions for further
improvement.
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